Project Contract No. 036851 ESONET European Seas Observatory

Total Page:16

File Type:pdf, Size:1020Kb

Project Contract No. 036851 ESONET European Seas Observatory Project contract no. 036851 ESONET European Seas Observatory Network Instrument: Network of Excellence (NoE) Thematic Priority: 1.1.6.3 – Climate Change and Ecosystems Sub Priority: III – Global Change and Ecosystems AOEM D9 - Final report on design of the acoustic network for acoustic tomography, underwater navigation and passive listening in the Fram Strait. Due date of deliverable: 30 November 2010 Actual submission date: 10 January 2011 Start date of project: July 2009 Duration: 17 months Organisation name of lead contractor for this deliverable: NERSC Lead authors for this deliverable: Hanne Sagen, and Stein Sandven, Revision [draft 1 date 10 January ] Revison [final date 23 February 2011] Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) x 2 TITLE: Final report on design of the acoustic REPORT IDENTIFICATION network for acoustic tomography, ESONET – AOEM – D9 underwater navigation and passive listening in the Fram Strait. CLIENT : CONTRACT SIXTH FRAMEWORK PROGRAMME EESSOONNEETT CCOONNTTTRRAACCCTTT GRANT AGREEMENT NO.: (036851) • AOEM Demo mission • AWAKE project • ACOBAR project CLIENT REFERENCE AVAILABILITY FFRRAAMMEEEWWOORRKK PPRROOGGRRAAMM 6 6 EESSOONNEETT Open report within the ESONET consortium. FFRRAAMMEEEWWOORRKK PPRROOGGRRAAMM 7 7 AACCOOBBAARR Polish-Norwegian Research Fund (AWAKE) Contributing investigators AUTHORISATION Nansen Environmental and Remote Sensing Center, Norway: Hanne Sagen, Stein Sandven Bergen, 23 February 2010 Alfred Wegners Institute, Germany: Eberhard Fahrbach, Agnieszka Beszczynska-Möller, Olaf Klatt Scripps Institution of Oceanography (SIO), USA: Peter Stein Sandven F. Worcester Woods Hole Oceanographic Institution, USA / Teledyne Webb Research Corporation, USA: Andrey Morozov Acknowledgment to the University of Bergen, the Norwegian Coast guard, and in particular to the crews onboard RV Håkon Mosby and KV Svalbard. AOEM D9 – Final report February 24, 2011 2 CONTENT Executive summary .................................................................................................................................................2 Introduction. ...........................................................................................................................................................3 Acoustic characteristics in the Arctic environment.................................................................................................3 Acoustic characteristics in the Fram Strait marginal ice Zone.................................................................................9 Acoustic navigation and tracking of Lagrangian systems .....................................................................................13 Accuracy of positioning and timing.......................................................................................................................21 Acoustic communication.......................................................................................................................................22 Passive acoustics ...................................................................................................................................................23 Acoustic technology.! ............................................................................................................................................24 Summary and Conclusion......................................................................................................................................26 References ............................................................................................................................................................28 Executive summary Acoustic infrastructure and measurements can contribute to fill the significant gap in ocean observations in the Arctic. An acoustic network can measure the acoustic travel times to derive heat content and mean circulation on a regional or basin scale in minutes or hours respectively, provide an underwater “GPS” system for navigation and timing for under-ice Lagrangian systems, and provide information about ice dynamics, earthquakes, and marine mammals through passive listening. Furthermore, the need for a low frequency acoustic navigation system for gliders and floats in the Arctic (Lee and Gobat, 2006) coincide to a large extent with the requirements for the acoustic thermometry system (Sagen et al. 2010, Dushaw et al. 2010). It is therefore cost effective to develop and implement a multi purpose system in the Arctic, which take care of both navigation and provide thermometry data. Furthermore, a cabled acoustic network in the Arctic would provide basin wide measurements in real time and year round. Providing continuous data availability in fixed critical locations the cabled network can observe episodic events such as eddies or the passage/influx of warm or cool water masses when they happen to permit researchers to deploy/redeploy/direct other assets such gliders, unmanned systems, ice-tethered or moored platforms to monitor, track, analyze and study the event. Technologically there is no problem to integrate acoustic sources and receivers into cabled networks. One of the acoustic sources in the Fram Strait acoustic network is recommended to install in the planned cabled network in the Fram Strait. Passive acoustic systems are easy to implement in cabled network, and we recommend including a cluster of minimum three vertical hydrophone arrays for advanced detection and localization and tracking of marine mammals in connection with a cabled network in the Fram Strait. To proceed to an operational acoustic network in the interior Arctic co-ordinated actions on the international level has to be taken across disciplines. The international ANCHOR (Acoustic Navigation and Communication for High-Latitude Ocean) group of experts was established to coordinate the interoperable acoustic infrastructure the high Arctic (Lee and Gobat, 2006). Implementation of cabled systems in the Arctic can only be developed through international collaboration. The Svalbard Integrated Observing System can offer opportunities to develop a system in the European sector of the Arctic. European efforts to establish an acoustic network infra structure covering the Arctic have to be coordinated with Russian, Canadian and US initiatives and interests. This report forms the baseline of preparation of a publication in referee journals. AOEM D9 – Final report February 24, 2011 3 Introduction. The Marginal Ice Zones and the interior Arctic Ocean under the ice is severely under sampled due to lack of regular observing systems. A future sustainable Arctic Ocean observing system will need to combine data from several sensors on ice tethered platforms or underwater moorings with satellite data and models using data assimilation (Lee et al, 2010; Sagen et al., 2010, Dushaw et al., 2010). During the International Polar Year (IPY) 2007-2009, new technologies for ocean observations such as acoustic thermometry/tomography, oceanographic sensors on ice tethered buoys, floats and gliders operating under the ice. Except for ice-tethered buoys, these technologies need an acoustic network to become operational in the Arctic. The relevant capabilities of an acoustic network is to • Measure the acoustic travel times, to derive heat content and mean circulation on a regional or basin scale in minutes or hours respectively, • Provide an underwater “GPS” system for navigation and timing for under-ice Lagrangian systems, • Provide information about ice dynamics, earthquakes, and marine mammals through passive listening. The objective of AOEM - WP 5 – Acoustic network – is to “define and design a cabled acoustic network for acoustic tomography, acoustic navigation of gliders and floats and for passive listening of human activities and marine mammals in the Fram Strait”. This report describes important features and characteristics of acoustic propagation in the Arctic influencing the design and capability of a future acoustic network, acoustic tomography in the Arctic, acoustic navigation in the Arctic, passive acoustic systems, technological state of the art, and future perspective of a cabled acoustic observatory covering the entire Arctic Ocean is defined. Acoustic characteristics in the Arctic environment Achievements in acoustic monitoring, communication and navigation depend on fundamental knowledge how acoustic signals, in particular low and mid frequency sound, propagate and behave in the Arctic environment. The ice cover and the oceanographic conditions in Arctic waters have strong impact on the propagation of acoustic signals. First of all, sound propagates slower in cold Arctic water (1460 m/s) than in warmer temperate water (1500 m/s). Second, a strong surface duct, with cold and fresh water, underneath the Arctic ice cover, characterizes the interior Arctic Ocean. This has a strong impact on how the acoustic signal propagates through the water masses. If the acoustic source is located inside the duct a large portion of the acoustic energy above the cut-off frequency is trapped inside the duct, see for example in figure 1. Acoustic energy at frequency below cut-off will not sense the surface duct. Furthermore,
Recommended publications
  • Ebb and Flow Tides and Life on Our Once and Future Planet
    This article has This been published in or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any permitted articleonly photocopy by is machine, of this reposting, means or collective or other redistirbution BOOK REVIEWS Ebb and Flow Oceanography Tides and Life on Our Once and Future Planet , V By Tom Koppel, The Dundurn Group, which is the loss of much of the fleet of olume 21, Number 2, a quarterly journal of journal The olume 21, Number 2, a quarterly 2007, 296 pages, ISBN 9781550027266, Alexander the Great due to a tidal bore), Paperback, $26.99 US coastal ecosystems, modern analysis, and extracting energy from tides. Chapter 1 REVIEWED BY JOHN L. LuiCK contains an account of the ancient tidal dockyards at Lothal, India—surely a can- Ebb and Flow: Tides and Life on Our didate for “Engineering Wonders of the Once and Future Planet is well titled. It Ancient World.” The most ambitious and O tells the story of tides, why they matter, original chapter is the final one, whose ceanography Society. Society. ceanography what causes them, and how they have three subheadings are Sea Level Change changed over time. The author, Tom Causes Intertidal Zones to Migrate; Giant all sorts of ammonia and phosphoric Koppel, is not an analyst or theoretician Ancient Tides and Earth’s Rotation; and salts.” Again, tides are shown to play a C of tides but a man of inquisitive mind The Origin, Evolution, and Future of Life crucial role in both the origin and the opyright 2008 by The 2008 by opyright and substantial beachcombing and on Earth.
    [Show full text]
  • The Evolution and Demise of North Brazil Current Rings*
    VOLUME 36 JOURNAL OF PHYSICAL OCEANOGRAPHY JULY 2006 The Evolution and Demise of North Brazil Current Rings* DAVID M. FRATANTONI Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts PHILIP L. RICHARDSON Department of Physical Oceanography, Woods Hole Oceeanographic Institution, and Associated Scientists at Woods Hole, Woods Hole, Massachusetts (Manuscript received 27 May 2004, in final form 26 October 2005) ABSTRACT Subsurface float and surface drifter observations illustrate the structure, evolution, and eventual demise of 10 North Brazil Current (NBC) rings as they approached and collided with the Lesser Antilles in the western tropical Atlantic Ocean. Upon encountering the shoaling topography east of the Lesser Antilles, most of the rings were deflected abruptly northward and several were observed to completely engulf the island of Barbados. The near-surface and subthermocline layers of two rings were observed to cleave or separate upon encountering shoaling bathymetry between Tobago and Barbados, with the resulting por- tions each retaining an independent and coherent ringlike vortical circulation. Surface drifters and shallow (250 m) subsurface floats that looped within NBC rings were more likely to enter the Caribbean through the passages of the Lesser Antilles than were deeper (500 or 900 m) floats, indicating that the regional bathymetry preferentially inhibits transport of intermediate-depth ring components. No evidence was found for the wholesale passage of rings through the island chain. 1. Introduction ration from the NBC, anticyclonic rings with azimuthal speeds approaching 100 cm sϪ1 move northwestward a. Background toward the Caribbean Sea on a course parallel to the The North Brazil Current (NBC) is an intense west- South American coastline (Johns et al.
    [Show full text]
  • Lagrangian Measurement of Subsurface Poleward Flow Between 38 Degrees N and 43 Degrees N Along the West Coast of the United States During Summer, 1993
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 1996-09-01 Lagrangian Measurement of subsurface poleward Flow between 38 degrees N and 43 degrees N along the West Coast of the United States during Summer, 1993 Collins, Curtis A. Geophysical Research Letters, Vol. 23, No. 18, pp. 2461-2464, September 1, 1996 http://hdl.handle.net/10945/45730 GEOPHYSICAL RESEARCH LETTERS, VOL. 23, NO. 18, PAGES 2461-2464, SEPTEMBER 1, 1996 Lagrangian Measurement of subsurface poleward Flow between 38øN and 43øN along the West Coast of the United States during Summer, 1993 CurtisA. Collins,Newell Garfield, Robert G. Paquette,and Everett Carter 1 Departmentof Oceanography,Naval Postgraduate School, Monterey, California Abstract. SubsurfaceLagrangian measurementsat about Undercurrentalong the coastsof California and Oregon. We 140 m showedthat the pathof the CaliforniaUndercurrent lay are using quasi-isobaric(float depth controlled primarily by next to the continentalslope betweenSan Francisco(37.80N) the pressureeffect on density)RAFOS floats (Rossby et al., and St. GeorgeReef (41.8øN) duringmid-summer 1993. The 1986) to make these measurements. A RAFOS float consists meanspeed along this 500 km pathwas 8 cms-1. Theflow at of a hydrophonemounted in a glasstube that is about2 meters this depth was not disturbedby upwelling centersat Point long. These hydrophonesreceive signals from three sound Reyesor CapeMendocino. Restfits also demonstratethe abil- sources that were moored 400 km offshore between 34.3øN and ity to acousticallytrack floats located well above the sound 40.4øN.The sound sources emit 15 W, 80 s signalsa•t 260 Hz channelaxis along the California coast.
    [Show full text]
  • Particle Pathways in the Gulf Stream
    Particle Pathways and P-T Shaw2 in the Gulf Stream Abstract East of Cape Hatteras, the Gulf Stream front separates two water masses: Sargasso Sea water to the south and the An experiment is under way to study the kinematics, dynamics, and cold slope waters to its north. The sharpness of the water mass path evolution of the Gulf Stream front between Cape Hatteras and boundary along the current's cyclonic edge and its coincidence 60°W. The Rafos float, which can track the true motion of water with the stream suggests that the front is impermeable to parcels along density surfaces which slope steeply across the Gulf Stream, has recently been developed for this study. These instruments cross-stream exchange of water. (It should be noted that this are launched in the center of the Gulf Stream every 5-15 days for a distinction of separate water masses loses validity below the 30-day mission. Each float provides a trajectory and a continuous midthermocline, where increasing uniformity of water prop- record of temperature and pressure along the trajectory. Our results erties suggests greater cross-stream exchange.) The Gulf so far show that: a) cross-stream motion has a significant vertical -1 Stream is not so isolated from the Sargasso Sea, however. Be- component (ranging to some 0.1 cm • s ) compared to vertical veloc- ities in midocean; b) floats systematically shoal (upwell) as they ap- tween the Florida Straits and Cape Hatteras the transport of proach anticyclonic meanders and deepen (downwell) as they ap- water more than doubles, with nearly all the new water coming proach cyclonic meanders; c) more than half of the floats launched from the Sargasso Sea.
    [Show full text]
  • Characteristics of Intermediate Water Flow in the Benguela Current As
    Deep-Sea Research II 50 (2003) 87–118 Characteristics of intermediate water flow in the Benguela current as measured with RAFOS floats P.L. Richardsona,*, S.L. Garzolib a Department of Physical Oceanography, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, 3 Water Street, P.O. Box 721, USA b Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Received 28 September 2001; accepted 26 July 2002 Abstract Seven floats (not launched in rings) crossed over the mid-Atlantic Ridge in the Benguela extension with a mean westward velocity of around 2 cm=s between 22S and 35S. Two Agulhas rings crossed over the mid-Atlantic Ridge with a mean velocity of 5:7cm=s toward 2851: This implies they translated at around 3:8cm=s through the background velocity field near 750 m: The boundaries of the Benguela Current extension were clearly defined from the observations. At 750 m the Benguela extension was bounded on the south by 35S and the north by an eastward current located between 18S and 21S. Other recent float measurements suggest that this eastward current originates near the Trindade Ridge close to the western boundary and extends across most of the South Atlantic, limiting the Benguela extension from flowing north of around 20S. The westward transport of the Benguela extension was estimated to be 15 Sv by integrating the mean westward velocities from 22S to 35S and multiplying by the 500 m estimated thickness of intermediate water. Roughly 1.5 Sv of this are transported by the B3 Agulhas rings that cross the mid-Atlantic Ridge each year (as observed with altimetry).
    [Show full text]
  • Spatial and Interannual Variability in Mesoscale Circulation in the Northern California Current System Julie E
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, C04015, doi:10.1029/2007JC004256, 2008 Click Here for Full Article Spatial and interannual variability in mesoscale circulation in the northern California Current System Julie E. Keister1 and P. Ted Strub1 Received 31 March 2007; revised 16 October 2007; accepted 5 December 2007; published 12 April 2008. [1] We used wavelet analyses of sea surface height (SSH) from >13 years of satellite altimeter data to characterize the variability in mesoscale circulation in the northern California Current (35°N–49°N) and explore the mechanisms of variability. We defined ‘‘mesoscale’’ circulation as features, such as eddies and filaments, which have 50- to 300-km length scales and 4- to 18-week temporal scales. Fluctuations in SSH caused by such features were reflected in wavelet analyses as power (energy). Spatial and interannual variation in mesoscale energy was high. Energy was highest at 38°N, decreasing to the north and south. Between 43°N and 48°N, energy was low. Zonally, mesoscale energy was highest between 125°W and 129°W at latitudes south of 44°N; very little power occurred in the deep ocean west of 130°W. Energy peaked during summer/fall in most years. The primary climate signals were suppressed energy during La Nin˜a and cold years and increased energy during El Nin˜o events. Energy was not strongly linked to upwelling winds, but did correspond to climate indices, indicating that basin-scale processes play a role in controlling mesoscale circulation. We hypothesize that climate affects mesoscale energy through changes in both potential and kinetic energy in the form of density gradients and coastal upwelling winds.
    [Show full text]
  • Deep Eddies in the Gulf of Mexico Observed with Floats
    NOVEMBER 2018 F U R E Y E T A L . 2703 Deep Eddies in the Gulf of Mexico Observed with Floats HEATHER FUREY AND AMY BOWER Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts PAULA PEREZ-BRUNIUS Department of Physical Oceanography, Ensenada Center for Scientific Research and Higher Education (CISESE), Ensenada, Mexico PETER HAMILTON North Carolina State University, Raleigh, North Carolina ROBERT LEBEN Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, Colorado (Manuscript received 20 November 2017, in final form 9 August 2018) ABSTRACT A new set of deep float trajectory data collected in the Gulf of Mexico from 2011 to 2015 at 1500- and 2500-m depths is analyzed to describe mesoscale processes, with particular attention paid to the western Gulf. Wavelet analysis is used to identify coherent eddies in the float trajectories, leading to a census of the basinwide coherent eddy population and statistics of the eddies’ kinematic properties. The eddy census reveals a new formation region for anticyclones off the Campeche Escarpment, located northwest of the Yucatan Peninsula. These eddies appear to form locally, with no apparent direct connection to the upper layer. Once formed, the eddies drift westward along the northern edge of the Sigsbee Abyssal Gyre, located in the southwestern Gulf of Mexico over the abyssal plain. The formation mechanism and upstream sources for the Campeche Escarpment eddies are explored: the observational data suggest that eddy formation may be linked to the collision of a Loop Current eddy with the western boundary of the Gulf. Specifically, the disintegration of a deep dipole traveling under the Loop Current eddy Kraken, caused by the interaction with the northwestern continental slope, may lead to the acceleration of the abyssal gyre and the boundary current in the Bay of Campeche region.
    [Show full text]
  • High Frequency Subsurface Lagrangian Measurements in the California Current with RAFOS Floats
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1995-09 High frequency subsurface Lagrangian measurements in the California Current with RAFOS floats Benson, Kirk R. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/35108 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS HIGH FREQUENCY SUBSURFACE LAGRANGIAN MEASUREMENTS IN THE CALIFORNIA CURRENT WITH RAFOS FLOATS by Kirk R. Benson September, 1995 Thesis Advisor: Newell Garfield Second Reader: Robert G. Paquette Approved for public release; distribution is unlimited. 19960402 122 DTic qoMjf&Y mürmam l DISCLAIMS! NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704- Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or an} other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. ___^__ 1. AGENCY USE ONLY (Leave REPORT DATE 3.REPORT TYPE AND DATES blank) September 1995 COVERED Master's Thesis 4. TITLE AND SUBTITLE High Frequency Subsurface Lagrangian FUNDING NUMBERS Measurements in the California Current with RAFOS Floats 6. AUTHOR(S) Kirk R. Benson 7.
    [Show full text]
  • Feasibility of Disposal of High-Level Radioactive Waste Into the Seabed
    FEASIBILITY OF DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTE INTO THE SEABED VOLUME5 DISPERSAL OF RADIONUCLIDES IN THE OCEANS : MODELS, DATA SETS AND REGIONAL DESCRIPTIONS IT 11.0. MABŒTTA AMD mfSDOIOlB NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORDER FORM SPECIAL 30 % DISCOUNT Use this order form to receive a 30 % discount when you purchase the entire set of the 8 volume series "Feasibility of Disposal of High-Level Radioactive Waste into the Seabed", published by the OECD Nuclear Energy Agency. Please enter my order for ....set(s) at the special 30 % discounted price of FF994 £116.00 US$219 DM427 The volumes may also be purchased individually copy(ies) Volume 1 - OVERVIEW OF RESEARCH AND CONCLUSIONS (66 88 09 1) ISBN 92-64-13164-7 FF90 US$20.00 111.00 DM39 copy(ies) Volume 2 - RADIOLOGICAL ASSESSMENT (66 88 10 1) ISBN 92-64-13165-5 FF220 US$48.50 tn .00 DM95 copy(ies) Volume 3 - GEOSCIENCE CHARACTERIZATION STUDIES (66 88 11 1) ISBN 92-64-13166-3 FF220 US$48.50 £26.00 DM95 .... copy(ies) Volume 4 - ENGINEERING (66 88 12 1) ISBN 92-64-13167-1 FF170 US$37.50 £20.00 DM74 .... copy(ies) Volume 5 - DISPERSAL OF RADIONUCLIDES IN THE OCEANS: MODELS, DATA SETS AND REGIONAL DESCRIPTIONS (66 88 13 1) ISBN 92-64-13168-X ' FF280 US$62 00 £33.00 DM121 .... copy(ies) Volume 6 - DEEP-SEA BIOLOGY, RADIOLOGICAL PROCESSES AND RADIOBIOLOGY (66 88 14 1) ISBN 92-64-13169-8 FF150 US$33.00 £18.00 DM65 copy(ies) Volume 7 - REVIEW OF LABORATORY INVESTIGATIONS OF RADIONUCLIDES MIGRATION THROUGH DEEP-SEA SEDIMENTS (66 88 15 1) ISBN 92-64-13170-1 FF190 US$42.00 £22.50 DM82 ...
    [Show full text]
  • International Newsletter
    International WOCE Newsletter Number 34 ISSN 1029-1725 March 1999 IN THIS ISSUE ❐ News from the IPO WOCE and CLIVAR W. John Gould 2 ❐ Neutrally Buoyant Floats Kinematics and Dynamics of the Deep Western Boundary Current Where it Crosses Under the Gulf Stream Amy S. Bower and Heather D. Hunt 3 Atlantic Deep Equatorial Jets and the Equatorial CFC Plume P. L. Richardson and D. M. Fratantoni 5 MARVOR Floats Reveal Intermediate Circulation in the Western Equatorial and Tropical South Atlantic (30°S to 5°N) Michel Ollitrault 7 Float Observations Showing the Equatorial Crossing of Antarctic Intermediate Water in the Western Pacific Walter Zenk, et al. 10 First Float Trajectories from KAPEX Olaf Boebel, et al. 14 Summary of Meddies Tracked by Floats P. L. Richardson, et al. 18 Lagrangian Observations in the Intergyre North-East Atlantic during the ARCANE and EUROFLOAT Projects: Early Results Bernard Le Cann, et al. 25 Profiling ALACE Float Salinity Measurements Sheldon Bacon, et al. 28 Kiel Sound Source Mooring K1/351 Recovered after 1 5 /2 Years Deployment in the South Atlantic Thomas J. Müller and Yoshimine Ikeda 30 ❐ Other Science Repeat ADCP Survey of the Western Pacific Surface Current by a Commercial Ship A. Kaneko, et al. 31 A Model for Predicting the Barotropic Component of Ocean Tidal Currents F. Lyard, et al. 36 Dianeutral Circulation in the Indian Ocean Yuzhu You 39 ❐ Miscellaneous North Indian Ocean Eddies from TOPEX Altimeter Available on request… 17 Announcement: Second International Conference on Reanalyses 35 Second Announcement: WOCE North Atlantic Workshop, Kiel, Germany, 23–27 August 1999 42 Meeting Timetable 1999 43 Published by the WOCE International Project Office at Southampton Oceanography Centre, UK WOCE and CLIVAR W.
    [Show full text]
  • Intelligent and Secure Underwater Acoustic Communication Networks
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2018 Intelligent and Secure Underwater Acoustic Communication Networks Chaofeng Wang Michigan Technological University, [email protected] Copyright 2018 Chaofeng Wang Recommended Citation Wang, Chaofeng, "Intelligent and Secure Underwater Acoustic Communication Networks", Open Access Dissertation, Michigan Technological University, 2018. https://doi.org/10.37099/mtu.dc.etdr/694 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Artificial Intelligence and Robotics Commons, Signal Processing Commons, and the Systems and Communications Commons INTELLIGENT AND SECURE UNDERWATER ACOUSTIC COMMUNICATION NETWORKS By Chaofeng Wang ADISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Electrical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2018 2018 Chaofeng Wang This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Electrical Engineering. Department of Electrical and Computer Engineering Dissertation Advisor: Dr. Zhaohui Wang Committee Member: Dr. Daniel R. Fuhrmann Committee Member: Dr. Min Song Committee Member: Dr. Ossama Abdelkhalik Department Chair: Dr. Daniel R. Fuhrmann Dedication IdedicatethisdissertationtoXiangjunWang,myfather;Ying Huang, my mother; Qiao Xiao, my wife; and Huisha Wang, my elder sister. Contents List of Figures ................................. xiii List
    [Show full text]
  • Understanding and Predicting the Gulf of Mexico Loop Current Critical Gaps and Recommendations
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/24823 SHARE Understanding and Predicting the Gulf of Mexico Loop Current Critical Gaps and Recommendations DETAILS 110 pages | 7 x 10 | PAPERBACK ISBN 978-0-309-46220-4 | DOI 10.17226/24823 CONTRIBUTORS GET THIS BOOK Committee on Advancing Understanding of Gulf of Mexico Loop Current Dynamics; Gulf Research Program; National Academies of Sciences, Engineering, and Medicine FIND RELATED TITLES Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Understanding and Predicting the Gulf of Mexico Loop Current Critical Gaps and Recommendations Understanding and Predicting the Gulf of Mexico Loop Current: Critical Gaps and Recommendations Committee on Advancing Understanding of Gulf of Mexico Loop Current Dynamics Gulf Research Program A Consensus Study Report of PREPUBLICATION COPY – Uncorrected Proofs Copyright National Academy of Sciences. All rights reserved. Understanding and Predicting the Gulf of Mexico Loop Current Critical Gaps and Recommendations THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This activity was supported by the Gulf Research Program Fund. Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of any organization or agency that provided support for the project.
    [Show full text]