Site Characterization for Munitions Constituents

Total Page:16

File Type:pdf, Size:1020Kb

Site Characterization for Munitions Constituents EPA Federal Facilities Forum Issue Paper: SITE CHARACTERIZATION FOR MUNITIONS CONSTITUENTS Solid Waste and EPA-505-S-11-001 Emergency Response January 2012 (5203P) www.epa.gov EPA Federal Facilities Forum Issue Paper: SITE CHARACTERIZATION FOR MUNITIONS CONSTITUENTS Disclaimer Information presented in this Federal Facilities Forum Issue Paper is not intended, nor can it be relied upon, to create any rights enforceable by any party in litigation with the United States or any other party. Use or mention of trade names does not constitute an endorsement or recommendation for use. EPA/505/S-11/001 EPA Federal Facilities Forum Issue Paper: SITE CHARACTERIZATION FOR MUNITIONS CONSTITUENTS This paper was prepared by: T.F. Jenkins2, S.R. Bigl1, A.D. Hewitt1*, J.L. Clausen1, H.D. Craig5, M.E. Walsh1, R. Martel3, K. Nieman4, S. Taylor1, and M.R. Walsh1. Technical guidance and direction in the development of this paper was provided by members of the Federal Facilities Forum Munitions Subcom- mittee: S. Tzhone6, R. Mayer6, S. Hirsh7, H.D. Craig5, M. McEaddy8, D. Maddox8, M.T. Cooke8. For fur- ther information on this document, contact Monica McEaddy at (703) 603-0044. The Federal Facilities Forum website is online at: http://www.epa.gov/tio/tsp/fedforum.htm This Federal Facilities Forum Issue Paper: Site Characterization For Munitions Constituents was pre- pared to provide remedial project managers and other federal, state, and private personnel working on hazardous waste sites the technical information needed to make decisions regarding the nature of energet- ic residues on Department of Defense training ranges (and other munitions sites such as Formerly Used Defense Sites), sampling strategies that provide representative samples, and analytical methods developed to characterize these samples. This paper is not intended to include discussions of the safety issues associated with sites contaminat- ed with energetic residues. Examples of explosives safety issues include, but are not limited to: geophys- ical detection methods, explosion (detonation) hazards, toxicity of secondary explosives, and personal protective equipment. Information pertaining to geophysical investigations has been summarized by ESTCP/ITRC (2006) and toxicity concerns can be found in Roberts and Hartley (1992), Yinon (1990), and Sunahara et al. (2009). Also, this paper is not intended to serve as a guide for geophysical investiga- tion of unexploded ordnance (UXO) or discarded military munitions (DMM), or chemical sampling and analysis of bulk high explosives, primary explosives where concentrations exceed 20,000 mg/kg (2%), or secondary explosives in soil where concentrations exceed 100,000 mg/kg (10%). It is imperative that any persons working on sites thought to be contaminated with energetic residues thoroughly familiarize themselves with the physical and toxic properties of the materials potentially pre- sent and take all measures as may be prudent and/or prescribed by law to protect life, health, and proper- ty. These conditions present a potential detonation hazard; therefore, explosive safety procedures and safety precautions should be identified before initiating site characterization activities in such environ- ments. 1 USACE, CRREL, Hanover, NH 5 EPA, Region 10, Seattle, WA 2 Bowhead, Vicksburg, MS 6 EPA, Region 6, Dallas, TX 3 University of Quebec 7 EPA, Region 3, Philadelphia, PA 4 Select Engineering Services, Layton, UT 8 EPA, FFRRO, Washington, DC * Deceased 9 EPA, OSRTI, Washington, DC i Table of Contents Figures and Tables ............................................................................................................................................. v Glossary of Terms ............................................................................................................................................ viii Nomenclature ................................................................................................................................................... xii Introduction .........................................................................................................................................................1 Purpose and Scope ............................................................................................................................................ 1 Background.......................................................................................................................................................... 1 Energetic chemicals ............................................................................................................................................... 2 Gun and Small Rocket Propellant Formulations................................................................................................ 5 Composition..................................................................................................................................... 5 Grain size and shape ...................................................................................................................... 6 Ignition Train .................................................................................................................................... 7 Summary ......................................................................................................................................... 8 Secondary (high) explosives ................................................................................................................................. 9 Important physical and chemical properties of energetic compounds .......................................................... 9 Fate and transport issues .................................................................................................................................. 11 Residue deposition at training ranges .......................................................................................................... 13 Propellant residues at firing points ................................................................................................................. 13 Explosives residues at impact areas .............................................................................................................. 15 Accumulation of energetic residues at various types of DoD ranges ....................................................... 19 Hand grenade ranges ....................................................................................................................................... 20 Antitank rocket range ....................................................................................................................................... 21 Impact areas ........................................................................................................................................................ 21 Firing point areas ................................................................................................................................................ 25 Artillery, tank, and mortar ranges ................................................................................................................... 27 Artillery and tank range firing points ................................................................................................................ 29 Artillery ranges away from impact areas and firing points ........................................................................... 30 Artillery and mortar range target/impact areas ............................................................................................. 30 Artillery ranges near low-order (partial) detonations and detonation craters ............................................ 31 Bombing ranges ................................................................................................................................................ 31 Open Burn/Open Detonation (OB/OD) Ranges ............................................................................................ 32 Small arms ranges ............................................................................................................................................ 33 Propellant residues at firing points ................................................................................................................... 33 Site characterization ....................................................................................................................................... 38 Soil sampling studies ....................................................................................................................................... 38 Results from discrete sampling at ranges ....................................................................................................... 39 Results from MULTI-INCREMENT samples at ranges .................................................................................... 40 Comparison of discrete, wheel, box, and MIS approaches at impact areas and firing points................. 42 Sampling depth ................................................................................................................................................... 43 Vegetation ............................................................................................................................................................ 45 Sampling Design ................................................................................................................................................
Recommended publications
  • Cluster Weapons – Military Utility and Alternatives
    FFI-rapport/2007/02345 Cluster weapons – military utility and alternatives Ove Dullum Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI) 1 February 2008 FFI-rapport 2007/02345 Oppdrag 351301 ISBN 978-82-464-1318-1 Keywords Militære operasjoner / Military operations Artilleri / Artillery Flybomber / Aircraft bombs Klasevåpen / Cluster weapons Ammunisjon / Ammunition Approved by Ove Dullum Project manager Jan Ivar Botnan Director of Research Jan Ivar Botnan Director 2 FFI-rapport/2007/02345 English summary This report is made through the sponsorship of the Royal Norwegian Ministry of Foreign Affairs. Its purpose is to get an overview of the military utility of cluster munitions, and to find to which degree their capacity can be substituted by current conventional weapons or weapons that are on the verge of becoming available. Cluster munition roughly serve three purposes; firstly to defeat soft targets, i e personnel; secondly to defeat armoured of light armoured vehicles; and thirdly to contribute to the suppressive effect, i e to avoid enemy forces to use their weapons without inflicting too much damage upon them. The report seeks to quantify the effect of such munitions and to compare this effect with that of conventional weapons and more modern weapons. The report discusses in some detail how such weapons work and which effect they have against different targets. The fragment effect is the most important one. Other effects are the armour piercing effect, the blast effect, and the incendiary effect. Quantitative descriptions of such effects are usually only found in classified literature. However, this report is exclusively based on unclassified sources. The availability of such sources has been sufficient to get an adequate picture of the effect of such weapons.
    [Show full text]
  • Politics and Metaphysics in Three Novels of Philip K. Dick
    EUGÊNIA BARTHELMESS Politics and Metaphysics in Three Novels of Philip K. Dick Dissertação apresentada ao Curso de Pós- Graduação em Letras, Área de Concentra- ção Literaturas de Língua Inglesa, do Setor de Ciências Humanas, Letras e Artes da Universidade Federai do Paraná, como requisito parcial à obtenção do grau de Mestre. Orientadora: Prof.3 Dr.a BRUNILDA REICHMAN LEMOS CURITIBA 19 8 7 OF PHILIP K. DICK ERRATA FOR READ p -;2011 '6:€h|j'column iinesllll^^is'iiearly jfifties (e'jarly i fx|fties') fifties); Jl ' 1 p,.2Ò 6th' column line 16 space race space race (late fifties) p . 33 line 13 1889 1899 i -,;r „ i i ii 31 p .38 line 4 reel."31 reel • p.41 line 21 ninteenth nineteenth p .6 4 line 6 acien ce science p .6 9 line 6 tear tears p. 70 line 21 ' miliion million p .72 line 5 innocence experience p.93 line 24 ROBINSON Robinson p. 9 3 line 26 Robinson ROBINSON! :; 1 i ;.!'M l1 ! ! t i " i î : '1 I fi ' ! • 1 p .9 3 line 27 as deliberate as a deliberate jf ! •! : ji ' i' ! p .96 lin;e , 5! . 1 from form ! ! 1' ' p. 96 line 8 male dis tory maledictory I p .115 line 27 cookedly crookedly / f1 • ' ' p.151 line 32 why this is ' why is this I 1; - . p.151 line 33 Because it'll Because (....) it'll p.189 line 15 mourmtain mountain 1 | p .225 line 13 crete create p.232 line 27 Massachusetts, 1960. Massachusetts, M. I. T.
    [Show full text]
  • Conclusions in Verse
    RepresentativeRepresentative SamplingSampling forfor EnergeticEnergetic CompoundsCompounds atat MilitaryMilitary TrainingTraining RangesRanges Sampling near tank target Sampling near low-order 500 lb YakimaTraining Center bomb, Camp Guernsey Red crater at CFB Gagetown Alan D. Hewitt, Thomas F. Jenkins, Marianne E. Walsh, Michael R. Walsh, Susan Taylor, Charles Ramsey, and Judith C. Pennington MajorMajor ClassesClasses ofof EnergeticEnergetic ChemicalsChemicals UsedUsed byby DoDDoD NO 2 CH3 N O 2 N NO2 Nitroaromatics N N O N (TNT) 2 NO 2 NO2 Nitramines (RDX) H C-O-NO 2 2 Nitrate Esters HC-O-NO (NG) 2 H 22 C-O-NO EnergeticEnergetic ChemicalsChemicals inin MilitaryMilitary ExplosivesExplosives • Composition B (artillery/mortar) 60% Military grade RDX (Contains about 10% HMX) 39% Military grade TNT (Contains about 1% other TNT isomers and DNTs) • Composition C4 (demolition explosive) 91% Military Grade RDX • Tritonal (Air Force Bombs) Military grade TNT, aluminum • Composition A4 (40-mm grenades) Military grade RDX • TNT (artillery) Military grade TNT • Composition H-6 (Air Force bombs) Military grade RDX and TNT, aluminum • Octol (Antitank rockets) Military grade HMX and TNT EnergeticEnergetic ChemicalsChemicals inin MilitaryMilitary GunGun PropellantsPropellants • Nitrocellulose (NC) Polymer used in all gun propellants • Nitroglycerin (NG) Component of double and triple base propellants • Nitroguanidine (NQ) Component of triple base propellants • 2,4-Dinitrotoluene (2,4-DNT) Energetic plasticizer in some single base propellants PhysicalPhysical
    [Show full text]
  • Simulated Rainfall-Driven Dissolution of TNT, Tritonal, Comp B and Octol Particles
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Army Research U.S. Department of Defense 2009 Simulated Rainfall-Driven Dissolution of TNT, Tritonal, Comp B and Octol Particles Susan Taylor Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH James H. Lever Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH Jennifer Fadden Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH Nancy Perron Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH Bonnie Packer US Army Environmental Command, Hoadley Road, Aberdeen Proving Ground, MD 21010, United States Follow this and additional works at: https://digitalcommons.unl.edu/usarmyresearch Part of the Operations Research, Systems Engineering and Industrial Engineering Commons Taylor, Susan; Lever, James H.; Fadden, Jennifer; Perron, Nancy; and Packer, Bonnie, "Simulated Rainfall- Driven Dissolution of TNT, Tritonal, Comp B and Octol Particles" (2009). US Army Research. 52. https://digitalcommons.unl.edu/usarmyresearch/52 This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Army Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Chemosphere 75 (2009) 1074–1081 Contents lists available at ScienceDirect
    [Show full text]
  • Blast Effects Evaluation Using TNT Equivalent
    50 Scientific Technical Review,Vol.LIX,No.3-4,2009 UDK: 662.1/4:541.42.6 COSATI: 19-01, 19-04 Blast Effects Evaluation Using TNT Equivalent Zoran Bajić, MSc (Eng)1) Jovica Bogdanov, MSc (Eng)1) Radun Jeremić, PhD (Eng)1) This paper shows blast parameters of high explosives commonly used in explosive ordnance of Serbian armed forces regarding TNT equivalents. Primary blast wave parameters, overpressure, impulse and positive phase duration are calculated using modified Sadovskiy equations and the modified K-B equation. TNT equivalents of the observed explosives are determined using thermochemical calculations based on BKW EOS parameters. The calculated blast wave parameters show significant influence of used explosives concerning the TNT equivalent. Key words: explosive materials, physics of explosion, blast wave, blast wave effect, thermochemical calculation, TNT equivalent, equation of state, Sadovskiy equations. Introduction (modified by the US DoD) for blast pressure and impulse FTER the detonation occurs, the ambient pressure determination using scaled distance is shown in eq.(4) [4]. A increases almost instantaneously and promptly begins 234 to decay, forming a nearly triangular overpressure pulse. PI,=++ exp( A B ln Z C (ln) Z + D (ln) Z + E (ln) Z ) (4) The peak pressure is called the peak positive overpressure. It represents the pressure seen at a point in space when the Where pressure is in kPa, impulse in Pa·s/kg1/3, Z is in shock wave is unimpeded in its motion. The duration of the m/kg1/3 and A, B, C, D and E empirical coefficients. positive overpressure is called the positive phase.
    [Show full text]
  • Panel About Philip K. Dick
    Science Fiction Book Club Interview with Andrew M. Butler and David Hyde July 2018 Andrew M. Butler is a British academic who teaches film, media and cultural studies at Canterbury Christ Church University. His thesis paper for his PhD was titled “Ontology and ethics in the writings of Philip K. Dick.” He has also published “The Pocket essential Philip K. Dick”. He is a former editor of Vector, the Critical Journal of the British Science Fiction Association and was membership secretary of the Science Fiction Foundation. He is a former Arthur C. Clarke Award judge and is now a member of the Serendip Foundation which administers the award. David Hyde, a.k.a. Lord Running Clam, joined the Philip K. Dick Society in 1985 and contributed to its newsletter. When the PKDS was discontinued, he created For Dickheads Only in 1993, a zine that was active until 1997. Since then, his activities include many contributions to and editorial work for the fanzine PKD OTAKU. His book, PINK BEAM: A Philip K. Dick Companion, is a detailed publication history of PKD's novels and short stories. In 2010, David organized the 21st century's first Philip K. Dick Festival in Black Hawk, Colorado. Recently, in partnership with Henri Wintz at Wide Books, he has published two full-color bibliographies of the novels and short stories of Philip K. Dick. In early 2019 Wide Books will publish the French bibliography. On the 35th anniversary of Phil’s passing in 2017 David held a memorial celebration for PKD fans in Ft. Morgan, Colorado, the final resting place of Phil and his twin sister Jane.
    [Show full text]
  • Supercritical Water Oxidation of Octol – Containing Wastewater
    Global NEST Journal, Vol 21, No 2, pp 172-179 Copyright© 2019 Global NEST Printed in Greece. All rights reserved Supercritical water oxidation of octol – containing wastewater Gurbulak E.1,*, Yuksel E.1, Tekbas M.1, Doruk T.2, Eyvaz M.1, Bektas N.1 1Gebze Technical University, Department of Environmental Engineering, 41400, Kocaeli, Turkey 2Ondokuz Mayıs University, Department of Molecular Biology and Genetics, 55105, Samsun, Turkey Received: 23/05/2018, Accepted: 12/02/2019, Available online: 15/02/2019 *to whom all correspondence should be addressed: e-mail: [email protected] https://doi.org/10.30955/gnj.002776 Abstract Considering both the dramatic increase in octol use and the nitro aromatic and heterocyclic nitramine groups in its This study investigated optimum operating conditions of structure, it has become a non-negligible nitro-compound supercritical water oxidation (SCWO) for octol and source of pollution (Chatterjee et al., 2017). This pollution compared the degradation of its components TNT (2,4,6- has harmful effects on the environment and health due to trinitrotoluene) and HMX (octahydro-1,3,5,7-tetranitro- its characteristic of persistent resistance to biological 1,3,5,7-tetrazocine, octogen) under the same conditions. degradation (Snellinx et al., 2002). Jong et al. (2006) Pilot scale experiments were conducted at various determined that HMX had a more recalcitrant structure temperatures, reaction times and oxidant amounts. than other well-known explosives including TNT and RDX. Removal efficiency, by-product analysis and toxicity tests Although 2,4,6 TNT has potential carcinogenic effects, its were selected as the performance criteria for the SCWO.
    [Show full text]
  • Explosives Detector C04 User Manual
    EXPLOSIVES DETECTOR C04 USER MANUAL HTBC.413444.001RE CONTENTS 1. INTRODUCTION 3 2. DESCRIPTION AND OPERATION 3 2.1. Product designation 3 2.2. Device specifications 3 2.3. Product components and accessories 5 2.4. Device design and operation 6 2.4.1. Principle of operation 6 2.4.2. Device description 6 2.4.3. Description of control buttons 10 2.4.4. Device menu description 11 2.5. Safety Precautions 20 3. INTENDED USE 21 3.1. Operability check 21 3.2. Explosives searching 22 3.3. False activation 25 4. THE BATTERY BLOCK CHANGING AND CHARGING 25 5. PIEZO DESORBER CHAMBER USE 28 6. TRANSPORTATION AND STORAGE 31 7. AFTER-SALE SERVICE 32 Appendix 1. Device maintenance 33 Appendix 2. Common troubles and solutions 36 1. INTRODUCTION This User Manual contains the necessary information on the components, internal design and operating principles of the Explosives Detector C04 (hereinafter referred to as the device) and information necessary for its correct and long-term service. 2. DESCRIPTION AND OPERATION 2.1. Product designation The device is designed to detect explosive vapors when examining various objects (personal belongings, baggage, mail, parcels, vehicles, premises, etc.), as well in search for trace amounts of explosive substances using a piezoelectric desorption chamber. 2.2. Device specifications The main specifications of the device are given in Table 1. Table 1. Main specifications. Parameter Parameter Unit value AC supply voltage rating 18 V Consumed current at the rated supply voltage (up to) 1,5 A Threshold for TNT detection in ambient air (up to) 10-14 g/cm3 Vortex sampling distance 60-100 mm Readiness time at warm temperature 5-60 sec at cold temperature Up to 600 Start time from stand-by mode 2-3 sec Analysis time (max) 2 sec Battery life in vapor mode, always on (min) 4 Battery life in trace mode, always on (min) 3 h Battery life in mixed mode: 5% in vapor mode, 5% in 10 trace mode, 90% in stand-by mode Dimensions, LxWxH (up to) 350x103x94 mm Parameter Unit Parameter value .
    [Show full text]
  • Weathering of Explosives for Twenty Years
    LA-11931 Weathering of Explosives for Twenty Years Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. LA-11931 UC-741 Issued: May 1991 Weathering of Explosives for Twenty Years F. W. DuBois J. F. Baytos WEATHERING OF EXPLOSIVES FOR TWENTY YEARS F. W. DuBois and J. F. Baytos ABSTRACT Twelve high-explosive materials were buried in soil and exposed to the elements to determine their rate of disappearance from the environment. Only those explosives that contained TNT, barium nitrate, and boric acid disappeared at an environmentally significant rate. I. INTRODUCTION can be considered significant for their effective elimination from the environment. Experiments were undertaken to determine the persistence of explosives in the area surrounding a drop II. EXPERIMENTAL METHOD-SAMPLE tower at Los Alamos National Laboratory (Los Alamos) PREPARATION technical area TA-11, which is used in testing the sensitivity of explosives to impact. A location with soil, topography, Soil from the test site was screened through a l/4- by flora, and weather conditions typical of the area surrounding l/4-in. wire screen and dried to a moisture content of 0.25 the tower was selected. Soil was removed, mixed with wt%. Three sets of samples were prepared. explosives, replaced, and analyzed periodically for residual 1. The first set consisted of 12 samples, each containing explosives. Total time of the experiment was 20 years. 0.1 wt% of one of the 12 explosives. Five grams of Results after 4-l/2 years were reported in LA-4943 (June the powdered explosive was mixed with 5 kg of soil 1972)1 in a Patterson-Kelly twin-shell blender.
    [Show full text]
  • Chemring Nobel Product Compositions – HMX
    Chemring Nobel product compositions – HMX HMX Formulations Compositions Typical Product Specification Ingredients Weight % application HMX 49/49 Main charge HTA-3, Type I / Type II (Type TNT 29/28.65 MIL-E-46495 underwater II with CaSi added) Aluminium 22/22 explosive Calcium Silicate - /0.35 Octol 70/30, Type II, Class 1 HMX 70/75 MIL-O-45455 Shaped charges and 2/Octol 75/25, Type I TNT 30/25 HMX 98 H-764 US DWG No. 7259019 Calcium Recinate 1 Booster Graphite 1 HMX 95/94.5 Shaped, blast and HMX/Wax TL 1376-0825 Wax 5/4.5 fragmentation HMX/Wax/Graphite (OWC) Graphite - /1.0 charges HMX 98 HMX/Wax/Graphite (OWC) Customer specification Wax 1 Oil field perforators Graphite 1 HMX 95.5 LX-14 MIL-H-48358 Shaped charges Estane 4.5 HMX 96/96 Octastit VIII / VIIIG FS 1375-1626/1628 Plastic binder 4/3.9 Shaped charges Graphite - /0.1 HMX 86 Blast and PBXN-3 MIL-E-82738 Nylon 14 fragmentation HMX 95 PBXN-5 MIL-E-81111 Booster Viton 5 HMX 92 PBXN-9 MIL-E-82875 1,2 HyTemp 2 Shaped charges DOA 6 HMX 96 PBXW-11 DTL WS 33500 1,2 HyTemp 1 Shaped charges DOA 3 HMX 92 IM for shaped DPX-2 Chemring specification Hytemp 2 charges/ booster DOA 6 HMX 90 DPX-4 Chemring Specification Viton 10 Shaped charges HMX 64,4 HyTemp 1.4 DPX-5 Chemring Specification Enhanced blast DOA 4.2 Aluminium 30 HMX 50 Aluminium 46 DPX-6 Chemring specification Enhanced blast Hytemp 1 DOA 3 MIL-E-82895 HMX 97.05 Blast and CXM-9 (PBXN-112) (MIL-E-82919) Binder 2.95 fragmentation Chemring specification HMX 95 Shaped, blast and CXM-10 (PBXN-110) (MIL-DTL-82901A) IDP 5 fragment.
    [Show full text]
  • And Philip K. Dick Wept
    And Philip K. Dick Wept Steve Mizrach Many people have seen Philip K. Dick as a unique figure in science fiction. I would argue that some of the themes in his writing anticipated the particular science fiction movement that so many people now call "cyberpunk". Not surprisingly, he is often not included in the canons of this genre, but if his writing were closely examined, there are many reasons why he should have been. Clearly, Dick frequently dealt with the theme "what is human ?" by introducing characters that dealt with precisely that dilemma - the replicants of Do Androids Dream of Electric Sheep - by beginning to question the difference between man and machine. If in the cyberpunk novel humans are beginning to cross the man/machine boundary by replacing more and more of their "meat" with cybernetic implants, then often Dick's characters - like Commander Data on Star Trek - are frequently seeking to become more human. Philip K. Dick eventually answered this question (it was more easy for him than "what is real ?") by suggesting that the hallmark of humanity was kindness. Palmer Eldritch did not lose his humanity by his artificial implants ("stigmata") or even by becoming consumed by an intelligent Fungus from the Prox system. Instead, Philip K. Dick hints his humanity was lost when his compassion finally was also, which is why Leo Bulero triumphs over him. Philip K. Dick never denied the possibility that machines might know kindness, and Deckard himself comes to this conclusion in Do Androids Dream of Electric Sheep. All kinds of beings and races inhabit Philip K.
    [Show full text]
  • Jack Rabbit II Test Report (Final)
    ATEC Project No. 2015-DT-DPG-SNIMT-F9735 WDTC Document No. WDTC-SPD-FTR-001 FINAL TEST REPORT FOR JACK RABBIT (JR) II Damon Nicholson Norman Lian Allison Hedrick Special Programs Division Eric Schmidt Team SURVICE UNDER CONTRACT NO. W911S6-16-C-0003 Report Produced By West Desert Test Center US Army Dugway Proving Ground Dugway, UT 84022-5000 Report Produced For Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical Security Analysis Center (CSAC) Aberdeen Proving Ground – Edgewood Area, MD 21010-5424 AUGUST 2017 INTENTIONALLY BLANK Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to the Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED August 2017 Final Test Report (FTR) From August 2015 to September 2016 4. TITLE AND SUBTITLE 5a.
    [Show full text]