By-Products of Agri-Food Industry As Tannin-Rich Sources: a Review of Tannins’ Biological Activities and Their Potential for Valorization

Total Page:16

File Type:pdf, Size:1020Kb

By-Products of Agri-Food Industry As Tannin-Rich Sources: a Review of Tannins’ Biological Activities and Their Potential for Valorization foods Review By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins’ Biological Activities and Their Potential for Valorization María Fraga-Corral 1,2 , Paz Otero 1,3 , Javier Echave 1 , Paula Garcia-Oliveira 1,2 , Maria Carpena 1 , Amira Jarboui 1, Bernabé Nuñez-Estevez 1,2 , Jesus Simal-Gandara 1,* and Miguel A. Prieto 1,2,* 1 Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, 32004 Ourense, Spain; [email protected] (M.F.-C.); [email protected] (P.O.); [email protected] (J.E.); [email protected] (P.G.-O.); [email protected] (M.C.); [email protected] (A.J.); [email protected] (B.N.-E.) 2 Centro de Investigação de Montanha (CIMO), Campus de Santa Apolonia, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal 3 Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain * Correspondence: [email protected] (J.S.-G.); [email protected] (M.A.P.) Abstract: During recent decades, consumers have been continuously moving towards the substi- tution of synthetic ingredients of the food industry by natural products, obtained from vegetal, animal or microbial sources. Additionally, a circular economy has been proposed as the most efficient production system since it allows for reducing and reutilizing different wastes. Current agriculture is responsible for producing high quantities of organic agricultural waste (e.g., discarded fruits and Citation: Fraga-Corral, M.; Otero, P.; vegetables, peels, leaves, seeds or forestall residues), that usually ends up underutilized and accu- Echave, J.; Garcia-Oliveira, P.; mulated, causing environmental problems. Interestingly, these agri-food by-products are potential Carpena, M.; Jarboui, A.; Nuñez-Estevez, B.; Simal-Gandara, J.; sources of valuable bioactive molecules such as tannins. Tannins are phenolic compounds, secondary Prieto, M.A. By-Products of metabolites of plants widespread in terrestrial and aquatic natural environments. As they can be Agri-Food Industry as Tannin-Rich found in plenty of plants and herbs, they have been traditionally used for medicinal and other pur- Sources: A Review of Tannins’ poses, such as the leather industry. This fact is explained by the fact that they exert plenty of different Biological Activities and Their biological activities and, thus, they entail a great potential to be used in the food, nutraceutical and Potential for Valorization. Foods 2021, pharmaceutical industry. Consequently, this review article is directed towards the description of the 10, 137. https://doi.org/10.3390/ biological activities exerted by tannins as they could be further extracted from by-products of the foods10010137 agri-food industry to produce high-added-value products. Received: 2 December 2020 Keywords: tannins; valorization; circular economy; biological properties; health benefits Accepted: 31 December 2020 Published: 11 January 2021 Publisher’s Note: MDPI stays neu- 1. Introduction tral with regard to jurisdictional clai- ms in published maps and institutio- 1.1. Tannins as Target Compounds nal affiliations. Tannins are a diverse group within phenolic compounds widely distributed in nature. They are secondary metabolites of plants usually produced as a result of stress and they exert a protective role, including photoprotection against UV rays and free radicals or defense against other organisms and environmental conditions, such as dryness [1–3]. Copyright: © 2021 by the authors. Li- Tannins are a heterogeneous group, having molecular weights between 500 and 20,000 Da censee MDPI, Basel, Switzerland. and very different chemical structures [4]. Tannins have been demonstrated to exert dif- This article is an open access article ferent biological activities, such as antioxidant activity. This property is related to their distributed under the terms and con- ditions of the Creative Commons At- chemical structure as they possess phenolic rings able to bind to a wide range of molecules tribution (CC BY) license (https:// and act as electron scavengers to trap ions and radicals [2,4]. Generally, tannins possess creativecommons.org/licenses/by/ about 12–16 phenolic groups and five to seven aromatic rings per 1000 Da [5]. They also 4.0/). present plenty of hydroxyl groups, which confer on them hydrophilic properties, solubility Foods 2021, 10, 137. https://doi.org/10.3390/foods10010137 https://www.mdpi.com/journal/foods Foods 2021, 10, x FOR PEER REVIEW 2 of 23 Foods 2021, 10, 137 2 of 22 present plenty of hydroxyl groups, which confer on them hydrophilic properties, solubil- ityin aqueousin aqueous solvents solvents and and also also the abilitythe ability to form to form complexes complex withes with proteins, proteins, carbohydrates, carbohy- drates,nucleic nucleic acids and acids alkaloids and alkaloids [6,7]. Regarding [6,7]. Regarding tannin tannin classification, classification, they have they been have histor- been historicallyically classified classified into hydrolyzableinto hydrolyzable tannins tannins (HTs) (HT ands) an condensedd condensed tannins tannins (CTs), (CT ands), and the thelatter latter are alsoare also called called proanthocyanidins. proanthocyanidins. Nowadays, Nowadays, the classificationthe classification according according to their to theirchemical chemical characteristic characteristic and structuraland structural properties properties has beenhas been updated. updated. Thus, Thus, tannins tannins can canbe groupedbe grouped into in gallotannins,to gallotannins, ellagitannins, ellagitannins, CTs, CT complexs, complex tannins tannins (CoTs) (CoT ands) and phlorotan- phloro- tanninsnins (PTs, (PT ans, an exclusive exclusive class class of of tannins tannins found found in in the the algalalgal speciesspecies ofof the Phaeophyceae class)class) [1,2,8]. [1,2,8]. A A schematic schematic representation representation of of tannin tannin structural structural classification classification is is presented presented in in FigureFigure 1.. FigureFigure 1. 1. StructuralStructural classification classification of of tannins. tannins. Functional Functional groups groups are are shown shown in in circles. circles. HTHTss have have owned owned their their name name as as they they can can be behydrolyzed hydrolyzed by byweak weak acids/bases, acids/bases, produc- pro- ingducing carbohydrates carbohydrates and andphenolic phenolic acids acids because because of the of reaction the reaction [3]. They [3]. They are formed are formed by gly- by glycosylated gallic acid units [9], which can be either ellagic acid (EA) or gallic acid (GA), cosylated gallic acid units [9], which can be either ellagic acid (EA) or gallic acid (GA), forming ellagitannins (ETs) and gallotannins (GTs), respectively [3,10]. ETs are formed by forming ellagitannins (ETs) and gallotannins (GTs), respectively [3,10]. ETs are formed by simple to multiple units of hexahydroxydiphenol (HHDP) connected to a polyol core. After simple to multiple units of hexahydroxydiphenol (HHDP) connected to a polyol core. Af- hydrolysis and the breakdown of C-C bonds between suitably orientated galloyl residues of ter hydrolysis and the breakdown of C-C bonds between suitably orientated galloyl resi- glucogalloyl molecules of HHDP, they are converted into EA units [2,11,12]. The abundant dues of glucogalloyl molecules of HHDP, they are converted into EA units [2,11,12]. The variety of structure has been observed within this group, due to the different possibili- abundant variety of structure has been observed within this group, due to the different ties in the formation of oxidative linkages [7]. On the other hand, GTs are considered as possibilities in the formation of oxidative linkages [7]. On the other hand, GTs are consid- simpler HTs and are formed by galloyl or digalloyl units coupled to a polyol, catechin ered as simpler HTs and are formed by galloyl or digalloyl units coupled to a polyol, cat- or triterpenoid unit, in the form of pentagalloyl glucose (PGG). They can yield GA from echin or triterpenoid unit, in the form of pentagalloyl glucose (PGG). They can yield GA the hydrolysis reaction [2,13]. HTs can be mainly found in fruits, berries, legumes, leafy fromvegetables the hydrolysis and different reaction tree species[2,13]. HT [3,9s]. can They be havemainly been found widely in fruits, employed berries, in the legumes, leather leafyindustry vegetables and they and have different been studied tree species for their [3,9]. antioxidant They have and been antimicrobial widely employed properties in the [3]. leatherCTs industry or proanthocyanidins and they have been account studied for morefor their than antioxidant 90% of the and world antimicrobial commercial prop- pro- ertiesduction [3]. of tannins [3]. They are polymeric or oligomeric flavan-3-ols, formed by the combinationCTs or proanthocyanidins of A (phloroglucinol account or resorcinol) for more and than B (catechol90% of the or world pyrogallol) commercial rings [ 2pro-,14] duction(Figure1 of). Whentannins these [3]. compoundsThey are polymeric are heated or inoligomeric ethanol solutions flavan-3- inols, acidic formed conditions, by the com- they binationare decomposed of A (phloroglucinol into anthocyanidins or resorcinol) [7]. The and combination B (catechol ofor these pyrogallol) flavan-3-ol rings monomers [2,14] (givesFigure rise 1). toWhen the formationthese compounds of procyanidins are
Recommended publications
  • Walnut Polyphenol
    ORYZA OIL & FAT CHEMICAL CO., L TD. WALNUT POLYPHENOL Hepatoprotective & Anti-oxidative Extract For Metabolic Syndrome ■ WALNUT POLYPHENOL-P10,P30 (Powder,Food Grade) ■ WALNUT POLYPHENOL-WSP10 (Water-soluble Powder,Food Grade) ■ WALNUT POLYPHENOL-PC10,PC30 (Powder,Cosmetic Grade) ■ WALNUT POLYPHENOL-WSPC10 (Water-soluble Powder,Cosmetic Grade) ■ WALNUT POLYPHENOL-LC (Water-soluble Liquid,Cosmetic Grade) ■ WALNUT SEED OIL (Oil,Food & Cosmetic Grade) ORYZA OIL & FAT CHEMICAL CO., LTD ver. 1.0 HS WALNUT POLYPHENOL ver.1.0 HS WALNUT POLYPHENOL Hepatoprotective & Anti-oxidative Extract For Metabolic Syndrome 1. Introduction Recently, there is an increased awareness on metabolic syndrome – a condition characterized by a group of metabolic risk factors in one person. They include abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, insulin resistance, prothrombotic state & proinflammatory state. The dominant underlying risk factors appear to be abdominal obesity and insulin resistance. In addition, non-alcoholic fatty liver disease (NAFLD) is the most commonly associated “liver” manifestation of metabolic syndrome which can progress to advance liver disease (e.g. cirrhosis) with associated morbidity and mortality. Lifestyle therapies such as weight loss significantly improve all aspects of metabolic syndrome, as well as reducing progression of NAFLD and cardiovascular mortality. Walnut (Juglans regia L. seed) is one the most popular nuts consumed in the world. It is loaded in polyunsaturated fatty acids – linoleic acid (LA), oleic acid and α-linolenic acid (ALA), an ω3 fatty acid. It has been used since ancient times and epidemiological studies have revealed that incorporating walnuts in a healthy diet reduces the risk of cardiovascular diseases. Recent investigations reported that walnut diet improves the function of blood vessels and lower serum cholesterol.
    [Show full text]
  • Tannins: Current Knowledge of Food Sources, Intake, Bioavailability and Biological Effects
    S310 DOI 10.1002/mnfr.200900039 Mol. Nutr. Food Res. 2009, 53, S310 – S329 Review Tannins: Current knowledge of food sources, intake, bioavailability and biological effects Jos Serrano1, Riitta Puupponen-Pimi2, Andreas Dauer3, Anna-Marja Aura2 and Fulgencio Saura-Calixto4 1 Universidad Complutense de Madrid, Depto. Nutricin y Bromatologa I, Madrid, Spain 2 VTT Technical Research Center of Finland 3 Hexal AG, Holzkirchen, Germany 4 Consejo Superior de Investigaciones Cientficas, Instituto del Frio, Depto. Metabolismo y Nutricin, Madrid, Spain Tannins are a unique group of phenolic metabolites with molecular weights between 500 and 30000 Da, which are widely distributed in almost all plant foods and beverages. Proanthocyanidins and hydrolysable tannins are the two major groups of these bioactive compounds, but complex tannins containing structural elements of both groups and specific tannins in marine brown algae have also been described. Most literature data on food tannins refer only to oligomeric compounds that are extracted with aqueous-organic solvents, but a significant number of non-extractable tannins are usu- ally not mentioned in the literature. The biological effects of tannins usually depend on their grade of polymerisation and solubility. Highly polymerised tannins exhibit low bioaccessibility in the small intestine and low fermentability by colonic microflora. This review summarises a new approach to analysis of extractable and non-extractable tannins, major food sources, and effects of storage and processing on tannin content and bioavailability. Biological properties such as antioxidant, antimicro- bial and antiviral effects are also described. In addition, the role of tannins in diabetes mellitus has been discussed. Keywords: Bioavailability / Diet / Hydrolysable tannins / Proanthocyanidins / Tannins / Received: November 27, 2007; revised: January 25, 2009; accepted: February 9, 2009 1 Introduction weight having the ability to complex strongly with carbohy- drates and proteins [9].
    [Show full text]
  • Diabetic Neuropathy)
    A PROSPECTIVE OPEN LABELLED NON RANDOMIZED PHASE-II CLINICAL TRIAL OF “KADUKKAI CHOORANAM FOR “AKKINI SELATHUMAM” (DIABETIC NEUROPATHY) Dissertation submitted to THE TAMILNADU DR. MGR. MEDICAL UNIVERSITY CHENNAI-32 For the partial fulfillment of the requirements to the Degree of DOCTOR OF MEDICINE (SIDDHA) BRANCH-I DEPARTMENT OF POTHU MARUTHUVAM DEPARTMENT OF POTHU MARUTHUVAM GOVERNMENT SIDDHA MEDICAL COLLEGE PALAYAMKOTTAI - 627 002 TAMIL NADU, INDIA. OCTOBER 2019 GOVERNMENT SIDDHA MEDICAL COLLEGE PALAYAMKOTTAI - 627 002 TAMIL NADU, INDIA. BONAFIDE CERTIFICATE This is to certify that the dissertation entitled “A PROSPECTIVE OPEN LABELLED NON RANDOMIZED PHASE-II CLINICAL TRIAL OF “KADUKKAI CHOORANAM FOR AKKINI SELATHUMAM (DIABETIC NEUROPATHY)” is abonafide work done by Dr.RAJENDRAM AJANTHAN (Reg. No.321611008) Govt. Siddha Medical College, Palayamkottai - 627 002 in partial fulfilment of the university rules and regulations for award for MD (S) POTHU MARUTHUVAM (BRANCH-I) under my guidance and supervision during the academic year OCTOBER 2016-2019. Supervisor and Guide Prof. Dr.A.MANOHARAN, MD (S),( Ph.D). Head, Department of PothuMaruthuvam, Govt. Siddha Medical College, Palayamkottai. Name and signature of the HOD Name and signature of the Principal Prof. Dr. A.MANOHARAN, MD (S),( Ph.D). Prof. Dr.S.Victoria,MD(S) Dept. of PothuMaruthuvam, Govt. Siddha Medical College Govt. Siddha Medical College, Palayamkottai. Palayamkottai. GOVERNMENT SIDDHA MEDICAL COLLEGE PALAYAMKOTTAI - 627 002 TAMIL NADU, INDIA. CERTIFICATE Certified that I have gone through the dissertation entitled “A PROSPECTIVE OPEN LABELLED NON RANDOMIZED PHASE-II CLINICAL TRIAL OF “KADUKKAI CHOORANAM FOR AKKINI SELATHUMAM (DIABETIC NEUROPATHY)” submitted by Dr.RAJENDRAM AJANTHAN (Reg. No.321611008) a student of final year MD(S) Department of Pothu Maruthuvam (Branch-I)of this college and the dissertation work has been carried out by the individual only.
    [Show full text]
  • Chemical Composition, Antioxidant Activity, and Sensory Characterization of Commercial Pomegranate Juices
    antioxidants Article Chemical Composition, Antioxidant Activity, and Sensory Characterization of Commercial Pomegranate Juices Sonia Esposto, Gianluca Veneziani, Agnese Taticchi, Stefania Urbani, Roberto Selvaggini, Beatrice Sordini * , Luigi Daidone, Giacomo Gironi and Maurizio Servili Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via San Costanzo s.n.c., 06126 Perugia, Italy; [email protected] (S.E.); [email protected] (G.V.); [email protected] (A.T.); [email protected] (S.U.); [email protected] (R.S.); [email protected] (L.D.); [email protected] (G.G.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +39-075-5857951; Fax: +39-075-5857916 Abstract: We undertook a qualitative and quantitative assessment of the bioactive compounds, volatile substances, sensory profile, and antioxidant activity of eight different commercial pomegranate juices (PJs) differing by cultivation area, processing (from concentrate (CPJ) or not (NCPJ)), and mi- crobial stabilization. Punicalins were the main ellagitannins, whereas the predominant anthocyanin was cyanidin 3,5-diglucoside, followed by cyanidin 3-glucoside. Total phenols, tannins, hydrolyzable tannins, and anthocyanins in the investigated juices ranged from 1379.9 to 3748.8 mg gallic acid equivalent (GAE)/L, 394.8 to 895.2 mg GAE/L, 150.8 to 2374.2 mg ellagic acid/L, and 0 to 281 mg • cyanidin 3-glucoside/L, respectively. Antioxidant activity, determined by DPPH , FRAP, and ABTS, was positively correlated with the total phenolic compounds and hydrolyzable tannins. Alcohols, Citation: Esposto, S.; Veneziani, G.; acids, and furans were the volatile groups that best described the differences between juices.
    [Show full text]
  • Punicalin Alleviates OGD/R-Triggered Cell Injury Via TGF-Β-Mediated Oxidative Stress and Cell Cycle in Neuroblastoma Cells SH-SY5Y
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 6671282, 11 pages https://doi.org/10.1155/2021/6671282 Research Article Punicalin Alleviates OGD/R-Triggered Cell Injury via TGF-β-Mediated Oxidative Stress and Cell Cycle in Neuroblastoma Cells SH-SY5Y Tiansong Yang,1 Qingyong Wang,2 Yuanyuan Qu,2 Yan Liu,1 Chuwen Feng,1 Yulin Wang,2 Weibo Sun,3 Zhongren Sun ,2 and Yulan Zhu4 1First affiliated hospital, Heilongjiang University of Chinese Medicine, Harbin, China 2Heilongjiang University of Chinese Medicine, Harbin, China 3Harbin Medical University, Harbin, China 4Department of Neurology, %e Second Affiliated Hospital of Harbin Medical University, Harbin, China Correspondence should be addressed to Zhongren Sun; [email protected] Received 21 October 2020; Revised 21 October 2020; Accepted 7 January 2021; Published 12 February 2021 Academic Editor: Muhammad Farrukh Nisar Copyright © 2021 Tiansong Yang et al. /is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. /e research aimed to identify the active component from Punica granatum L. to alleviate ischemia/reperfusion injury and clarify the underlying mechanism of the active component alleviating ischemia/reperfusion injury. Materials and Methods. /e SH-SY5Y cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established to simulate the ischemia/ reperfusion injury. According to the strategy of bioassay-guided isolation, the active component of punicalin from Punica granatum L. was identified. Flow cytometry and Western blotting were employed to evaluate the effects of OGD/R and/or punicalin on cell cycle arrest.
    [Show full text]
  • A Review on Antihyperglycemic and Antihepatoprotective Activity of Eco-Friendly Punica Granatum Peel Waste
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 656172, 10 pages http://dx.doi.org/10.1155/2013/656172 Review Article A Review on Antihyperglycemic and Antihepatoprotective Activity of Eco-Friendly Punica granatum Peel Waste Sushil Kumar Middha,1 Talambedu Usha,2 and Veena Pande1 1 Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand 263136, India 2 Department of Biotechnology & Biochemistry, Maharani Lakshmi Ammanni College for Women, Bangalore 560012, India Correspondence should be addressed to Veena Pande; veena [email protected] Received 28 December 2012; Revised 25 March 2013; Accepted 25 April 2013 Academic Editor: Edwin L. Cooper Copyright © 2013 Sushil Kumar Middha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Over the past decade, pomegranate (Punica granatum) is entitled as a wonder fruit because of its voluminous pharmacological properties. In 1830, P. g ranatum fruit was first recognized in United States Pharmacopeia; the Philadelphia edition introduced the rind of the fruit, the New York edition the bark of the root and further 1890 edition the stem bark was introduced. There are significant efforts and progress made in establishing thepharmacological mechanisms of peel (pericarp or rind) and the individual constituents responsible for them. This review provides an insight on the phytochemical components that contribute too antihyperglycemic, hepatoprotective, antihyperlipidemic effect, and numerous other effects of wonderful, economic, and eco- friendly pomegranate peel extract (PP). 1. Introduction containing sacs packed with a fleshy, juicy, red or whitish pulp.
    [Show full text]
  • Evaluation of Punicalagin Niosomes for Skin Aging
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 March 2021 Evaluation of Punicalagin Niosomes for Skin Aging Ebtesam A. Mohamada, Aya A. Alyb, Aya A. Khalafb, Mona I. Ahmedb, Reham M. Kamelb, Sherouk M. Abdelnabyb, Yasmine H. Abdelzaherb, Marize G. Sedrak b, Shaker A. Mousac a Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt; b Biotechnology / Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt; c The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA *Corresponding Author: Shaker A. Mousa, PhD, MBA, FACC, FACB Professor of Pharmacology and Chairman of The Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences Rensselaer, NY 12144, USA Email: [email protected] Tel: +1-518-694-7397 & Fax: +1-518-694-7567 Abstract Skin aging is one of the most common problems facing humanity. It occurs because of altering the balance between free radicals and antioxidants and increasing the amount of the reactive oxygen species (ROS) in skin cells, which leads to oxidative stress especially when exposed to UV radiation. Antioxidants can neutralize the harmful effects of ROS, and secondary plant metabolites can help protect against UV radiation. In this study, punicalagin was extracted from pomegranate and concentrations of total polyphenolics and flavonoids were determined and antioxidant activities measured. Punicalagin was loaded onto niosomes and its morphology and release were studied. An in vitro study was performed on human fibroblast cell line HFB4 cells with aging induced by H2O2 and UV radiation. Cell cycle arrest was studied and different genes (MMP3, Col1A1, Timp3, and TERT) involved in the skin aging process were selected to measure punicalagin's effect.
    [Show full text]
  • Comparative Studies of Corrosion Inhibitive Properties of Benzofuran
    ISSN (Online) 2456-1290 International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE) Vol 2, Issue 11,November 2017 Comparative studies of Corrosion Inhibitive Properties of Benzofuran-2-carboxylic acid & Amla Leaves Extract On Mild Steel in Acid Media [1] Abhishek Kumar, [2] Ankit Aggarwal, [3] Ashutosh Krishna Piyush, [4] Abhishek Kumar, [5] Aatiq ShafiqDar, [6] Angel Roy, [7] Dr Hari Krishna S [1][2][3][6] 1st Year Department Of Computer Science & Engineering, Sri SaiRam College Of Engineering, Bangalore, [4] 1st Year Department of Electrical & Electronics, Sri SaiRam College Of Engineering, Bangalore [5] 1st Year Department Of Mechanical Engineering, Sri SaiRam College Of Engineering, Bangalore [7] Assistant Professor, Department Of Chemistry, Sri SaiRam College Of Engineering, Bangalore Abstract:- The effects of Benzofuran-2-carboxylic acid (BF) & Amla (Emblica officinal is) leaves aqueous extract as a corrosion inhibitor, behaviour of mild steel has been investigated in hydrochloric acid solutions containing Experiments were performed by weight loss method for different time intervals and at room temperature. The inhibition efficiency of Benzofuran-2-carboxylic acid was found to increase with inhibitor concentration and also in the presence of sodium bromide and sodium iodide. Inhibition efficiency was found to increase with increasing concentration of inhibitor (0.2 g /l to 10 g/l) for 6 hours at room temperature. The maximum inhibition efficiency of Emblica officinal is leaving 87 % in 1 N Hydrochloric acid. From the comparative studies, it was investigated that the corrosion inhibition efficiency of Emblica officinal is leaving as aqueous extract is approximately equal to that of Benzofuran-2-carboxylic acid in hydrochloric acid.
    [Show full text]
  • Intereferents in Condensed Tannins Quantification by the Vanillin Assay
    INTEREFERENTS IN CONDENSED TANNINS QUANTIFICATION BY THE VANILLIN ASSAY IOANNA MAVRIKOU Dissertação para obtenção do Grau de Mestre em Vinifera EuroMaster – European Master of Sciences of Viticulture and Oenology Orientador: Professor Jorge Ricardo da Silva Júri: Presidente: Olga Laureano, Investigadora Coordenadora, UTL/ISA Vogais: - Antonio Morata, Professor, Universidad Politecnica de Madrid - Jorge Ricardo da Silva, Professor, UTL/ISA Lisboa, 2012 Acknowledgments First and foremost, I would like to thank the Vinifera EuroMaster consortium for giving me the opportunity to participate in the M.Sc. of Viticulture and Enology. Moreover, I would like to express my appreciation to the leading universities and the professors from all around the world for sharing their scientific knowledge and experiences with us and improving day by day the program through mobility. Furthermore, I would like to thank the ISA/UTL University of Lisbon and the personnel working in the laboratory of Enology for providing me with tools, help and a great working environment during the experimental period of this thesis. Special acknowledge to my Professor Jorge Ricardo Da Silva for tutoring me throughout my experiment, but also for the chance to think freely and go deeper to the field of phenols. Last but most important, I would like to extend my special thanks to my family and friends for being a true support and inspiration in every doubt and decision. 1 UTL/ISA University of Lisbon “Vinifera Euromaster” European Master of Science in Viticulture&Oenology Ioanna Mavrikou: Inteferents in condensed tannins quantification with vanillin assay MSc Thesis: 67 pages Key Words: Proanthocyanidins; Interference substances; Phenols; Vanillin assay Abstract Different methods have been established in order to perform accurately the quantification of the condensed tannins in various plant products and beverages.
    [Show full text]
  • Glucosidase Inhibition and Antioxidant Activity of an Oenological Commercial Tannin
    Food Chemistry 215 (2017) 50–60 Contents lists available at ScienceDirect Food Chemistry journal homepage: www.elsevier.com/locate/foodchem a-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and 1H NMR ⇑ ⇑ Vera Muccilli , Nunzio Cardullo, Carmela Spatafora , Vincenzo Cunsolo, Corrado Tringali Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy article info abstract Article history: Two batches of the oenological tannin Tan’Activ R, (toasted oak wood – Quercus robur), were extracted Received 6 November 2015 with ethanol. A fractionation on XAD-16 afforded four fractions for each extract. Extracts and fractions Received in revised form 27 May 2016 were evaluated for antioxidant activity (DPPH), polyphenol content (GAE) and yeast a-glucosidase inhi- Accepted 25 July 2016 bitory activity. Comparable results were obtained for both columns, fractions X1B and X2B showing the Available online 25 July 2016 highest antioxidant activity. Fractions X1C and X2C notably inhibited a-glucosidase, with IC50 = 9.89 and 8.05 lg/mL, respectively. Fractions were subjected to HPLC/ESI-MS/MS and 1H NMR analysis. The main Keywords: phenolic constituents of both X1B and X2B were a monogalloylglucose isomer (1), a HHDP-glucose Plant polyphenols isomer (2), castalin (3) gallic acid (4), vescalagin (5), and grandinin (or its isomer roburin E, 6). X1C Oenological tannins Quercus robur and X2C showed a complex composition, including non-phenolic constituents. Fractionation of X2C gave a l a-Glucosidase inhibition a subfraction, with enhanced -glucosidase inhibitory activity (IC50 = 6.15 g/mL), with castalagin (7)as HPLC/ESI-MS/MS the main constituent.
    [Show full text]
  • In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: a Case of Padma Hepatenr Formulation
    Article In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: A Case of Padma Hepatenr Formulation Daniil N. Olennikov 1,*, Nina I. Kashchenko 1,: and Nadezhda K. Chirikova 2,: Received: 28 August 2015 ; Accepted: 30 September 2015 ; Published: 13 October 2015 1 Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh’yanovoy Street 6, Ulan-Ude 670-047, Russia; [email protected] 2 Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677-027, Russian; [email protected] * Correspondence: [email protected]; Tel.: +7-9021-600-627; Fax: +7-3012-434-243 : These authors contributed equally to this work. Abstract: Chebulic ellagitannins (ChET) are plant-derived polyphenols containing chebulic acid subunits, possessing a wide spectrum of biological activities that might contribute to health benefits in humans. The herbal formulation Padma Hepaten containing ChETs as the main phenolics, is used as a hepatoprotective remedy. In the present study, an in vitro dynamic model simulating gastrointestinal digestion, including dialysability, was applied to estimate the bioaccessibility of the main phenolics of Padma Hepaten. Results indicated that phenolic release was mainly achieved during the gastric phase (recovery 59.38%–97.04%), with a slight further release during intestinal digestion. Dialysis experiments showed that dialysable phenolics were 64.11% and 22.93%–26.05% of their native concentrations, respectively, for gallic acid/simple gallate esters and ellagitanins/ellagic acid, in contrast to 20.67% and 28.37%–55.35% for the same groups in the non-dialyzed part of the intestinal media.
    [Show full text]
  • DOCTOR of the University Montpellier
    Dissertation in Co-supervision: University of Tehran-University of Montpellier To obtain the degree of DOCTOR of the University Montpellier Title Preservation of plywood against biological attack with low environmental impact using tannin-boron preservative By Davood EFHAMISISI Thesis defense planned Monday, 21 September 2015 Jury Mr. Bertrand CHARRIER University of Pau and Pays de l'Adour Reviewer Mr. Ghanbar EBRAHIMI University of Tehran Reviewer Mr. Asghar OMIDVAR Gorgan University of Agricultural Sciences Examiner and Natural Resources Mr. Saeid NEZAMABADI University of Montpellier Examiner Mr. Kambiz POURTAHMASI University of Tehran Examiner Mrs. Marie-France THEVENON CIRAD, Montpellier Thesis director Mr. Yahya HAMZEH University of Tehran Thesis director Mr. Ali-Naghi KARIMI University of Tehran Co-director Mr. Antonio PIZZI University of Lorraine Co-director i Thèse en co-tutelle: l'Université de Téhéran-l'université de Montpellier Pour obtenir le grade de DOCTEUR de l'université de Montpellier Titre Protection à faible impact environnemental des contreplaqués avec des associations tannins-bore Par Davood EFHAMISISI Soutenance de thèse prévue le lundi, 21 Septembre 2015 Jury M. Bertrand CHARRIER Université de Pau et des Pays de l'Adour Rapporteur M. Ghanbar EBRAHIMI Université de Téhéran Rapporteur M. Asghar OMIDVAR Université Gorgan des sciences agricoles et Examinateur des ressources naturelles M. Saeid NEZAMABADI Université de Montpellier Examinateur M. Kambiz POURTAHMASI Université de Téhéran Examinateur Mme. Marie-France THEVENON CIRAD, Montpellier Directeur de Thèse M. Yahya HAMZEH Université de Téhéran Directeur de Thèse M. Ali-Naghi KARIMI Université de Téhéran Co-directeur M. Antonio PIZZI Université de Lorraine Co-directeur ii Acknowledgments I would like to express my deepest gratitude and appreciation to my director, Prof.
    [Show full text]