Data Parallel Bin-Based Indexing for Answering Queries on Multi-Core Architectures Luke J. Gosink1, Kesheng Wu2, E. Wes Bethel3, John D. Owens1, and Kenneth I. Joy1 1. Institute for Data Analysis and Visualization (IDAV) One Shields Avenue, University of California, Davis, CA 95616-8562, U.S.A. {ljgosink,joy}@ucdavis.edu
[email protected] 2. Scientific Data Management Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A.
[email protected] 3. Visualization Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A.
[email protected] Abstract. The multi-core trend in CPUs and general purpose graphics process- ing units (GPUs) offers new opportunities for the database community. The in- crease of cores at exponential rates is likely to affect virtually every server and client in the coming decade, and presents database management systems with a huge, compelling disruption that will radically change how processing is done. This paper presents a new parallel indexing data structure for answering queries that takes full advantage of the increasing thread-level parallelism emerging in multi-core architectures. In our approach, our Data Parallel Bin-based Index Strat- egy (DP-BIS) first bins the base data, and then partitions and stores the values in each bin as a separate, bin-based data cluster. In answering a query, the proce- dures for examining the bin numbers and the bin-based data clusters offer the maximum possible level of concurrency; each record is evaluated by a single thread and all threads are processed simultaneously in parallel.