Influence of Extractives on the Bleachability of Batch Extended Delignified Kraft Pulps
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Making! the E-Magazine for the Fibrous Forest Products Sector
PAPERmaking! The e-magazine for the Fibrous Forest Products Sector Produced by: The Paper Industry Technical Association Volume 5 / Number 1 / 2019 PAPERmaking! FROM THE PUBLISHERS OF PAPER TECHNOLOGY Volume 5, Number 1, 2019 CONTENTS: FEATURE ARTICLES: 1. Wastewater: Modelling control of an anaerobic reactor 2. Biobleaching: Enzyme bleaching of wood pulp 3. Novel Coatings: Using solutions of cellulose for coating purposes 4. Warehouse Design: Optimising design by using Augmented Reality technology 5. Analysis: Flow cytometry for analysis of polyelectrolyte complexes 6. Wood Panel: Explosion severity caused by wood dust 7. Agriwaste: Soda-AQ pulping of agriwaste in Sudan 8. New Ideas: 5 tips to help nurture new ideas 9. Driving: Driving in wet weather - problems caused by Spring showers 10. Women and Leadership: Importance of mentoring and sponsoring to leaders 11. Networking: 8 networking skills required by professionals 12. Time Management: 101 tips to boost everyday productivity 13. Report Writing: An introduction to report writing skills SUPPLIERS NEWS SECTION: Products & Services: Section 1 – PITA Corporate Members: ABB / ARCHROMA / JARSHIRE / VALMET Section 2 – Other Suppliers Materials Handling / Safety / Testing & Analysis / Miscellaneous DATA COMPILATION: Installations: Overview of equipment orders and installations since November 2018 Research Articles: Recent peer-reviewed articles from the technical paper press Technical Abstracts: Recent peer-reviewed articles from the general scientific press Events: Information on forthcoming national and international events and courses The Paper Industry Technical Association (PITA) is an independent organisation which operates for the general benefit of its members – both individual and corporate – dedicated to promoting and improving the technical and scientific knowledge of those working in the UK pulp and paper industry. -
Extended Impregnation Kraft Cooking of Softwood: Effects on Reject, Yield, Pulping Uniformity, and Physical Properties
Extended Impregnation Kraft Cooking of Softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström Licentiate thesis Royal Institute of Technology (KTH) Department of Fibre and Polymer Technology Division of Wood Chemistry and Pulp Technology Stockholm 2009 TRITA-CHE-Report 2009:59 ISSN 1654-1081 ISBN 978-91-7415-496-2 Extended impregnation kraft cooking of softwood: Effects on reject, yield, pulping uniformity, and physical properties Katarina Karlström AKADEMISK AVHANDLING Som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknologie licentiatexamen fredagen den 18:e december 2009, kl. 10.00 i STFI-salen, Innventia AB, Drottning Kristinas väg 61, Stockholm. Avhandlingen försvaras på svenska. © Katarina Karlström Stockholm 2009 Department of Fibre and Polymer Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden Abstract Converting wood into paper is a complex process involving many different stages, one of which is pulping. Pulping involves liberating the wood fibres from each other, which can be done either chemically or mechanically. This thesis focuses on the most common chemical pulping method, the kraft cooking process, and especially on a recently developed improvement of the impregnation phase, which is the first part of a kraft cook. Extended impregnation kraft cooking (EIC) technique is demonstrated to be an improvement of the kraft pulping process and provides a way to utilize softwood to a higher degree, at higher pulp yield. We demonstrate that it is possible to produce softwood ( Picea abies ) kraft pulp using a new cooking technique, resulting in a pulp that can be defibrated without inline refining at as high lignin content as 8% on wood, measured as kappa numbers above 90. -
A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters
processes Review A Review on the Modeling, Control and Diagnostics of Continuous Pulp Digesters Moksadur Rahman * , Anders Avelin and Konstantinos Kyprianidis School of Business, Society and Engineering, Mälardalen University, Box 883, 72123 Västerås, Sweden; [email protected] (A.V.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +46-(0)21-10-1594 Received: 12 August 2020; Accepted: 23 September 2020; Published: 1 October 2020 Abstract: Being at the heart of modern pulp mills, continuous pulp digesters have attracted much attention from the research community. In this article, a comprehensive review in the area of modeling, control and diagnostics of continuous pulp digesters is conducted. The evolution of research focus within these areas is followed and discussed. Particular effort has been devoted to identifying the state-of-the-art and the research gap in a summarized way. Finally, the current and future research directions in the areas have been analyzed and discussed. To date, digester modeling following the Purdue approach, Kappa number control using model predictive controllers and health index-based diagnostic approaches by utilizing different statistical methods have dominated the field. While the rising research interest within the field is evident, we anticipate further developments in advanced sensors and integration of these sensors for improving model prediction and controller performance; and the exploration of different AI-based approaches will be at the core of future research. Keywords: Kraft pulping; pulp digester; modeling; control; diagnostics 1. Introduction With the widespread expansion of the Internet, electronic media and paperless communication, the demand for the graphic paper (i.e., newsprint and higher-value printing and writing paper) has been declining since 2000 [1]. -
Deinking of Screen-Printed Electrodes Printed on Invasive Plant-Based Paper
sustainability Article Article DeinkingDeinking of of Screen-Printed Screen-Printed Electrodes Printed on InvasiveInvasive Plant-Based Plant-Based Paper UrškaUrška Kav Kavˇciˇc*čič *, Igor, Igor Karlovits Karlovits and and Janja Janja Zule Zule PulpPulp and and Paper Paper Institute, Institute, Bogiši Bogiši´ceva8,ćeva 8, 1000 Ljubljana, Slov Slovenia;enia; igor.karlovits@icp-lj. [email protected] (I.K.); janja.zule@icp- [email protected] (J.Z.) (J.Z.) * Correspondence: [email protected] Received: 21 January 2020; Accepted: 6 February 2020; Published: date Received: 21 January 2020; Accepted: 9 February 2020; Published: 12 February 2020 Abstract: The deinking of paper-based printed electronics is a growing concern regarding the Abstract: The deinking of paper-based printed electronics is a growing concern regarding the increase increase of printed electronics products. The benefits of using paper-based substrates instead of of printed electronics products. The benefits of using paper-based substrates instead of polymer polymer or ceramic for the single-use printed electrodes can contribute to sustainability goals. The or ceramic for the single-use printed electrodes can contribute to sustainability goals. The use of use of invasive plant species for making paper substrates for printed electronics is a unique invasive plant species for making paper substrates for printed electronics is a unique opportunity opportunity to have several environmental benefits. In this study, the recycling issue of these to have several environmental benefits. In this study, the recycling issue of these products through products through the use of the deinking technique was evaluated. Screen-printed electrodes the use of the deinking technique was evaluated. -
Importance of Unbleached Pulp Lignin Content
ENVIRONMENTAL FOOTPRINT COMPARISON TOOL A tool for understanding environmental decisions related to the pulp and paper industry EFFECTS OF DECREASED RELEASE OF CHLORINATED COMPOUNDS ON ENERGY USE Importance of Unbleached Pulp Lignin Content Kappa number is a measure of the amount of lignin remaining in pulp. The higher the kappa number value, the higher the use of bleaching chemicals required to brighten the pulp. The kappa numbers of pulps leaving the digester are typically about 30 for softwoods and 20 for hardwoods in bleached kraft mills that employ conventional cooking methods. Several modifications to conventional cooking, known collectively as extended cooking (EC), have enabled kappa numbers to be further reduced in the digester in ways that minimize yield and strength losses. Kappa numbers associated with EC are about 20 for softwoods and about 14 for hardwoods. Oxygen delignification (OD) is another technology that is used extensively to lower the residual lignin content prior to the bleach plant. The technology is more selective than most extended cooking processes. Lignin reductions of approximately 50% are achievable with OD, resulting in softwood kappa number in the 14-18 range. Some mills use both extended cooking and oxygen delignification to achieve very low kappa number pulps prior to bleaching, producing pulps with kappa number values in the range of 10-12, perhaps even lower. Deterioration of pulp strength properties is the limiting obstacle for kappa number reduction prior to the bleach plant. More recent strategies have been focused away from obtaining the most delignification possible in the digester and toward optimizing the fiberline as a whole based on economic, quality, and environmental factors. -
Effect of Different Locations on the Morphological, Chemical, Pulping and Papermaking Properties of Trema Orientalis (Nalita)
Bioresource Technology 101 (2010) 1892–1898 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Effect of different locations on the morphological, chemical, pulping and papermaking properties of Trema orientalis (Nalita) M. Sarwar Jahan a,b,*, Nasima Chowdhury a, Yonghao Ni b a Pulp and Paper Research Division, BCSIR Laboratories, Dr. Qudrat-E-Khuda Road, Dhaka 1205, Bangladesh b Pulp and Paper Research Centre, University of New Brunswick, Fredericton, Canada article info abstract Article history: The chemical compositions and fiber morphology of stem and branch samples from Trema orientalis at Received 24 August 2009 three different sites planted in Bangladesh were determined and their pulping, bleaching and the result- Received in revised form 1 October 2009 ing pulp properties were investigated. A large difference between the stem and branch samples was Accepted 13 October 2009 observed. The stem samples have consistently higher a-cellulose and lower lignin content, and longer Available online 14 November 2009 fibers than the branch samples in all sites. T. orientalis from the Dhaka and Rajbari region had higher a-cellulose content and longer fiber length, resulting in higher pulp yield and better papermaking prop- Keyword: erties. The T. orientalis pulp from Rajbari region also showed the best bleachability. Trema orientalis, Variation of wood Ó 2009 Elsevier Ltd. All rights reserved. properties Stem and branch Pulping and bleaching 1. Introduction sely to those of Malaysian-grown mangium and other fast-grow- ing plantation species, including the traditionally-used pulpwood The increased demand for wood and fiber and declining avail- of the Philippines. -
Single Fiber Lignin Distributions Based on the Density Gradient Column Method
Single Fiber Lignin Distributions Based on the Density Gradient Column Method Brian Boyer Patent Attorney 3676 Highland Avenue Redwood City, CA 94062 [email protected] Alan Rudie USDA Forest Service, Forest Products Laboratory One Gifford Pinchot Drive Madison, WI 53726 [email protected] ABSTRACT The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to lower density at the top. Properly prepared pulp fibers float in the column, stabilizing at the level where the mixed solvent density equals the density of the fiber. Because lignin is the lowest density component of pulp fibers and has the largest influence on fiber density, the column effectively separates fibers by lignin concentration and allows them to be counted and the distribution of lignin concentrations determined. Ten experimental kraft pulps and three commercial pulps were evaluated. The laboratory pulps were produced from a single loblolly pine tree using 2.5-mm and 10-mm chips. All cooks used a 24% effective alkali (EA) charge on wood, 6-to-1 liquor-to-wood ratio, and 30% sulfidity. The cooking schedule was constant at 60 min rise to temperature and 240 min at temperature. The maximum cooking temperature was varied from 150°C to 170°C to provide a kappa number variation from about 60 to approximately 20. -
Optimization of Ecf Bleaching and Refining of Kraft Pulping from Olive Tree Pruning
PEER-REVIEWED ARTICLE bioresources.com OPTIMIZATION OF ECF BLEACHING AND REFINING OF KRAFT PULPING FROM OLIVE TREE PRUNING Ana Requejo,a,* Alejandro Rodríguez,a Jorge L. Colodette,b José L. Gomide,b and Luis Jiménez a The aim of the present work was to find an optimum kraft pulping process for olive tree pruning (OTP) in order to produce a bleachable grade pulp of Kappa number about 17. The kraft pulp produced under optimized conditions showed a viscosity of 31.5 mPa.s and good physical, mechanical, and optical properties, which are acceptable for paper grade production. The strength and optical properties were measured on pulps unrefined and refined in a PFI mill with up to 2000 revolutions before and after bleaching. The OTP pulp was bleached to 90% ISO brightness (kappa < 1); however the process demanded a long sequence of stages, OD(EP)D(EP)D, and a higher than usual total chemical dosage (24.78 kg/odt pulp). Overall, OTP is suggested as an interesting raw material for cellulosic pulp production because its properties are comparable to those of other agricultural residues currently used in the paper industry. Keywords: Kraft pulping; Olea europaea; Agricultural wastes; Refining, ECF bleaching Contact information: a: Chemical Engineering Department, Campus de Rabanales, Building Marie Curie (C-3), University of Córdoba, 14071, Córdoba, Spain; b: Laboratory of pulp and paper, Department of Forest Engineering, Federal University of Viçosa, Campus UFV, 36570, MG, Brazil. * Corresponding author: [email protected] INTRODUCTION Pulp production in Europe amounts to 36.9 million tons per year, which represents 21.6% of the world’s production; the production of paper and cardboard accounts for 25.3% of the total with 88.7 million tons. -
Pulp and Papermaking Properties of Bamboo Species Melocanna Baccifera
CELLULOSE CHEMISTRY AND TECHNOLOGY PULP AND PAPERMAKING PROPERTIES OF BAMBOO SPECIES MELOCANNA BACCIFERA SANDEEP KUMAR TRIPATHI, OM PRAKASH MISHRA, NISHI KANT BHARDWAJ and RAGHAVAN VARADHAN Avantha Centre for Industrial Research and Development, BILT Paper Mill Campus, Yamuna Nagar, Haryana, India ✉Corresponding author: S. Kumar Tripathi, [email protected] Received August, 17, 2016 Pulp and paper making properties of bamboo species Melocanna baccifera were studied with a focus on the physical properties and chemical composition of bamboo chips, on pulping behavior, bleaching response, fiber morphology, refining behavior and strength properties of the bleached pulp. Melocanna baccifera species was found to have 52.8% cellulose, 21.1% hemicelluloses and 25.2% lignin, i.e. similar to hardwood. The produced pulp could be bleached to 89 ± 1% ISO brightness. The bleached pulp refined to 25 °SR had 54.6 Nm/g tensile index, 10.7 mN.m 2/g tear index, 4.95 kN.m 2/g burst index and 328 double folds. Also, the bleached pulp had an average fiber length of 1.68 mm, which is higher than that of hardwood pulp (0.88-1.1 mm), but lower than that of softwood pulp (2.2-3.5 mm). Meanwhile, the pulp had an average fiber width of 17.1 µm, which is similar to that of hardwood fiber (16-20 µm), but lower than that of softwood fiber (28-35 µm). Keywords : bamboo, bleaching, extractives, papermaking properties, pulping INTRODUCTION dimensions has been reported among the species, Bamboo is one of the most versatile plants in but no significant differences in the chemical the world. -
Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S
LBNL-46141 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S. Pulp and Paper Industry N. Martin, N. Anglani, D. Einstein, M. Khrushch, E. Worrell, and L.K. Price Environmental Energy Technologies Division July 2000 This work was supported by the Climate Protection Division, Office of Air and Radiation, U.S. Environmental Protection Agency through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S. -
Pulp and Paper Chemistry and Technology Volume 2
Pulp and Paper Chemistry and Technology Volume 2 Pulping Chemistry and Technology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Pulp and Paper Chemistry and Technology Volume 2 This project was supported by a generous grant by the Ljungberg Foundation (Stiftelsen Erik Johan Ljungbergs Utbildningsfond) and originally published by the KTH Royal Institute of Technology as the “Ljungberg Textbook”. Pulping Chemistry and Technology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Editors Dr. Monica Ek Professor (em.) Dr. Göran Gellerstedt Professor Dr. Gunnar Henriksson Wood Chemistry and Pulp Technology Fibre and Polymer Technology School of Chemical Science and Engineering KTH Ϫ Royal Institute of Technology 100 44 Stockholm Sweden ISBN 978-3-11-021341-6 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. ” Copyright 2009 by Walter de Gruyter GmbH & Co. KG, 10785 Berlin. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanic, including photocopy, recording, or any information storage retrieval system, without permission in writing from the publisher. Printed in Germany. Typesetting: WGV Verlagsdienstleistungen GmbH, Weinheim, Germany. Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen, Germany. Cover design: Martin Zech, Bremen, Germany. Foreword The production of pulp and paper is of major importance in Sweden and the forestry industry has a profound influence on the economy of the country. The technical development of the industry and its ability to compete globally is closely connected with the combination of high-class education, research and development that has taken place at universities, institutes and industry over many years. -
Alternative & Emerging Pulping Technologies: Non-Kraft Processes
., 1 FOR PRESENTATION AT THE “INTERNATIONAL SYMPOSIUM ON POLLUTION p.f’. ‘TP”f,~~~~~ IN THE MANUFACTURE OF PULP & PAPER”, AUG. 18-20; 1992 AT WASHINGTON, D.C. ,?iLTERNATIVE & EMERGING PULPING TECHNOLOGIES: NON-KRAFT PROCESSES by Bruce I. Fleming, Boise Cascade R&D, Portland, OR 97217 Kraft pulping, invented over 100 years ago, gradually achieved dominance as a result of continued refinements. In the last 40 years, scores of processes have been proposed to replace kraft pulping, but few have received even a single mill trial. It is a big step from a laboratory demonstration to commercial reality, and most of the competing processes have failed to do sufficiently well in ;,lot trials to convince investors to go ahead at full scale. __ This does not mean that the kraft process will always be dominant, but it indicates the extreme effort and cost that is involved in commercializing any alternative to this established and versatile pulping technique. Kraft, of course, is itself a moving target. New refinements, like extended delignification, made it tougher to beat. This brief review covers the main competitors to the kraft process for the production of chemical pulp, namely the sulfite processes, soda-anthraquinone (AQ) pulping and the solvent pulping processes. The processes selected for discussion are commercially proven, or at least have had extensive pilot plant trials . 1. SULFITE PROCESSES The sulfite processes provide pulps which have inferior strength properties to those of kraft pulp but nonetheless are enjoying some success in the European marketplace at present because, unlike kraft pulp, they respond well to bleaching with hydrogen peroxide.