Flowering Plants of Africa

Total Page:16

File Type:pdf, Size:1020Kb

Flowering Plants of Africa Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 61 Pretoria 2009 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume C. Archer, South African National Biodiversity Institute, Pretoria, RSA R.H. Archer, South African National Biodiversity Institute, Pretoria, RSA J.K. Archibald, Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas, USA C.L. Bredenkamp, South African National Biodiversity Institute, Pretoria, RSA D. Bridson, Royal Botanic Gardens, Kew, UK C.L. Craib, Bryanston, RSA P.J. Cribb, Royal Botanic Gardens, Kew, UK R. de Mello-Silva, Department of Botany, University of São Paulo, Brazil G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK N. Hahn, Institute of Conservation and Natural History of the Soutpansberg, Louis Trichardt, RSA P.P.J. Herman, South African National Biodiversity Institute, Pretoria, RSA S. Kativu, Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe J. Lavranos, Loulé, Portugal G.P. Lewis, Royal Botanic Gardens, Kew, UK J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA U. Meve, Department of Plant Systematics, University of Bayreuth, Germany A. Nicholas, School of Biological & Conservation Sciences, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Department of Phanerogamic Botany, Swedish Museum of Natural History, Stockholm, Sweden D.F. Otieno, Department of Biological Sciences, Moi University, Eldoret, Kenya E. Retief, South African National Biodiversity Institute, Pretoria, RSA M. Sands, Royal Botanic Gardens, Kew, UK B.B. Simpson, Integrative Biology, University of Texas, Austin, Texas, USA S.J. Smithies, South African National Biodiversity Institute, Pretoria, RSA D.A. Snijman, South African National Biodiversity Institute, Cape Town, RSA H. Steyn, South African National Biodiversity Institute, Pretoria, RSA E.J. van Jaarsveld, South African National Biodiversity Institute, Cape Town, RSA A.E. van Wyk, Department of Plant Science, University of Pretoria, RSA B-E. van Wyk, Department of Botany and Plant Biotechnology, University of Johannesburg, RSA G. Willamson, Bergvliet, RSA P.J.D. Winter, South African National Biodiversity Institute, Pretoria, RSA Date of publication of Volume 60 Plates 2221–2240 ............................................... 1 June 2007 Next volume Volume 62 is likely to appear in 2011.—The Editor ISSN 0015-4504 ISBN 978-1-919976-50-1 ii Contents Volume 61 2241. Aloe pronkii. G.F. Smith, E. Figueiredo, N.R. Crouch and Gillian Condy ....... 2 2242. Aloe vossii. N.R. Crouch, R.R. Klopper, G.F. Smith and Sibonelo Chiliza ....... 8 2243. Eucomis zambesiaca. P.J.D. Winter and Gillian Condy ..................... 18 2244. Veltheimia bracteata. G.D. Duncan and Marieta Visagie . 24 2245. Nerine pancratioides. G.D. Duncan, C.L. Craib and Gillian Condy . 34 2246. Xerophyta longicaulis. N.R. Crouch and Gillian Condy..................... 42 2247. Habenaria schimperiana. T. Mpongo and Gillian Condy . 50 2248. Serruria elongata. J.P. Rourke and Gillian Condy......................... 56 2249. Kalanchoe crenata subsp. crenata. N.R. Crouch, G.F. Smith and Gillian Condy ... 62 2250. Pomaria sandersonii. G. Germishuizen, A. Grobler and Gillian Condy......... 70 2251. Begonia homonyma. T. McLellan, N.R. Crouch and Gillian Condy ............ 76 2252. Diospyros whyteana. M. Jordaan and Gillian Condy....................... 84 2253. Aspidoglossum ovalifolium. S.P. Bester and Gillian Condy . 90 2254. Lavrania haagnerae. S.P. Bester and Gillian Condy ....................... 98 2255. Syncolostemon macranthus. E. Retief and Gillian Condy ................... 108 2256. Thorncroftia greenii. K. Balkwill, K. Changwe, R.A. Reddy and Barbara Pike.... 112 2257. Zaluzianskya glareosa. G.V. Cron and Gillian Condy . 118 2258. Dewinteria petrophila. E.J. van Jaarsveld, A.E. van Wyk and Vicki Thomas . 124 2259. Ixora foliicalyx. P. De Block and Omer Van de Kerckhove .................. 132 2260. Cineraria austrotransvaalensis. G.V. Cron and Barbara Pike ................. 140 Guide for authors and artists . 145 Index to Volume 61 . 149 New taxon published in this volume Thorncroftia greenii K.Changwe & K.Balkwill, sp. nov., p. 112 iii This volume is dedicated to JOHN LAVRANOS Citizen of the succulent world. John Lavranos with a chameleon, Furcifer verrucosus, in south- ern Madagascar in May 2003. Photographer: Tom McCoy. Over a period of more than 50 years John has contributed extensively to our knowledge of particularly the succulents of Africa, Saudi Arabia, Madagascar and beyond. Through his exploration of previously remote and inaccessible areas, dozens of new species have been discovered and described. Even as an octogenarian his intrepid global explorations, now extending to several continents, are continuing unabated. John collaborates freely and easily and has assisted scores of emerging and established plant diversity scientists in their quest to improve our understanding of the natural world, particularly species relationships. His exploration feats have inspired generations of natural historians and he remains a popular lecturer at international conventions. PLATE 2241 Aloe pronkii Flowering Plants of Africa 61: 2–6 (2009) 3 Aloe pronkii Asphodelaceae Madagascar Aloe pronkii Lavranos, Rakouth & T.A.McCoy in Cactus & Succulent Journal (U.S.) 78: 198–200 (2006). In August of 1960, The Secretaries of the Linnean Society of London made spe- cial mention of Dr Gilbert Reynolds for his having ‘travelled more miles in Africa in search of (Aloe) plants than any other plant collector living or dead’ (Reynolds 1966). The astonishing distance travelled by this prolific contributor to Aloe taxonomy exceeded 64 000 km, which included his 1955 sojourn on the Ile Rouge, the Red Island. This was arranged by the Institut Scientifique de Madagascar, Tsimbazaza, in Antananarivo. During his period in Madagascar he sought out aloes at their type localities and wherever else he could find them, managing to traverse the island, working the northwest, the central highlands and the more arid south, in which region he appears to have focussed his collecting activities (Reynolds 1958). Following the description by Reynolds of several Malagasy novelties shortly thereafter, and still more by Prof. Werner Rauh, a total of 46 species (plus 15 varie- ties) were enumerated for this Indian Ocean island by the time of Reynolds’s land- mark work, published in 1966. Reynolds at that point remarked, ‘I believe there are still a few species of Aloe in Madagascar awaiting discovery and description’. This was a substantial underestimation, for within 40 years the number has approximately doubled. In fairness to Reynolds, a single fieldtrip to the fourth largest island in the world (at 587 000 km2)—and an inaccessible one at that—could hardly do it justice! The diversity of xeric and mesic habitats in Madagascar is remarkable: ‘tsingy’ limestone massifs of knife-edge pinnacles, quartzitic highlands, the desolate sand- stones of the Isalo Mountains and much else besides (Preston-Mafham 1991). These various sites sustain a tremendous diversity of aloes, many highly localised in their distribution, and only recently brought to light (see for example Lavranos et al. 2007). The tremendous improvement in our understanding of the diversity of Malagasy aloes in the last few decades can be attributed largely to John J. Lavranos, botanist extraordinaire, adventurer and consummate contributor of numerous sci- entific publications and the herbarium vouchers that underpin them. To date, over 32 000 collections have been made by Lavranos. Seldom is it that a monograph or floristic treatment of African succulents is produced that does not necessarily cite his interesting specimens—especially in the Asphodelaceae, Euphorbiaceae and Apocynaceae (Stapelieae, the succulent stapeliads) (e.g. Dyer 1983). Given the rate of discovery of aloes in Madagascar in recent decades, this island may yet prove to be the hottest of Aloe hotspots. Currently, this exclusively Old World PLATE 2241.—1, habit, × 1; 2, ripe fruit, × 1.5; 3, open capsule and seeds, × 1.5. Voucher specimen: Smith & Figueiredo 1 in National Herbarium, Pretoria. Artist: Gillian Condy. 4 Flowering Plants of Africa 61 (2009) genus is known to be most speciose in South Africa, with about 150 indigenous rep- resentatives (Van Wyk & Smith 2004); the other significant present-day regions of diversity—eastern Africa and Saudi Arabia—lag behind somewhat in the richness stakes (Smith & Van Wyk 2008). Probably the best way to describe the vegetative appearance of Aloe pronkii is to imagine it as a hypothetical hybrid of two other alooids, both South African in this instance: Aloe bowiea and Chortolirion angolense. The latter has earlier featured (as C. stenophyllum) in The Flowering Plants of South Africa (Plate 932), while the miniature A. bowiea has also been figured (Plate 2096). The slender, but distinctly succulent leaves of Pronk’s aloe are grass-like and carried in a lax, open tuft as shown on the accompanying plate. The flowers are reminiscent of those of the exclusively karroid genus Astroloba (Alooideae), except that they are red
Recommended publications
  • Haseltonia Articles and Authors.Xlsx
    ABCDEFG 1 CSSA "HASELTONIA" ARTICLE TITLES #1 1993–#26 2019 AUTHOR(S) R ISSUE(S) PAGES KEY WORD 1 KEY WORD 2 2 A Cactus Database for the State of Baja California, Mexico Resendiz Ruiz, María Elena 2000 7 97-99 BajaCalifornia Database A First Record of Yucca aloifolia L. (Agavaceae/Asparagaceae) Naturalized Smith, Gideon F, Figueiredo, 3 in South Africa with Notes on its uses and Reproductive Biology Estrela & Crouch, Neil R 2012 17 87-93 Yucca Fotinos, Tonya D, Clase, Teodoro, Veloz, Alberto, Jimenez, Francisco, Griffith, M A Minimally Invasive, Automated Procedure for DNA Extraction from Patrick & Wettberg, Eric JB 4 Epidermal Peels of Succulent Cacti (Cactaceae) von 2016 22 46-47 Cacti DNA 5 A Morphological Phylogeny of the Genus Conophytum N.E.Br. (Aizoaceae) Opel, Matthew R 2005 11 53-77 Conophytum 6 A New Account of Echidnopsis Hook. F. (Asclepiadaceae: Stapeliae) Plowes, Darrel CH 1993 1 65-85 Echidnopsis 7 A New Cholla (Cactaceae) from Baja California, Mexico Rebman, Jon P 1998 6 17-21 Cylindropuntia 8 A New Combination in the genus Agave Etter, Julia & Kristen, Martin 2006 12 70 Agave A New Series of the Genus Opuntia Mill. (Opuntieae, Opuntioideae, Oakley, Luis & Kiesling, 9 Cactaceae) from Austral South America Roberto 2016 22 22-30 Opuntia McCoy, Tom & Newton, 10 A New Shrubby Species of Aloe in the Imatong Mountains, Southern Sudan Leonard E 2014 19 64-65 Aloe 11 A New Species of Aloe on the Ethiopia-Sudan Border Newton, Leonard E 2002 9 14-16 Aloe A new species of Ceropegia sect.
    [Show full text]
  • Review of the Three Species Accepted in Chortolirion A.Berger (Xanthorrhoeaceae: Asphodeloideae)
    Review of the three species accepted in Chortolirion A.Berger (Xanthorrhoeaceae: Asphodeloideae) Georg Fritz Abstract In a recent detailed study, the genus Chortolirion A.Berger was revised (Zon- neveld & Fritz 2010). Three species were subsequently accepted, namely the spring-flowering C. angolense (Baker) A.Berger, the autumn-floweringC. tenu- ifolium (Engl.) A.Berger, which was rein- stated, and the summer-floweringC. lat- ifolium Zonn. & G.P.J. Fritz, which was described as new. A summary of this re- vision is provided and new information that has since become available, includ- ing several new localities, is offered. Introduction In the past, Chortolirion has largely been studied from herbarium sheets. Limited fieldwork was conducted to investigate the inconsistent morphological charac- teristics observed on these herbarium records or to examine the differences between various populations seen in the field. It is noteworthy that, in the past, herbarium records of the species were not collected with a view to dis- tinguishing between spring- and au- tumn-flowering populations (Craibet al. 200). Failure to recognize obvious dif- ferences between various populations over the entire distribution has resulted in Chortolirion being considered a vari- able monotypic genus, with C. angolense the only species (Smith 1991, 1995; Craib et al. 200). All species later described, namely C. bergerianum Dinter, C. steno- phyllum (Baker) A.Berger, C. subspicatum A.Berger, C. tenuifolium and C. saundersii Baker nom. nud., were treated as syno- nyms. More recently, it has become obvi- ous that an extensive field-based study was required to account for the differ- ences encountered in Chortolirion popu- lations in the field by recognizing their distinctive autecologies, morphological differences and specific flowering times in spring, summer and autumn (Craib Figure 1.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Floristic and Ecological Characterization of Habitat Types on an Inselberg in Minas Gerais, Southeastern Brazil
    Acta Botanica Brasilica - 31(2): 199-211. April-June 2017. doi: 10.1590/0102-33062016abb0409 Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil Luiza F. A. de Paula1*, Nara F. O. Mota2, Pedro L. Viana2 and João R. Stehmann3 Received: November 21, 2016 Accepted: March 2, 2017 . ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. Th ey are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that diff er from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. Th is study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families), of which six were new to science. Th e richest family was Bromeliaceae (10 spp.), followed by Cyperaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). Life forms were distributed in diff erent proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that fl oristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil. Keywords: endemism, granitic and gneissic rock outcrops, life forms, terrestrial islands, vascular plants occurring on rock outcrops within the Atlantic Forest Introduction domain, 416 are endemic to these formations (Stehmann et al.
    [Show full text]
  • Renata Gabriela Vila Nova De Lima Filogenia E Distribuição
    RENATA GABRIELA VILA NOVA DE LIMA FILOGENIA E DISTRIBUIÇÃO GEOGRÁFICA DE CHRYSOPHYLLUM L. COM ÊNFASE NA SEÇÃO VILLOCUSPIS A. DC. (SAPOTACEAE) RECIFE 2019 RENATA GABRIELA VILA NOVA DE LIMA FILOGENIA E DISTRIBUIÇÃO GEOGRÁFICA DE CHRYSOPHYLLUM L. COM ÊNFASE NA SEÇÃO VILLOCUSPIS A. DC. (SAPOTACEAE) Dissertação apresentada ao Programa de Pós-graduação em Botânica da Universidade Federal Rural de Pernambuco (UFRPE), como requisito para a obtenção do título de Mestre em Botânica. Orientadora: Carmen Silvia Zickel Coorientador: André Olmos Simões Coorientadora: Liliane Ferreira Lima RECIFE 2019 Dados Internacionais de Catalogação na Publicação (CIP) Sistema Integrado de Bibliotecas da UFRPE Biblioteca Central, Recife-PE, Brasil L732f Lima, Renata Gabriela Vila Nova de Filogenia e distribuição geográfica de Chrysophyllum L. com ênfase na seção Villocuspis A. DC. (Sapotaceae) / Renata Gabriela Vila Nova de Lima. – 2019. 98 f. : il. Orientadora: Carmen Silvia Zickel. Coorientadores: André Olmos Simões e Liliane Ferreira Lima. Dissertação (Mestrado) – Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Botânica, Recife, BR-PE, 2019. Inclui referências e anexo(s). 1. Mata Atlântica 2. Filogenia 3. Plantas florestais 4. Sapotaceae I. Zickel, Carmen Silvia, orient. II. Simões, André Olmos, coorient. III. Lima, Liliane Ferreira, coorient. IV. Título CDD 581 ii RENATA GABRIELA VILA NOVA DE LIMA Filogenia e distribuição geográfica de Chrysophyllum L. com ênfase na seção Villocuspis A. DC. (Sapotaceae Juss.) Dissertação apresentada e
    [Show full text]
  • Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
    Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.
    [Show full text]
  • The Origin of Diversity in Begonia: Genome Dynamism, Population Processes and Phylogenetic Patterns
    Edinburgh Research Explorer The Origin of Diversity in Begonia: Genome dynamism, population processes and phylogenetic patterns. Citation for published version: DeWitte, A, Twyford, A, Thomas, D, Kidner, C & Van Huylenbroeck, J 2011, The Origin of Diversity in Begonia: Genome dynamism, population processes and phylogenetic patterns. in O Grillo & G Venora (eds), The Dynamical Processes of Biodiversity - Case Studies of Evolution and Spatial Distribution. InTech, pp. 27-52. https://doi.org/10.5772/23789 Digital Object Identifier (DOI): 10.5772/23789 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: The Dynamical Processes of Biodiversity - Case Studies of Evolution and Spatial Distribution General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 2 The Origin of Diversity in Begonia: Genome Dynamism, Population Processes
    [Show full text]
  • Stapeliads, Morphology and Pollination, Welwitchia 5
    Morfologija in opra{evanje stapelijevk Stapeliads, morphology and pollination Iztok Mulej Matija Strli~ Stapelijevke so so~nice s ~udovitimi cvetovi in Stapeliads are succulents with beautiful flowers vonjem, ki ga taki cvetovi ne zaslu`ijo. Raz{irjene with a smell that does not match their beauty at so ve~inoma v Afriki, dotikajo se Evrope, v Aziji all. Distributed mainly in Africa, a few species can pa imajo tudi precej predstavnikov. Cvetovi so also be found in Europe, and quite a few in Asia. nekaj posebnega, ne samo po bizarni lepoti am- Their flowers are unique, not only due to the pak tudi po zgradbi. Prav tako je tudi opra{itev bizarre beauty, but also due to the unusual repro- samosvoja, saj podobne ne najdemo nikjer drug- ductive structures. Even the pollination mecha- je v rastlinskem svetu. nism has no parallel in the plant kingdom. Klju~ne besede: Keywords: stapelijevke, Apocynaceae, Asclepiadoideae, Stapeliads, Apocynaceae, Asclepiadoideae, mor- morfologija, opra{evanje. fology, pollination. Stapeliads, which are stem succulents, belong World" is the title of the web pages of Jerry to the family Apocynaceae and subfamily As- Barad from New Jersey, USA. The title says clepiadoideae. Until recently, they were everything. The flowers have a beauty and placed into the Asclepiadaceae family. The colour that can only be compared with or- stem shapes are very similar in most genera, chids. And they also share another character- but when they bloom, the beauty of the flow- istic. The pollen mass is fused in a wax pollen ers is striking as well as their unpleasant sack - pollinium, which is transferred by pol- smell! "Stapeliads, Orchids of the Succulent linators to the style.
    [Show full text]
  • Etude Sur L'origine Et L'évolution Des Variations Florales Chez Delphinium L. (Ranunculaceae) À Travers La Morphologie, L'anatomie Et La Tératologie
    Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie : 2019SACLS126 : NNT Thèse de doctorat de l'Université Paris-Saclay préparée à l'Université Paris-Sud ED n°567 : Sciences du végétal : du gène à l'écosystème (SDV) Spécialité de doctorat : Biologie Thèse présentée et soutenue à Paris, le 29/05/2019, par Felipe Espinosa Moreno Composition du Jury : Bernard Riera Chargé de Recherche, CNRS (MECADEV) Rapporteur Julien Bachelier Professeur, Freie Universität Berlin (DCPS) Rapporteur Catherine Damerval Directrice de Recherche, CNRS (Génétique Quantitative et Evolution Le Moulon) Présidente Dario De Franceschi Maître de Conférences, Muséum national d'Histoire naturelle (CR2P) Examinateur Sophie Nadot Professeure, Université Paris-Sud (ESE) Directrice de thèse Florian Jabbour Maître de conférences, Muséum national d'Histoire naturelle (ISYEB) Invité Etude sur l'origine et l'évolution des variations florales chez Delphinium L. (Ranunculaceae) à travers la morphologie, l'anatomie et la tératologie Remerciements Ce manuscrit présente le travail de doctorat que j'ai réalisé entre les années 2016 et 2019 au sein de l'Ecole doctorale Sciences du végétale: du gène à l'écosystème, à l'Université Paris-Saclay Paris-Sud et au Muséum national d'Histoire naturelle de Paris. Même si sa réalisation a impliqué un investissement personnel énorme, celui-ci a eu tout son sens uniquement et grâce à l'encadrement, le soutien et l'accompagnement de nombreuses personnes que je remercie de la façon la plus sincère. Je remercie très spécialement Florian Jabbour et Sophie Nadot, mes directeurs de thèse.
    [Show full text]
  • Crassulaceae, Eurytoma Bryophylli, Fire, Invasions, Madagascar, Osphilia Tenuipes, Rhembastus Sp., Soil
    B I O L O G I C A L C O N T R O L O F B R Y O P H Y L L U M D E L A G O E N S E (C R A S S U L A C E A E) Arne Balder Roderich Witt A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy JOHANNESBURG, 2011 DECLARATION I declare that this thesis is my own, unaided work. It is being submitted for the Degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or any other examination in any other University. ______________________ ______ day of ______________________ 20_____ ii ABSTRACT Introduced plants will lose interactions with natural enemies, mutualists and competitors from their native ranges, and possibly gain interactions with new species, under new abiotic conditions in their new environment. The use of biocontrol agents is based on the premise that introduced species are liberated from their natural enemies, although in some cases introduced species may not become invasive because they acquire novel natural enemies. In this study I consider the potential for the biocontrol of Bryophyllum delagoense, a Madagascan endemic, and hypothesize as to why this plant is invasive in Australia and not in South Africa. Of the 33 species of insects collected on B. delagoense in Madagascar, three species, Osphilia tenuipes, Eurytoma bryophylli, and Rhembastus sp. showed potential as biocontrol agents in Australia.
    [Show full text]
  • Apocynaceae of Namibia
    S T R E L I T Z I A 34 The Apocynaceae of Namibia P.V. Bruyns Bolus Herbarium Department of Biological Sciences University of Cape Town Rondebosch 7701 Pretoria 2014 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens, which the South African National Biodiversity Institute (SANBI) inherited from its predecessor organisa- tions. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arbores- cent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of SANBI is partly based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It symbolises the commitment of SANBI to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s excep- tionally rich biodiversity for all people. EDITOR: Alicia Grobler PROOFREADER: Yolande Steenkamp COVER DESIGN & LAYOUT: Elizma Fouché FRONT COVER PHOTOGRAPH: Peter Bruyns BACK COVER PHOTOGRAPHS: Colleen Mannheimer (top) Peter Bruyns (bottom) Citing this publication BRUYNS, P.V. 2014. The Apocynaceae of Namibia. Strelitzia 34. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-98-3 Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa Tel.: +27 12 843 5000 E-mail: [email protected] Website: www.sanbi.org Printed by: Seriti Printing, Tel.: +27 12 333 9757, Website: www.seritiprinting.co.za Address: Unit 6, 49 Eland Street, Koedoespoort, Pretoria, 0001 South Africa Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved.
    [Show full text]
  • Germinação De Quatro Espécies De Velloziaceae Ocorrentes Em Diferentes Ambientes
    GERMINAÇÃO DE QUATRO ESPÉCIES DE VELLOZIACEAE OCORRENTES EM DIFERENTES AMBIENTES Letícia Anselmo Soares1,3e Queila Souza Garcia2,3 1Pós-graduanda - Bolsista CAPES; 2Docente; 3Departamento de Botânica, ICB, Universidade Federal de Minas Gerais ([email protected]) Pará e de V. plicata em Vitória, Espírito Santo. As INTRODUÇÃO sementes foram retiradas dos frutos e triadas para retirada das sementes murchas. A germinação foi A distribuição geográfica de muitas plantas é testada nas temperaturas constantes de 15, 20, 25, determinada, entre outros fatores, pela faixa de 30, 35 e 40 ºC, sob fotoperíodo de 12 horas e sob condições ambientais toleradas para a germinação escuro contínuo. Para cada tratamento foram de suas sementes (Labouriau, 1983). Luz e utilizadas quatro repetições de 25 sementes, em temperatura são fatores de grande importância no placas de Petri forradas com dupla camada de papel controle da germinação e dormência, tendo um filtro e umedecidas com solução de nistatina 0,1 papel crucial na regulação do crescimento e %. A germinação foi avaliada diariamente e a desenvolvimento das plantas (Baskin & Baskin emergência da radícula foi o critério estabelecido 1988). As condições em que o processo germinativo para germinação. Foram calculados a porcentagem ocorre, fornecem informações sobre o e o tempo médio de germinação. Dados normais e estabelecimento, a sucessão e regeneração de homogêneos foram submetidos a ANOVA e dados plantas em condições naturais (Vásquez-Yanes & não normais ou homogêneos foram submetidos ao Orozco-Segovia, 1993). teste de Kruskal-Wallis. Médias foram comparadas por teste de Tukey (p£ 0,05). A família Velloziaceae é essencialmente tropical e vive preferencialmente em afloramentos rochosos RESULTADOS E DISCUSSÃO localizados em regiões de altitudes elevadas (Mello- Silva, 1991).
    [Show full text]