IBM DB2 for I Indexing Methods and Strategies Learn How to Use DB2 Indexes to Boost Performance

Total Page:16

File Type:pdf, Size:1020Kb

IBM DB2 for I Indexing Methods and Strategies Learn How to Use DB2 Indexes to Boost Performance IBM DB2 for i indexing methods and strategies Learn how to use DB2 indexes to boost performance Michael Cain Kent Milligan DB2 for i Center of Excellence IBM Systems and Technology Group Lab Services and Training July 2011 © Copyright IBM Corporation, 2011 Table of contents Abstract........................................................................................................................................1 Introduction .................................................................................................................................1 The basics....................................................................................................................................3 Database index introduction .................................................................................................................... 3 DB2 for i indexing technology .................................................................................................................. 4 Radix indexes.................................................................................................................... 4 Encoded vector indexes .................................................................................................... 6 Bitmap indexes - the limitations ....................................................................................................... 6 EVI structure details......................................................................................................................... 7 EVI runtime usage............................................................................................................................ 8 Derived and sparse indexes............................................................................................ 10 DB2 for i indexing comparison with other databases ............................................................................ 11 Primary and clustered indexes ........................................................................................ 11 Partitioned and non-partitioned indexes.......................................................................... 12 Bitmapped indexing......................................................................................................... 12 DB2 for i usage of indexes..................................................................................................................... 13 Statistical usage ..............................................................................................................13 Implementation usage ..................................................................................................... 14 Selection ........................................................................................................................................ 15 Joining............................................................................................................................................ 15 Grouping ........................................................................................................................................ 15 Ordering ......................................................................................................................................... 15 Selection.......................................................................................................................... 15 Nested loop join with index.............................................................................................. 17 Grouping and ordering .................................................................................................... 19 Index-only access............................................................................................................ 21 DB2 for i indexes and optimization: A summary.................................................................................... 22 Indexing strategies for performance tuning...........................................................................23 Starting point.......................................................................................................................................... 23 Proactive approach................................................................................................................................ 24 Perfect radix index guidelines ......................................................................................... 25 Radix example 1: A one-table query..............................................................................................25 Radix example 2: A three-table query............................................................................................26 Radix example 3: Query with non-equal predicates ...................................................................... 27 Perfect encoded vector index guidelines ........................................................................ 27 EVI example 1: A one-table query ................................................................................................. 28 EVI example 2: A one-table query with uncovered predicates ...................................................... 28 Proactively tuning many queries ..................................................................................... 29 Reactive query tuning ............................................................................................................................ 29 Tuning one query against many queries ......................................................................... 31 Index tuning for multiple table queries............................................................................. 31 IBM DB2 for i indexing methods and strategies Indexing considerations...........................................................................................................33 Index creation: Best practices................................................................................................................ 33 Source management ....................................................................................................... 33 Performance settings....................................................................................................... 33 EVI considerations........................................................................................................... 34 Improving creation performance...................................................................................... 34 Comparing the creation of SQL indexes with keyed logical files........................................................... 35 Duplicate index considerations........................................................................................ 36 Creating an EVI compared with a radix ................................................................................................. 36 Estimating the number of indexes to create .......................................................................................... 36 Index maintenance................................................................................................................................. 37 Different maintenance options......................................................................................... 38 Parallel maintenance for insert operations...................................................................... 38 Maintenance options for batch and bulk operations........................................................ 39 EVI maintenance considerations..................................................................................... 40 Maximum number of distinct values...............................................................................................40 Insertion order ................................................................................................................................ 40 Tools for index analysis and tuning........................................................................................43 Index Advisor ......................................................................................................................................... 44 Index advice details......................................................................................................... 45 Index advice limitations ................................................................................................... 47 System-wide Index Advisor ............................................................................................. 48 Index Advice Condenser ................................................................................................. 49 Autonomic indexes .......................................................................................................... 50 Index Evaluator ...................................................................................................................................... 52 Visual Explain ........................................................................................................................................ 54 Temporary index feedback.............................................................................................. 55 SQL Performance Monitor (Database Monitor) .....................................................................................56 SQE Plan Cache...................................................................................................................................
Recommended publications
  • A Genetic Algorithm for Database Index Selection
    GADIS: A Genetic Algorithm for Database Index Selection Priscilla Neuhaus, Julia Couto, Jonatas Wehrmann, Duncan D. Ruiz and Felipe Meneguzzi School of Technology, PUCRS - Pontifícia Universidade Católica do Rio Grande do Sul - Porto Alegre, Brazil Email: [priscilla.neuhaus, julia.couto, jonatas.wehrmann]@edu.pucrs.br, [duncan.ruiz, felipe.meneguzzi]@pucrs.br Abstract—Creating an optimal amount of indexes, taking optimize the query response time by search for faster index into account query performance and database size remains a configurations when compared to the initial one. challenge. In theory, one can speed up query response by creating We perform a set of experiments using TPC-H, a well indexes on the most used columns, although causing slower data insertion and deletion, and requiring a much larger amount of known database benchmark [11], and we compare our results memory for storing the indexing data, but in practice, it is very with three baseline approaches: (i) the initial index configura- important to balance such a trade-off. This is not a trivial task tion; and (ii) indexes derived from a random-search algorithm. that often requires action from the Database Administrator. We Results show that GADIS outperforms the baselines, allowing address this problem by introducing GADIS, A Genetic Algorithm for better index configuration on the optimized database. for Database Index Selection, designed to automatically select the best configuration of indexes adaptable for any database Finally, we observe that our approach is much more prone schema. This method aims to find the fittest individuals for to find a proper solution that the competitive methods.
    [Show full text]
  • Response Time Analysis on Indexing in Relational Databases and Their Impact
    Response time analysis on indexing in relational databases and their impact Sam Pettersson & Martin Borg 18, June, 2020 Dept. Computer Science & Engineering Blekinge Institute of Technology SE–371 79 Karlskrona, Sweden This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the bachelor’s degree in software engineering. The thesis is equivalent to 10 weeks of full-time studies. Contact Information: Authors: Martin Borg E-mail: [email protected] Sam Pettersson E-mail: [email protected] University advisor: Associate Professor. Mikael Svahnberg Dept. Computer Science & Engineering Faculty of Computing Internet : www.bth.se Blekinge Institute of Technology Phone : +46 455 38 50 00 SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 Abstract This is a bachelor thesis concerning the response time and CPU effects of indexing in relational databases. Analyzing two popular databases, PostgreSQL and MariaDB with a real-world database structure us- ing randomized entries. The experiment was conducted with Docker and its command-line interface without cached values to ensure fair outcomes. The procedure was done throughout seven different create, read, update and delete queries with multiple volumes of database en- tries to discover their strengths and weaknesses when utilizing indexes. The results indicate that indexing has an overall enhancing effect on almost all of the queries. It is found that join, update and delete op- erations benefits the most from non-clustered indexing. PostgreSQL gains the most from indexes while MariaDB has less of an improvement in the response time reduction.
    [Show full text]
  • Relational Database Index Design
    RReellaattiioonnaall DDaattaabbaassee IInnddeexx DDeessiiggnn Prerequisite for Index Design Workshop Tapio Lahdenmaki April 2004 Copyright Tapio Lahdenmaki, DBTech Pro 1 Relational Database Index Design CHAPTER 1: INTRODUCTION........................................................................................................................4 INADEQUATE INDEXING .......................................................................................................................................4 THE IMPACT OF HARDWARE EVOLUTION ............................................................................................................5 Volatile Columns Should Not Be Indexed – True Or False? ..........................................................................7 Example ..........................................................................................................................................................7 Disk Drive Utilisation.....................................................................................................................................8 SYSTEMATIC INDEX DESIGN ................................................................................................................................9 CHAPTER 2........................................................................................................................................................13 TABLE AND INDEX ORGANIZATION ........................................................................................................13 INTRODUCTION
    [Show full text]
  • Improved Query Performance with Variant Indexes
    Improved Query Performance with Variant Indexes Patrick O’Neil Dallan Quass Department of Mathematics and Computer Science Department of Computer Science University of Massachusetts at Boston Stanford University- Boston, MA 02125-3393 Stanford, CA 94305 [email protected] [email protected] Abstract: The read-mostly environment of data warehousing hand. The Sybase IQ product currently provides both variant in- makes it possible to use more complex indexes to speed up dex types [EDEL95, FREN95], and recommendsmultiple indexes queries than in situations where concurrent updates are present. per column in some cases. The current paper presents a short review of current indexing technology, including row-set representation by Bitmaps, and Late in the paper, we introduce a new indexing approach to sup- then introduces two approaches we call Bit-Sliced indexing and port OLAP-type queries, commonly used in Data Warehouses. Projection indexing. A Projection index materializes all values Such queries are called Datncube queries in [GBLP96]. OLAP of a column in RID order, and a Bit-Sliced index essentially takes query performance depends on creating a set of summary tables an orthogonal bit-by-bit view of the same data. While some of to efficiently evaluate an expected set of queries. The summary these concepts started with the MODEL 204 product, and both tables pre-materialize needed aggregates, an approach that is Bit-Sliced and Projection indexing are now fully realized in possible only when the expected set of queries is known in ad- Sybase IQ, this is the first rigorous examination of such index- vance. Specifically, the OLAP approach addressesqueries that ing capabilities in the literature.
    [Show full text]
  • Sql Server Index Fragmentation Report
    Sql Server Index Fragmentation Report Reflexive Clayborne miaows, his vibrometer tuck swelled silverly. Improbable Lionello always winches his ironist if Wain is executive or excite incompetently. Cornelius remains noble after Timothy ionizing perceptually or priggings any writes. Fragmentation in DM SQL Diagnostic Manager for SQL Server. Regular indexes rebuild at SQL-Server 200 and higher necessary Posted on Apr 01 2011. This will rejoice you owe determine the upcoming impact should any changes made. You use need to retype it select another editor or in SSMS. Is there something I need to invoke to cause it to be available? Dmf to sql server and reformat them to check index automatically by fragmented, and reorganize operations are. Index operation is not resumable. Httpblogsqlauthoritycom20100112sql-server-fragmentation-detect-fragmentation-and-eli minate-. How to Proactively Gather SQL Server Indexes Fragmentation. Indexes play a vital role in the performance of SQL Server applications Indexes are created on columns in tables or views and objective a quick. DO NOT do this during office hours. Please contact your sql servers that fragmented indexes and reports tab, indexing data published on thresholds to continue browsing experience in one person? Thanks for the code. And server reporting any fragmented indexes optimization was creating storage and easy to report taking into block right on this index for servers are reclaimed on modern frozen meals at that? Just a restore from backup, schools, monitoring and high availability and disaster recovery technologies. Dmdbindexphysicalstats to report fragmentation of bird and indexes for a specified table mountain view Many companies use maintenance plans to work regular.
    [Show full text]
  • Database Performance on AIX in DB2 UDB and Oracle Environments
    Database Performance on AIX in DB2 UDB and Oracle Environments Nigel Griffiths, James Chandler, João Marcos Costa de Souza, Gerhard Müller, Diana Gfroerer International Technical Support Organization www.redbooks.ibm.com SG24-5511-00 SG24-5511-00 International Technical Support Organization Database Performance on AIX in DB2 UDB and Oracle Environments December 1999 Take Note! Before using this information and the product it supports, be sure to read the general information in Appendix E, “Special notices” on page 411. First Edition (December 1999) This edition applies to Version 6.1 of DB2 Universal Database - Enterprise Edition, referred to as DB2 UDB; Version 7 of Oracle Enterprise Edition and Release 8.1.5 of Oracle8i Enterprise Edition, referred to as Oracle; for use with AIX Version 4.3.3. Comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. JN9B Building 003 Internal Zip 2834 11400 Burnet Road Austin, Texas 78758-3493 When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. © Copyright International Business Machines Corporation 1999. All rights reserved. Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. Contents Preface...................................................xv How this book is organized .......................................xv The team that wrote this redbook. ..................................xvi Commentswelcome.............................................xix Chapter 1. Introduction to this redbook .........................1 Part 1. RDBMS concepts .................................................3 Chapter 2. Introduction into relational database system concepts....5 2.1WhatisanRDBMS?.......................................5 2.2 What does an RDBMS provide? .
    [Show full text]
  • Using Bitmap Index for Joint Queries on Structured and Text Data∗
    Using Bitmap Index for Joint Queries on Structured and Text Data∗ Kurt Stockinger‡ John Cieslewicz§ Kesheng Wu‡ Doron Rotem‡ Arie Shoshani‡ Abstract The database and the information retrieval communities have been working on separate sets of techniques for querying structured data and text data, but there is a growing need to handle these types of data together. In this paper, we present a strategy to efficiently answer joint queries on both types of data. By using an efficient compression algorithm, our compressed bitmap indexes, called FastBit, are compact even when they contain millions of bitmaps. Therefore FastBit can be applied effectively on hundreds of thousands of terms over millions of documents. Bitmap indexes are designed to take advantage of data that only grows but does not change over time (append-only data), and thus are just as effective with append-only text archives. In a performance comparison against a commonly used database system with a full-text index, MySQL, we demonstrate that our indexes answer queries 50 times faster on average. Furthermore, we demonstrate that integrating FastBit with a open source database system, called MonetDB, yields similar performance gains. Since the integrated MonetDB/FastBit system provides the full SQL functionality, the overhead of supporting SQL is not the main reason for the observed performance differences. Therefore, using FastBit in other database systems can offer similar performance advantages. 1 Introduction The records in data warehouses are usually extracted from other database systems and therefore contain only what is known as structured data [10, 8, 29]. In these cases, most vendors are reusing existing database techniques to perform analysis tasks.
    [Show full text]
  • A Fast, Yet Lightweight, Indexing Scheme for Modern Database Systems
    Two Birds, One Stone: A Fast, yet Lightweight, Indexing Scheme for Modern Database Systems 1Jia Yu 2Mohamed Sarwat School of Computing, Informatics, and Decision Systems Engineering Arizona State University, 699 S. Mill Avenue, Tempe, AZ [email protected], [email protected] ABSTRACT Table 1: Index overhead and storage dollar cost Classic database indexes (e.g., B+-Tree), though speed up + queries, suffer from two main drawbacks: (1) An index usu- (a) B -Tree overhead ally yields 5% to 15% additional storage overhead which re- TPC-H Index size Initialization time Insertion time sults in non-ignorable dollar cost in big data scenarios espe- 2GB 0.25 GB 30 sec 10 sec cially when deployed on modern storage devices. (2) Main- 20 GB 2.51 GB 500 sec 1180 sec taining an index incurs high latency because the DBMS has 200 GB 25 GB 8000 sec 42000 sec to locate and update those index pages affected by the un- derlying table changes. This paper proposes Hippo a fast, (b) Storage dollar cost yet scalable, database indexing approach. It significantly HDD EnterpriseHDD SSD EnterpriseSSD shrinks the index storage and mitigates maintenance over- 0.04 $/GB 0.1 $/GB 0.5 $/GB 1.4 $/GB head without compromising much on the query execution performance. Hippo stores disk page ranges instead of tuple pointers in the indexed table to reduce the storage space oc- table. Even though classic database indexes improve the cupied by the index. It maintains simplified histograms that query response time, they face the following challenges: represent the data distribution and adopts a page group- ing technique that groups contiguous pages into page ranges • Indexing Overhead: Adatabaseindexusually based on the similarity of their index key attribute distri- yields 5% to 15% additional storage overhead.
    [Show full text]
  • A Database Optimization Strategy for Massive Data Based Information System
    Advances in Computer Science Research, volume 93 2nd International Conference on Mathematics, Modeling and Simulation Technologies and Applications (MMSTA 2019) A Database Optimization Strategy for Massive Data Based Information System Qianglai Xie*, Wei Yang and Leiyue Yao Jiangxi University of Technology, China *Corresponding author Abstract—With the rapid arrival of the information support technology for the physical design of the entire explosion era, the amount of data stored in a single table of an database, and the method of range partitioning is mainly used enterprise information management system is getting more and in the SQL Sever databases design [6][7]. more common. Therefore, efficiency optimization of SQL based on the massive data is an essential task to break the bottleneck in The index of the database table structure is an important current enterprise information management systems. This paper factor affecting the database performance. Establishing a proposes single table optimization methods for massive database. reasonable index on the basis of physical optimization will These methods including: physical optimization, index directly affect the efficiency of the entire database access [8,9]. optimization and query statement optimization. Each The pages of SQL server data storage include two types: data optimization method is integrated into the database design pages and index pages. By default, data exists in the data pages, process, and a set of optimization programs for the massive but as long as the index data exists, the indexes will be database design process is proposed. In the test environment, the automatically stored in the index page [10,11]. The index types size of the databases file is over 200G and single table records is include: clustered and non-clustered indexes.
    [Show full text]
  • Introduction to Database Design 1 Indexing
    Introduction to Database Design 1 Indexing RG 8.1, 8.2, 8.3, 8.5 Rasmus Pagh Introduction to Database Design 2 Disk crash course • Relations of large databases are usually stored on hard drives (or SSDs). • Hard drives can store large amounts of data, but work rather slowly compared to the memory of a modern computer: • The time to access a specific piece of data is on the order of 106 (104) times slower. • The rate at which data can be read is on the order of 100 (10) times slower. • Time for accessing disk may be the main performance bottleneck! Introduction to Database Design 3 Parallel data access • Large database systems (and modern SSDs) use several storage units to: – Enable several pieces of data to be fetched in parallel. – Increase the total rate of data from disk. • Systems of several disks are often arranged in so-called RAID systems, with various levels of error resilience. • Even in systems with this kind of parallelism, the time used for accessing data is often the performance bottleneck. Introduction to Database Design 4 Full table scans When a DBMS sees a query of the form !SELECT *! !FROM R! !WHERE <condition>! the obvious thing to do is read through the tuples of R and report those tuples that satisfy the condition. This is called a full table scan. Introduction to Database Design 5 Selective queries Consider the query from before • If we have to report 80% of the tuples in R, it makes sense to do a full table scan. • On the other hand, if the query is very selective, and returns just a small percentage of the tuples, we might hope to do better.
    [Show full text]
  • (Spring 2017) :: OLAP Indexes
    15-721 DATABASE SYSTEMS Lecture #09 – OLAP Indexes Andy Pavlo // Carnegie Mellon University // Spring 2016 @Andy_Pavlo // Carnegie Mellon University // Spring 2017 2 TODAY’S AGENDA OLAP Schemas Projection/Columnar Indexes (MSSQL) Bitmap Indexes CMU 15-721 (Spring 2017) 3 BIFURCATED ENVIRONMENT Extract Transform Load OLTP Databases OLAP Database CMU 15-721 (Spring 2017) 4 DECISION SUPPORT SYSTEMS Applications that serve the management, operations, and planning levels of an organization to help people make decisions about future issues and problems by analyzing historical data. Star Schema vs. Snowflake Schema CMU 15-721 (Spring 2017) 5 STAR SCHEMA PRODUCT_DIM CUSTOMER_DIM CATEGORY_NAME ID CATEGORY_DESC FIRST_NAME PRODUCT_CODE SALES_FACT LAST_NAME PRODUCT_NAME EMAIL PRODUCT_DESC PRODUCT_FK ZIP_CODE TIME_FK LOCATION_FK CUSTOMER_FK LOCATION_DIM TIME_DIM COUNTRY PRICE YEAR STATE_CODE QUANTITY DAY_OF_YEAR STATE_NAME MONTH_NUM ZIP_CODE MONTH_NAME CITY DAY_OF_MONTH CMU 15-721 (Spring 2017) 5 STAR SCHEMA PRODUCT_DIM CUSTOMER_DIM CATEGORY_NAME ID CATEGORY_DESC FIRST_NAME PRODUCT_CODE SALES_FACT LAST_NAME PRODUCT_NAME EMAIL PRODUCT_DESC PRODUCT_FK ZIP_CODE TIME_FK LOCATION_FK CUSTOMER_FK LOCATION_DIM TIME_DIM COUNTRY PRICE YEAR STATE_CODE QUANTITY DAY_OF_YEAR STATE_NAME MONTH_NUM ZIP_CODE MONTH_NAME CITY DAY_OF_MONTH CMU 15-721 (Spring 2017) 6 CAT_LOOKUP SNOWFLAKE SCHEMA CATEGORY_ID CATEGORY_NAME CATEGORY_DESC CUSTOMER_DIM PRODUCT_DIM ID CATEGORY_FK SALES_FACT FIRST_NAME PRODUCT_CODE LAST_NAME PRODUCT_NAME PRODUCT_FK EMAIL PRODUCT_DESC TIME_FK ZIP_CODE LOCATION_FK LOCATION_DIM CUSTOMER_FK TIME_DIM COUNTRY YEAR STATE_FK DAY_OF_YEAR ZIP_CODE PRICE MONTH_FK CITY DAY_OF_MONTH QUANTITY STATE_LOOKUP MONTH_LOOKUP STATE_ID MONTH_NUM STATE_CODE MONTH_NAME STATE_NAME MONTH_SEASON CMU 15-721 (Spring 2017) 7 STAR VS. SNOWFLAKE SCHEMA Issue #1: Normalization → Snowflake schemas take up less storage space. → Denormalized data models may incur integrity and consistency violations. Issue #2: Query Complexity → Snowflake schemas require more joins to get the data needed for a query.
    [Show full text]
  • Dynamic Merkle B-Tree with Efficient Proofs
    Dynamic Merkle B-tree with Efficient Proofs Chase Smith* [email protected], [email protected] Alex Rusnak [email protected], [email protected] June 17, 2020 Abstract We propose and define a recursive Merkle structure with q-mercurial commitments, in order to create a concise B-Merkle tree. This Merkle B-Tree builds on previous work of q-ary Merkle trees which use concise, constant size, q-mercurial commitments for intranode proofs. Although these q-ary trees reduce the branching factor and height, they still have their heights based on the key length, and are forced to fixed heights. Instead of basing nodes on q-ary prefix trees, the B Merkle Tree incorporates concise intranode commitments within a self-balancing tree. The tree is based on the ordering of elements, which requires extra information to determine element placement, but it enables significantly smaller proof sizes. This allows for much lower tree heights (directed by the order of elements, not the size of the key), and therefore creates smaller and more efficient proofs and operations. Additionally, the B Merkle Tree is defined with subset queries that feature similar communication costs to non-membership proofs. Our scheme has the potential to benefit outsourced database models, like blockchain, which use authenticated data structures and database indices to ensure immutability and integrity of data. We present potential applications in key-value stores, relational databases, and, in part, Merkle forests. Keywords: Merkle, Authenticated data structure, accumulator Contents 1 Introduction 2 2 Preliminaries 2 2.1 Related work . .3 2.2 Our Contributions . .3 3 Dynamic B+ Merkle tree 3 3.1 Node structure .
    [Show full text]