Poaceae) Laurent Hardion, Regine Verlaque, Gisele Haan-Archipoff, Daniel Cahen, Michel Hoff, Bruno Vila

Total Page:16

File Type:pdf, Size:1020Kb

Poaceae) Laurent Hardion, Regine Verlaque, Gisele Haan-Archipoff, Daniel Cahen, Michel Hoff, Bruno Vila Cleaning up the grasses dustbin: systematics of the Arundinoideae subfamily (Poaceae) Laurent Hardion, Regine Verlaque, Gisele Haan-Archipoff, Daniel Cahen, Michel Hoff, Bruno Vila To cite this version: Laurent Hardion, Regine Verlaque, Gisele Haan-Archipoff, Daniel Cahen, Michel Hoff, et al.. Cleaning up the grasses dustbin: systematics of the Arundinoideae subfamily (Poaceae). Plant Systematics and Evolution, Springer Verlag (Germany), 2017, 303 (10), pp.1331-1339. 10.1007/s00606-017-1451-6. hal-01681605 HAL Id: hal-01681605 https://hal.archives-ouvertes.fr/hal-01681605 Submitted on 7 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cleaning up the grasses dustbin: systematics of the Arundinoideae subfamily (Poaceae) Laurent Hardion 1, Régine Verlaque 2, Gisèle Haan-Archipoff 3, Daniel Cahen 4,·Michel Hoff 3,·Bruno Vila 2 1Laboratoire Image Ville Environnement (LIVE), University of Strasbourg, CNRS, Institut de Botanique, 28 rue Goethe, 67000 Strasbourg, France 2Institut Méditerranéen de Biodiversité et d’Écologie (IMBE), UMR CNRS, IRD, Aix-Marseille University, Avignon University, Marseille, France 3Herbarium of the University of Strasbourg (STR), Faculty of Life Sciences, Strasbourg, France 4Herbarium, Royal Botanic Gardens, Kew, Richmond, UK Corresponding author: Laurent Hardion, [email protected] Abstract Among the 12 subfamilies currently considered in the systematics of Poaceae, the Arundinoideae have long been considered as a dustbin group, with a diversity of forms putatively hiding incertae sedis . Because this subfamily has been poorly investigated using molecular markers for the last two decades, the present study provides the first complete phylogeny of the Arundinoideae based on five plastid DNA loci sequenced for 12 genera, and analysed with and without plastome data from previous studies. The refined Arundinoideae appear to be a robust evolutionary lineage of Poaceae, divided into three tribes with some biogeographical patterns: (1) tribe Arundineae, the most heterogeneous tribe, including Eurasian Arundo , Australian Amphipogon and Monachather , and South African Dregeochloa ; (2) tribe Crinipedeae (described here), including Crinipes , Elytrophorus , Styppeiochloa and Pratochloa (described here), with a South and East African distribution; and (3) tribe Molinieae, including Hakonechloa , Molinia and Phragmites , with a Eurasian distribution. Despite reduction in size, this small subfamily conserves a high diversity of morphological forms, with several small but highly differentiated genera. Finally, the molecular dating approach provides an evolutionary framework to understand the diversification of Arundinoideae, refuting Gondwanan vicariance between genera and suggesting capability for long distance dispersal. Keywords Arundo , Crinipedeae, Phragmites, Phylogeny, Pratochloa, Taxonomy 1 Introduction Poaceae Barnhart is one of the most fascinating plant families by its usefulness for humans and its ecological and taxonomic diversification. Although several angiosperm families possess higher species richness, grasses exceed all others by their ecological significance (Kellogg 2000 ). Thanks to numerous adaptive strategies such as C- 4 metabolism (GPWG II 2012 ), Poaceae occur in almost all terrestrial ecosystems and dominate grassland biomes covering a quarter of land surfaces (Shantz 1954 ). In addition, about half of the annual production of global agriculture is due to the domestication of four of the c. 12,000 grass species (http://faostat.fao. org/ ). In this context, the understanding of grass evolutionary history represents a major scientific challenge. Since the groundwork studies by Brown ( 1810 , 1814 ), Poaceae have been periodically revised in several subfamilies and tribes (a synthesis in Prat 1960 ; Clayton and Renvoize 1986 ). For the last two decades, molecular studies have accelerated this systematics resolution (Clark et al. 1995 ; Duvall and Morton 1996 ; Hilu et al. 1999 ; Hsiao et al. 1999 ; GPWG 2001 ), with the current consideration of 12 subfamilies, 51 tribes and 771 genera (Soreng et al. 2015 ), structured in two main lineages, the BOP and PACMAD clades (Fig. 1). Arundinoideae Kunth ex Beilschm. were dissociated from these two historical lineages early on, due to apically reduced florets and laterally compressed spikelets—specific to the ‘festucoid’ type—versus subtropical distribution and epidermal features—specific to the ‘panicoid’ type (Avdulov 1931 ; Jacques-Félix 1958 ; Stebbins and Crampton 1959 ; Prat 1960 ; Fig. 1a). Arundinoideae included incertae sedis taxa, which sometimes led to consider it to be a basal clade of Poaceae, or even a taxonomic ‘dustbin group’ (Prat 1960 ; Auquier 1963 ; Clayton and Renvoize 1986 ). Consequently, Arundinoideae have included up to 736 species and 72 genera (Conert 1961 , 1966 ; Renvoize 1981 ; Soreng et al. 2015 ), but its molecular polyphyly (Barker et al. 1995 , 1998 ; Hsiao et al. 1998 ) led to its drastic reduction by the description of Danthonioideae H.P.Linder & N.P.Barker (GPWG 2001 ) and the reinstatement of Micrairoideae Pilg. (Sánchez-Ken et al. 2007 ). Following these treatments, Arundinoideae have become one of the smallest grass subfamilies, with 15 genera and about 42 species (Table 1). But these taxa show a surprising ecological and morphological heterogeneity, from helophyte reeds such as Phragmites australis (Cav.) Trin. ex Steud., one of the most cosmopolitan plant species, to dwarf xerophytes such as Dregeochloa pumila (Nees) Conert, the only succulent grass living in Southern African sandy deserts. Repeated morphological analyses of Arundinoideae provided some interesting insights but failed to clearly resolve their classification. This is partly due to the diversity of forms and few evident synapomorphies in such a small subfamily (Renvoize 1981 ; Linder et al. 1997 ). In addition, several taxa currently in the Arundinoideae may be erroneously included. In return, some apparent Arundinoideae may be misplaced in other subfamilies, such as ‘ Eragrostis walteri Pilg.’ previously considered as the only non-C4 Chloridoideae, but recently placed in the Arundinoideae based on molecular 2 data (Ingram et al. 2011 ). Finally, several species and genera ( Dichaetaria Nees ex Steud., Leptagrostis C.E.Hubb., Nematopoa C.E.Hubb. Piptophyllum C.E.Hubb., Zenkeria Trin.) of Arundinoideae have never been studied in a molecular phylogeny, due to their rarity and restricted distributions, some of them being represented only by a few herbarium specimens (Linder et al. 1997 ). Fig. 1 Places of the Arundinoideae subfamily (in red ) in the historical representation of grass systematics, from an old literature synthesis of morphological and anatomical studies (modified from Prat 1936 ; a) to a recent molecular phylogeny (modified from GPWG II 2012 ; b). Clade sizes are proportional to their species richness (also indicated between brackets ). BOP clade, Bambusoideae–Oryzoideae– Pooideae (in grey ); PACMAD clade, Panicoideae– Aristidoideae– Chloridoideae–Micrairoideae–Arundinoideae–Danthonioideae (in white ) Table 1 Genera, species richness (S) and geographical distribution of the subfamily Arundinoideae Genus S Distribution Amphipogon R.Br. (= Diplopogon R.Br.) 9 Australia Arundo L. 5 Tropical Eurasia Crinipes Hochst. 2 East Africa Dichaetaria Nees ex Steud. 1 India Dregeochloa Conert 2 South Africa Elytrophorus P.Beauv. 2 Africa–Asia–Australia Hakonechloa Makino ex Honda 1 Japan Leptagrostis C.E.Hubb. 1 East Africa Molinia Schrank (= Moliniopsis Hayata) 3 Eurasia Monachather Steud. 1 Australia Nematopoa C.E.Hubb. 1 South Africa Phragmites Adans. 5 Cosmopolitan Piptophyllum C.E.Hubb. 1 South Africa Styppeiochloa De Winter 3 South Africa *Zenkeria Trin. 5 India Total 42 Old World + Australia * Genus removed from the subfamily based on the present study 3 The present study attempts to provide the first complete phylogeny of the Arundinoideae subfamily. The main challenges are (1) to test the monophyly of taxa currently included in Arundinoideae, (2) to resolve the phylogenetic relationships within this subfamily in order to identify putative tribes and (3) to initiate the understanding of the evolutionary history of this small but heterogeneous sub-family. To address this, we used five plastid DNA loci previously investigated to resolve the systematics of Poaceae. We also added previously published plastomes (complete plastid genomes) of several species, in order to increase the resolution of phylogenetic reconstructions and improve the calibration of molecular dating. Finally, we provide a taxonomic treatment to improve the classification of Arundinoideae. Materials and methods DNA extraction and plastid DNA sequencing Sampling includes samples from BM, CANB, ETH, K, MARS, P, PRE and STR Herbaria (Online Resource 1). For each sample, about 1 cm 2 of leaf material was crushed by two metallic marbles in 2-mL tubes treated with liquid nitrogen and placed in a ball mill. Total DNA was extracted following Doyle and Doyle ( 1987 ) with a modification
Recommended publications
  • GENETICS, GENOMICS and BREEDING of FORAGE CROPS Genetics, Genomics and Breeding of Crop Plants
    Genetics, Genomics and Breeding of Genetics, Genomics and Breeding of About the Series Genetics, Genomics and Breeding of AboutAbout the the Series Series SeriesSeries on on BasicBasic and and advanced advanced concepts, concepts, strategies, strategies, tools tools and and achievements achievements of of Series on Basicgenetics, and advanced genomics concepts, and breeding strategies, of crops tools haveand beenachievements comprehensively of Genetics,Genetics, Genomics Genomics and and Breeding Breeding of of Crop Crop Plants Plants genetics,genetics, genomics genomics and and breeding breeding of ofcrops crops have have been been comprehensively comprehensively Genetics, Genomics and Breeding of Crop Plants deliberateddeliberated in in30 30volumes volumes each each dedicated dedicated to toan an individual individual crop crop or orcrop crop Series Editor deliberatedgroup. in 30 volumes each dedicated to an individual crop or crop Series Series Editor Editor group.group. Chittaranjan Chittaranjan Kole, Kole, Vice-Chancellor, Vice-Chancellor, BC BC Agricultural Agricultural University, University, India India The series editor and one of the editors of this volume, Prof. Chittaranjan Chittaranjan Kole, Vice-Chancellor, BC Agricultural University, India TheThe series series editor editor and and one one of theof the editors editors of thisof this volume, volume, Prof. Prof. Chittaranjan Chittaranjan Kole,Kole, is globallyis globally renowned renowned for for his his pioneering pioneering contributions contributions in inteaching teaching and and Kole,research is globally for renowned nearly three for decades his pioneering on plant contributions genetics, genomics, in teaching breeding and and researchresearch for for nearly nearly three three decades decades on onplant plant genetics, genetics, genomics, genomics, breeding breeding and and biotechnology.biotechnology.
    [Show full text]
  • A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
    Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T.
    [Show full text]
  • High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)
    High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae) Yun-Jie Zhang1,2,3., Peng-Fei Ma1,2,3., De-Zhu Li1,2* 1 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China, 2 Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China, 3 Graduate University of Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract Background: Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings: Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with $0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses.
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • Improving Our Understanding of Environmental Controls on the Distribution of C3 and C4 Grasses STEPHANIE PAU*, ERIKA J
    Global Change Biology (2013) 19, 184–196, doi: 10.1111/gcb.12037 Improving our understanding of environmental controls on the distribution of C3 and C4 grasses STEPHANIE PAU*, ERIKA J. EDWARDS† andCHRISTOPHER J. STILL‡§ *National Center for Ecological Analysis and Synthesis (NCEAS), 735 State Street, Suite 300, Santa Barbara, CA 93101, USA, †Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA, ‡Department of Geography, University of California, Santa Barbara, CA 93106-4060, USA, §Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331-5752, USA Abstract A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in different and relatively unrelated lineages, which are associated with different environmental settings and distinct adaptive traits. Such confounded comparisons of C3 and C4 grasses may bias our understanding of ecological sorting imposed strictly by photosynthetic pathway. Here, we used MaxEnt species distribution modeling in combination with satellite data to understand the functional diversity of C3 and C4 grasses by comparing both large clades and closely related sister taxa. Similar to previous work, we found that C4 grasses showed a preference for regions with higher temperatures and lower precipitation compared with grasses using the C3 pathway. However, air temperature differences were smaller (2 °C vs. 4 °C) and precipitation and % tree cover differences were larger (1783 mm vs. 755 mm, 21.3% vs. 7.7%, respectively) when comparing C3 and C4 grasses within the same clade vs.
    [Show full text]
  • Conservation of Grassland Plant Genetic Resources Through People Participation
    University of Kentucky UKnowledge International Grassland Congress Proceedings XXIII International Grassland Congress Conservation of Grassland Plant Genetic Resources through People Participation D. R. Malaviya Indian Grassland and Fodder Research Institute, India Ajoy K. Roy Indian Grassland and Fodder Research Institute, India P. Kaushal Indian Grassland and Fodder Research Institute, India Follow this and additional works at: https://uknowledge.uky.edu/igc Part of the Plant Sciences Commons, and the Soil Science Commons This document is available at https://uknowledge.uky.edu/igc/23/keynote/35 The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015. Proceedings Editors: M. M. Roy, D. R. Malaviya, V. K. Yadav, Tejveer Singh, R. P. Sah, D. Vijay, and A. Radhakrishna Published by Range Management Society of India This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Conservation of grassland plant genetic resources through people participation D. R. Malaviya, A. K. Roy and P. Kaushal ABSTRACT Agrobiodiversity provides the foundation of all food and feed production. Hence, need of the time is to collect, evaluate and utilize the biodiversity globally available. Indian sub-continent is one of the world’s mega centers of crop origins. India possesses 166 species of agri-horticultural crops and 324 species of wild relatives.
    [Show full text]
  • Allelopathic Potential of Mustard Crop Residues on Weed Management
    J Bangladesh Agril Univ 16(3): 372–379, 2018 https://doi.org/10.3329/jbau.v16i3.39398 ISSN 1810-3030 (Print) 2408-8684 (Online) Journal of Bangladesh Agricultural University Journal home page: http://baures.bau.edu.bd/jbau, www.banglajol.info/index.php/JBAU Weed diversity of the family Poaceae in Bangladesh Agricultural University campus and their ethnobotanical uses Ashaduzzaman Sagar, Jannat-E-Tajkia and A.K.M. Golam Sarwar Laboratory of Plant Systematics, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh ARTICLE INFO Abstract A taxonomic study on the weeds of the family Poaceae growing throughout the Bangladesh Agricultural Article history: University campus was carried out to determine species diversity of grasses in the campus. A total of 81 Received: 03 July 2018 species under 46 genera and 2 subfamilies of the family Poaceae were collected and identified; their uses Accepted: 19 November 2018 in various ailments were also recorded. Out of the three subfamilies, no weed from the subfamily Published: 31 December 2018 Bambusoideae was found. Among the genera, Digitaria, Eragrostis, Brachiaria, Panicum, Echinochloa and Sporobolus were most dominant in context to number of species with a total of 29 species. While 28 Keywords: genera were represented by single species each in BAU campus; of these 15 genera were in Bangladesh as Grass weeds; Phenology; well. Some of them are major and obnoxious weeds in different crop fields including staples rice and Taxonomy; BAU campus; wheat. The flowering period will be helpful for the management of respective weed population. Many of Ethnobotanical uses these weed species have high economical, ethnomedicinal and other uses.
    [Show full text]
  • Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
    Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • Designing W Grasses Complete Notes
    DESIGNING W/ GRASSES: SLIDESHOW NAMES TONY SPENCER Google search botanical plant names or visit Missouri Botanical Garden site for more info: 1. Pennisetum alopecuroides + Sanguisorba + Molinia arundinacea ‘Transparent’ 2. Pennisetum alopecuroides + Aster + Molinia arundinacea ‘Transparent’ 3. Calamagrostis x. acutiflora ‘Karl Foerster’ + Panicum ‘Shenandoah’ 4. Helianthus pauciflorus – Photo Credit: Chris Helzer 5. Nassella tenuissima + Echinacea simulata + Monarda bradburiana 6. Hordeum jubatum + Astilbe 7. Deschampsia cespitosa + Helenium autumnale 8. Calamagrostis brachytricha + Miscanthus sinensis + Cimicifuga atropurpurea 9. Sporobolus heterlolepis + Echinacea pallida 10. Panicum virgatum + Echinacea pallida + Monarda + Veronica 11. Molinia arundinacea ‘Transparent + Sanguisorba officinalis 12. Bouteloua gracilis 13. Calamagrostis brachytricha + Helenium autumnale 14. Peucedanum verticillare 15. Anemone ‘Honorine Jobert’ 2016 Perennial Plant of the Year 16. Miscanthus sinsensis 17. Calamagrostis brachytricha 18. Molinia caerulea + Calamagrostis ‘Karl Foerster’ 19. Calamagrostis ‘Karl Foerster’ + Lythrum alatum + Parthenium integrafolium 20. Panicum virgatum ‘Shenandoah’ 21. Bouteloua gracilis + Echinacea ‘Kim’s Knee High’ + Salvia nemorosa 22. Baptisia alba 23. Calamagrostis ‘Karl Foerster’ in Hummelo meadow planting 24. Panicum amarum ‘Dewey Blue’ + Helenium autumnale 25. Deschampsia cespitosa 26. Echinacea purpurea seedheads 27. Calamagrostis brachytricha + Calamagrostis ‘Karl Foerster’ + Echinacea + Veronicastrum + Eupatorium
    [Show full text]
  • Chapter 5 Phylogeny of Poaceae Based on Matk Gene Sequences
    Chapter 5 Phylogeny of Poaceae Based on matK Gene Sequences 5.1 Introduction Phylogenetic reconstruction in the Poaceae began early in this century with proposed evolutionary hypotheses based on assessment of existing knowledge of grasses (e.g., Bew, 1929; Hubbard 1948; Prat, 1960; Stebbins, 1956, 1982; Clayton, 1981; Tsvelev, 1983). Imperical approaches to phylogenetic reconstruction of the Poaceae followed those initial hypotheses, starting with cladistic analyses of morphological and anatomical characters (Kellogg and Campbell, 1987; Baum, 1987; Kellogg and Watson, 1993). More recently, molecular information has provided the basis for phylogenetic hypotheses in grasses at the subfamily and tribe levels (Table 5.1). These molecular studies were based on information from chloroplast DNA (cpDNA) restriction sites and DNA sequencing of the rbcL, ndhF, rps4, 18S and 26S ribosomal DNA (rDNA), phytochrome genes, and the ITS region (Hamby and Zimmer, 1988; Doebley et al., 1990; Davis and Soreng, 1993; Cummings, King, and Kellogg, 1994; Hsiao et al., 1994; Nadot, Bajon, and Lejeune, 1994; Barker, Linder, and Harley, 1995; Clark, Zhang, and Wendel, 1995; Duvall and Morton, 1996; Liang and Hilu, 1996; Mathews and Sharrock, 1996). Although these studies have refined our concept of grass evolution at the subfamily level and, to a certain degree, at the tribal level, major disagreements and questions remain to be addressed. Outstanding discrepancies at the subfamily level include: 1) Are the pooids, bambusoids senso lato, or herbaceous bamboos the
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]
  • Nymphaea Folia Naturae Bihariae Xli
    https://biblioteca-digitala.ro MUZEUL ŢĂRII CRIŞURILOR NYMPHAEA FOLIA NATURAE BIHARIAE XLI Editura Muzeului Ţării Crişurilor Oradea 2014 https://biblioteca-digitala.ro 2 Orice corespondenţă se va adresa: Toute correspondence sera envoyée à l’adresse: Please send any mail to the Richten Sie bitte jedwelche following adress: Korrespondenz an die Addresse: MUZEUL ŢĂRII CRIŞURILOR RO-410464 Oradea, B-dul Dacia nr. 1-3 ROMÂNIA Redactor şef al publicațiilor M.T.C. Editor-in-chief of M.T.C. publications Prof. Univ. Dr. AUREL CHIRIAC Colegiu de redacţie Editorial board ADRIAN GAGIU ERIKA POSMOŞANU Dr. MÁRTON VENCZEL, redactor responsabil Comisia de referenţi Advisory board Prof. Dr. J. E. McPHERSON, Southern Illinois Univ. at Carbondale, USA Prof. Dr. VLAD CODREA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Dr. MASSIMO OLMI, Universita degli Studi della Tuscia, Viterbo, Italy Dr. MIKLÓS SZEKERES Institute of Plant Biology, Szeged Lector Dr. IOAN SÎRBU Universitatea „Lucian Blaga”,Sibiu Prof. Dr. VASILE ŞOLDEA, Universitatea Oradea Prof. Univ. Dr. DAN COGÂLNICEANU, Universitatea Ovidius, Constanţa Lector Univ. Dr. IOAN GHIRA, Universitatea Babeş-Bolyai, Cluj-Napoca Prof. Univ. Dr. IOAN MĂHĂRA, Universitatea Oradea GABRIELA ANDREI, Muzeul Naţional de Ist. Naturală “Grigora Antipa”, Bucureşti Fondator Founded by Dr. SEVER DUMITRAŞCU, 1973 ISSN 0253-4649 https://biblioteca-digitala.ro 3 CUPRINS CONTENT Botanică Botany VASILE MAXIM DANCIU & DORINA GOLBAN: The Theodor Schreiber Herbarium in the Botanical Collection of the Ţării Crişurilor Museum in
    [Show full text]