Augmented Cognition for Bioinformatics Problem Solving Olga Anna Kuchar and Jorge Reyes-Spindola Michel Benaroch Pacific Northwest National Laboratory Center for Creation and Management of Digital P.O. Box 999, 902 Battelle Blvd. Ventures Richland, WA, 99352 Martin J. Whitman School of Management Syracuse {olga.kuchar, jorge.reyes.spindola}@pnl.gov University, Syracuse, NY, 13244
[email protected] Abstract We describe a new computational cognitive model that has been developed for solving complex problems in bioinformatics. This model addresses bottlenecks in the information processing stages inherent in the bioinformatics domain due to the complex nature of both the volume and type of data and the knowledge required in solving these problems. There is a restriction on the amount of mental tasks a bioinformatician can handle when solving biology problems. Bioinformaticians are overwhelmed at the amount of fluctuating knowledge, data, and tools available in solving problems, but to create an intelligent system to aid in this problem-solving task is difficult because of the constant flux of data and knowledge; thus, bioinformatics poses challenges to intelligent systems and a new model needs to be created to handle such problem-solving issues. To create a problem-solving system for such an environment, one needs to consider the scientists and their environment, in order to determine how humans can function in such conditions. This paper describes our experiences in developing a complex cognitive system to aid biologists in knowledge discovery. We describe the problem domain, evolution of our cognitive model, the model itself, how this model relates to current literature, and summarize our ongoing research efforts.