Engineering Art Galleries Pedro J. de Rezende1, Cid C. de Souza1, Stephan Friedrichs2, Michael Hemmer3, Alexander Kr¨oller3, and Davi C. Tozoni1 1University of Campinas, Institute of Computing, Campinas, Brazil, E-Mail: frezende,
[email protected],
[email protected] 2Max Planck Institute for Informatics, Saarbr¨ucken, Germany, E-Mail:
[email protected]. 3TU Braunschweig, IBR, Algorithms Group, Braunschweig, Germany, E-Mail:
[email protected],
[email protected] Abstract The Art Gallery Problem is one of the most well-known problems in Computational Geometry, with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes. Keywords: Art Gallery Problem, Computational Geometry, Linear Programming, Ex- perimental Algorithmics. 1 Introduction The Art Gallery Problem (AGP) is one of the classic problems in Computational Geometry (CG). Originally it was posed forty years ago, as recalled by Ross Honsberger [37, p.104]: \At a conference in Stanford in August, 1973, Victor Klee asked the gifted young Czech mathematician V´aclav Chv´atal(University of Montreal) whether he had con- sidered a certain problem of guarding the paintings in an art gallery. The way the rooms in museums and galleries snake around with all kinds of alcoves and corners, it is not an easy job to keep an eye on every bit of wall space.