The Universe

Total Page:16

File Type:pdf, Size:1020Kb

The Universe THE UNIVERSE A work of Pietro Addis and Claudio Ndreka INDEX Big bang, the big bang cronology The dark matter Internal solar system External solar system The stars The life of the stars The formations and the dead The solar system planets The sun THE UNIVERSE The physical Universe is defined as all of space and time (collectively referred to as spacetime) and their contents. Electromagnetic planets, moons,stars, Intergalatic space radiation galaxies Physical laws Conservation law The Big Bang theory is the prevailing cosmological description of the development of the Universe 13.799±0.021 billion years ago. Subatomics particles to form the atoms. BIG BANG: THE UNIVERSE INFLATION THE BACKGROUND RADIATION atoms the nuclei (mostly electrons hydrogen) After about 379,000 years, the electrons and nuclei combined into atoms (mostly hydrogen); hence the radiation decoupled from matter and continued through space largely unimpeded. This relic radiation is known as the cosmic microwave background radiation THE DARK MATTER the total mass-energy of the universe contains: 4.9% ordinary matter and energy 26.8% dark matter 68.3% of an unknown form of energy known as dark energy 100 80 60 unknown form of energy 40 dark matter 20 ordinary matter 0 ordinary ordinary dark matter dark energy matter and matter energy THE SOLAR SYSTEM The Solar System is the gravitationally bound system comprising the Sun and the objects that orbit it, either directly or indirectly. Of the objects that orbit the Sun directly, the largest eight are the planets THE EVOLUTION OF THE SYSTEM THE COMPOSITION OF THE SYSTEM • The principal component of the Solar System are: • the Sun, contains 99.86% of the system's mass. • the giant planest, account for 99% of the remaining mass, with Jupiter and Saturn together comprising more than 90%. • the four terrestrial planets, the dwarf planets,moons, asteroids,and comets comprise less than 0.002% of the total mass. THE GRAPHIC % mass planets sun gas planets terrestrial planets PICTURE THE TYPE OF PLANETS TERRESTRIAL PLANETS All terrestrial planets in the Solar System have the same basic type of structure, such as a central metallic core, mostly iron, with a surrounding silicate mantle. Terrestrial planets can have canyons, craters, mountains, volcanoes, and other surface structures, depending on the presence of water and tectonic activity. Terrestrial planets have secondary atmosphere,generated through volcanism or comet impacts. super-Earths are defined by their masses, and the term does not imply temperatures, compositions, orbital properties, habitability, or environments. While sources generally agree on an upper bound of 10 Earth masses. THE TYPE OF TERRSTRIAL PLANETS Silicate planet : The standard type of terrestrial planet seen in the Solar System, made primarily of silicon-based rocky mantle with a metallic (iron) core. • Carbon planets (or "diamond planet") • A theoretical class of planets, composed of a metal core surrounded by primarily carbon-based minerals. They may be considered a type of terrestrial planet if the metal content dominates. The Solar System contains no carbon planets, but does have carbonaceus asteroids. Iron planets: A theoretical type of terrestrial planet that consists almost entirely of iron and therefore has a greater density and a smaller radius than other terrestrial planets. Mercury has a metallic core equal to 60–70% of its planetary mass. Iron planets are thought to form in the high-temperature regions close to a star, and if the protoplanetary disk is rich in iron. Coroless planets A theoretical type of terrestrial planet that consists of silicate rock but has no metallic core, is the opposite of an iron planet. Although the Solar System contains no coreless planets, chondrite asteroids and meteorites are common in the Solar System. Coreless planets are thought to form farther from the star where volatile oxidizing material is more common. GAS PLANETS A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are sometimes known as failed stars because they contain the same basic elements as a star. Gas giants can, be divided into five distinct classes according to their modeled physical atmospheric properties ammonia water cloudless alkali-metal silicate clouds (I) clouds (II) (III) clouds (IV) clouds (V) CLASSIFICATION • Cold gas giants • A cold hydrogen-rich gas giant more massive than Jupiter but less than about 500 M⊕ (1.6 MJ) will only be slightly larger in volume than Jupiter. For masses above 500 M⊕, gravity will cause the planet to shrink. • Gas dwarf . A gas dwarf could be defined as a planet with a rocky core that has accumulated a thick envelope of hydrogen, helium and other volatiles, having as result a total radius between 1.7 and 3.9 Earth-radii. THE STARS A star is type of astronomical object consisting of a luminous spheroid of plasma held together by its own gravity. For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core THE LIFETIME OF THE STARS nomenclature Mass (sun=1) Evolution collapse Very low mass stars. 0.5 Red giants Helium white dwarfs Low mass stars 0.5 and 1.8–2.5 Red giants White dwarfplanetary As the Sun. nebula or novae Intermediate-mass 1.8–2.5 and 5–10 Red giants Supernovae and stars. neutron stars Massive stars . 7–10 Red giants Supernovae and (N x 10 x sun) black holes THE SUN The Sun is the star at the center of the Solar system. It is a nearly perfect sphere of hot plasma with internal convective motion that generates a magnetic field via a dynamo process . Its diameter is about 1.39 million kilometers. Consist in the 99.86% of the total mass of the Solar System. the Sun's mass consists: hydrogen (~73%); helium (~25%), oxygen, carbon , neon, and iron.(~2%) THE STARS: SUN STRUCTURE THE SUN: THE CORE The core of the Sun extends from the center to about 20–25% of the solar radius. It has a density of up to 150 g/cm (and a temperature of close to 15.7 million kelvins (K). The energy has been produced by nuclear fusion in the core region through a series of steps called the p-p chain (this process converts hydrogen into helium). THE SUN: THE TACHOCLINE The radiative zone and the convective zone are separated by a transition layer, the tachocline. This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear between the two—a condition where successive horizontal layers slide past one another.Presently, it is hypothesized that a magnetic dynamo within this layer generates the Sun's magnetic field THE SUN: THE CONVECTION ZONE The Sun's convection zone extends from 0.7 solar radii (500,000 km) to near the surface. In this layer, the solar plasma is not dense enough or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. The thermal columns of the convection zone form an imprint on the surface of the Sun giving it a granular appearance called the solar granulation. THE SUN: THE PHOTOSPHERE The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes opaque to visible light. Above the photosphere visible sunlight is free to propagate into space, and almost all of its energy escapes the Sun entirely. The change in opacity is due to the decreasing amount of H − ions , which absorb visible light easily. Conversely, the visible light we see is produced as electrons react with hydrogen atoms to produce H− ions. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening. THE SUN: THE ATMOSPHERE It is composed of four distinct parts: the chromosphere, the transition region, the corona and the heliosphere. The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100 K. This part of the Sun is cool enough to allow the existence of simple molecules such as carbon monoxide and water, which can be detected via their absorption spectra Above the chromosphere, in a thin (about 200 km) transition region, the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to 1,000,000 K. it forms a kind of nimbus around chromospheric features such as spicules and filaments, and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but is readily observable from space by instruments sensitive to the extreme ulteaviolet portion of the spectrum OUR OPINION We think the universe is just obscure for us and so we belive that the humans should discover all possible things in it. According to us it is important to study the universe because it is our home and so we must know it also because sometimes it could be dangerous and we have to know how to face it. SITOGRAPHY https://www.nasa.gov/feature/goddard/2016/understanding-the-magnetic-sun https://www.researchgate.net/figure/Illustration-of-the-thermonuclear-fusion-reaction-Two-nuclei-deuterium-and- tritium_fig3_279601354 https://www.universetoday.com/40631/parts-of-the-sun/ https://www.focus.it/scienza/spazio/le-dimensioni-in-scala-del-sistema-solare-e-dei-suoi-pianeti https://www.google.it/imgres?imgurl=https%3A%2F%2Fblogs.egu.eu%2Fdivisions%2Fps%2Ffiles%2F2016%2F06%2F640px-
Recommended publications
  • Greenhouse Gases
    ClimateClimate onon terrestrialterrestrial planetsplanets H. Rauer Zentrum für Astronomie und Astrophysik, TU Berlin und Institut für Planetenforschung, DLR, Berlin-Adlershof Terrestrial Planets with Atmospheres in our Solar System Venus Earth Mars T = 735 K T = 288 K T = 216 K p = 90 bar p = 1 bar p = 0.007 bar Atmosphere: Atmosphere: Atmosphere: 96% CO2 77% N2 95% CO2 3,5 % N2 21 % O2 2,7 % N2 1 % H2O WhatWhatare aret thehe relevant relevant processesprocesses forfora a stablestablec climate?limate? AA stablestable climate climate needsneeds a a stablestable atmosphere!atmosphere! Three ways to gain a (secondary) atmosphere Ways to loose an atmosphere Could also be a gain Die Fluchtgeschwindigkeit Ep = -GmM/R 2 Ekl= 1/2mv Für Ek<Ep wird das Molekül zurückkehren Für Ek≥Ep wird das Molekül die Atmosphäre verlassen Die kleinst möglichste Geschwindigkeit, die für das Verlassen notwendig ist hat das Molekül für den Fall: Ek+Ep=0 2 1/2mve -GMm/R=0 ve=√(2GM/R) Thermischer Verlust (Jeans Escape) Einzelne Moleküle können von der obersten Schicht der Atmosphäre entweichen, wenn sie genügend Energie besitzen Die Moleküle folgen einer Maxwell-Boltzmann Verteilung: Mittlere quadratische Geschwindigkeit: v=√(2kT/m) Large escape velocities for the giants and ice planets Mars escape velocity is ~½ ve(Earth) - gas giants are massive enough to keep H-He-atmospheres - terrestrial planets atmospheres can have CO2, N2, O2, CH4, H2O, …, but little H and He Additional loss processes are important: Planets with magnetosphere are generally better protected from
    [Show full text]
  • The Earth and Its Atmosphere (Introduction) What, Why, and How???
    The Earth and Its Atmosphere (Introduction) What, Why, and How??? What is an Why do planets atmosphere? have atmospheres? What determines the yearly weather cycle? Why is the weather What is the different every year? structure of the Earth’s atmosphere? How was the Earth’s What is the atmosphere formed? Why do we study composition the atmosphere? of the Earth’s atmosphere? What processes determine How different are the daily variations in the the atmospheres of atmosphere? Are they other planets? predictable? What is an atmosphere? • A gaseous envelope surrounding a planet (satellite, comet…). • It is very, very thin compared to the size of the planet Why do planets have atmospheres? Gravity !!! PressurePressure !!!!!! Origin of the Atmosphere (How is an atmosphere formed?) • The early atmosphere of the Earth was very different from the atmosphere today! • Stage I (Primordial Atmosphere): ♦ Acquired by gravitational attraction of volatile gases from the proto planetary nebula of the Sun ♦ Consisted mostly of H2 and He ♦ Small and warm planets (Earth, Mars, Venus, Mercury) lost this atmosphere because the gravity is not strong enough to keep the light hot gases from escaping the planet. ♦ The composition of the atmosphere of the giant planets (Jupiter, Saturn, Uranus and Neptune) today is very close to their primordial atmosphere (why?). The Secondary Atmosphere • Stage II ♦ Outgassing of the terrestrial type planets during the early stages of their geological history. Volcanoes, geysers, cracks, … ♦ Most abundant gasses: H2O, CO2, SO2, H2S, CO ♦ Recall: radon mitigation ♦ On the Earth H2O condensed, formed clouds and rained out to form oceans. ♦ On the Earth most of the abundant gasses then dissolved in the ocean, leaving N2 as the dominant gas.
    [Show full text]
  • A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra
    A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Diamond-Lowe, Hannah Zoe. 2020. A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365825 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra A DISSERTATION PRESENTED BY HANNAH ZOE DIAMOND-LOWE TO THE DEPARTMENT OF ASTRONOMY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF ASTRONOMY HARVARD UNIVERSITY CAMBRIDGE,MASSACHUSETTS MAY 2020 c 2020 HANNAH ZOE DIAMOND-LOWE.ALL RIGHTS RESERVED. ii Dissertation Advisor: David Charbonneau Hannah Zoe Diamond-Lowe A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra ABSTRACT Decades of ground-based, space-based, and in some cases in situ measurements of the Solar System terrestrial planets Mercury, Venus, Earth, and Mars have provided in- depth insight into their atmospheres, yet we know almost nothing about the atmospheres of terrestrial planets orbiting other stars.
    [Show full text]
  • Echo Exoplanet Characterisation Observatory
    Exp Astron (2012) 34:311–353 DOI 10.1007/s10686-012-9303-4 ORIGINAL ARTICLE EChO Exoplanet characterisation observatory G. Tinetti · J. P. Beaulieu · T. Henning · M. Meyer · G. Micela · I. Ribas · D. Stam · M. Swain · O. Krause · M. Ollivier · E. Pace · B. Swinyard · A. Aylward · R. van Boekel · A. Coradini · T. Encrenaz · I. Snellen · M. R. Zapatero-Osorio · J. Bouwman · J. Y-K. Cho · V. Coudé du Foresto · T. Guillot · M. Lopez-Morales · I. Mueller-Wodarg · E. Palle · F. Selsis · A. Sozzetti · P. A. R. Ade · N. Achilleos · A. Adriani · C. B. Agnor · C. Afonso · C. Allende Prieto · G. Bakos · R. J. Barber · M. Barlow · V. Batista · P. Bernath · B. Bézard · P. Bordé · L. R. Brown · A. Cassan · C. Cavarroc · A. Ciaravella · C. Cockell · A. Coustenis · C. Danielski · L. Decin · R. De Kok · O. Demangeon · P. Deroo · P. Doel · P. Drossart · L. N. Fletcher · M. Focardi · F. Forget · S. Fossey · P. Fouqué · J. Frith · M. Galand · P. Gaulme · J. I. González Hernández · O. Grasset · D. Grassi · J. L. Grenfell · M. J. Griffin · C. A. Griffith · U. Grözinger · M. Guedel · P. Guio · O. Hainaut · R. Hargreaves · P. H. Hauschildt · K. Heng · D. Heyrovsky · R. Hueso · P. Irwin · L. Kaltenegger · P. Kervella · D. Kipping · T. T. Koskinen · G. Kovács · A. La Barbera · H. Lammer · E. Lellouch · G. Leto · M. A. Lopez Valverde · M. Lopez-Puertas · C. Lovis · A. Maggio · J. P. Maillard · J. Maldonado Prado · J. B. Marquette · F. J. Martin-Torres · P. Maxted · S. Miller · S. Molinari · D. Montes · A. Moro-Martin · J. I. Moses · O. Mousis · N. Nguyen Tuong · R.
    [Show full text]
  • In-System'' Fission-Events: an Insight Into Puzzles of Exoplanets and Stars?
    universe Review “In-System” Fission-Events: An Insight into Puzzles of Exoplanets and Stars? Elizabeth P. Tito 1,* and Vadim I. Pavlov 2,* 1 Scientific Advisory Group, Pasadena, CA 91125, USA 2 Faculté des Sciences et Technologies, Université de Lille, F-59000 Lille, France * Correspondence: [email protected] (E.P.T.); [email protected] (V.I.P.) Abstract: In expansion of our recent proposal that the solar system’s evolution occurred in two stages—during the first stage, the gaseous giants formed (via disk instability), and, during the second stage (caused by an encounter with a particular stellar-object leading to “in-system” fission- driven nucleogenesis), the terrestrial planets formed (via accretion)—we emphasize here that the mechanism of formation of such stellar-objects is generally universal and therefore encounters of such objects with stellar-systems may have occurred elsewhere across galaxies. If so, their aftereffects may perhaps be observed as puzzling features in the spectra of individual stars (such as idiosyncratic chemical enrichments) and/or in the structures of exoplanetary systems (such as unusually high planet densities or short orbital periods). This paper reviews and reinterprets astronomical data within the “fission-events framework”. Classification of stellar systems as “pristine” or “impacted” is offered. Keywords: exoplanets; stellar chemical compositions; nuclear fission; origin and evolution Citation: Tito, E.P.; Pavlov, V.I. “In-System” Fission-Events: An 1. Introduction Insight into Puzzles of Exoplanets As facilities and techniques for astronomical observations and analyses continue to and Stars?. Universe 2021, 7, 118. expand and gain in resolution power, their results provide increasingly detailed information https://doi.org/10.3390/universe about stellar systems, in particular, about the chemical compositions of stellar atmospheres 7050118 and structures of exoplanets.
    [Show full text]
  • Mineralogy of Super-Earth Planets
    This article was originally published in Treatise on Geophysics, Second Edition, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Duffy T., Madhusudhan N. and Lee K.K.M Mineralogy of Super-Earth Planets. In: Gerald Schubert (editor-in-chief) Treatise on Geophysics, 2nd edition, Vol 2. Oxford: Elsevier; 2015. p. 149-178. Author's personal copy 2.07 Mineralogy of Super-Earth Planets T Duffy, Princeton University, Princeton, NJ, USA N Madhusudhan, University of Cambridge, Cambridge, UK KKM Lee, Yale University, New Haven, CT, USA ã 2015 Elsevier B.V. All rights reserved. 2.07.1 Introduction 149 2.07.2 Overview of Super-Earths 150 2.07.2.1 What Is a Super-Earth? 150 2.07.2.2 Observations of Super-Earths 151 2.07.2.3 Interior Structure and Mass–Radius Relationships 151 2.07.2.4 Selected Super-Earths 154 2.07.2.5 Super-Earth Atmospheres 155 2.07.3 Theoretical
    [Show full text]
  • Terrestrial Planets
    Terrestrial Planets First ever ‘whole Earth’ picture from deep space, taken by Bill Anders on Apollo 8 Apollo 8 crew, Bill Anders centre: The Earth is just a planet courtesy Nasa 1- 4 from the Sun Image courtesy: http://commons.wikimedia.org/wiki/Image:Terrestrial_planet_size_comparisons_edit.jpg Mercury, Venus, Earth and Mars are four astonishingly different planets Mercury and Venus have only been seen in any detail within the last 30 years Mercury in sight Courtesy NASA (Mariner 10) Mercury is visible only soon after the setting sun or shortly before dawn the Mariner 10 probe (1974/75) is the source of most information about Mercury – Messenger, launched 2004, first flypast in 2008 and orbit Mercury in 2011. ESA’s BepiColombo, to be launched in 2013 Mercury Mercury is like the Earth inside and the Moon outside Mercury has had a cooling and bombardment history similar to the moon It appears as cratered lava with scarps Its rocks are Earth-like Mariner 10 image Messenger images ↑ Double-ringed crater – a Mercury feature courtesy: http://messenger.jhuapl.edu/gallery/sciencePhotos/pics/S trom02.jpg ← Courtesy: http://messenger.jhuapl.edu/gal lery/sciencePhotos/pics/EN010 8828161M.jpg Messenger image Courtesy: http://messenger.jhuapl.edu/gallery/sciencePhotos/pics/Prockter06.jpg Mercury Close-up Mercury’s topography was formed under stronger gravity than on the Moon The Caloris basin is an impact crater ~1400 km across, beneath which is thought to be a dense mass 2 Mercury’s rotation period is exactly /3 of its orbital period
    [Show full text]
  • What Makes a Planet Habitable? 91
    DOSSIER: What Makes a Planet Habitable? 91 View metadata, citationWhat and similar papers Makes at core.ac.uk a Planet Habitable?brought to you by CORE provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura Manuel Güdel Received 03.07.2014 - Approved 05.09.2014 Abstract / Resumen / Résumé among the countless exoplanets, which ones may be con- ducive to life, and what signs should we look for in our Before life can form and develop on a planetary surface, many condi- search for life in the universe? tions must be met that are of astrophysical nature. Radiation and par- ticles from the central star, the planetary magnetic field, the accreted or outgassed atmosphere of a young planet and several further factors These questions relate to at least two major challenges. must act together in a balanced way before life has a chance to thrive. We need to understand our biochemical origins in the dis- We will describe these crucial preconditions for habitability and discuss tant past of the Earth, and in a larger context, we need the latest state of knowledge. to identify the main conditions required to form life on a planet in the first place. While there is hope to eventually Antes de que la vida pueda surgir+ y desarrollarse en una superficie pla- netaria, son necesarias muchas condiciones de naturaleza astrofísica. answer the first question by a deeper understanding of the La radiación y las partículas provenientes de la estrella central, el cam- specific form of life here on Earth, the second challenge is po magnético del planeta, la acumulación o disipación de la atmósfera much harder to address as it boils down to defining what en un planeta joven, y varios otros factores deben actuar conjuntamente life in general is.
    [Show full text]
  • The Transition from Primary to Secondary Atmospheres on Rocky Exoplanets
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1855.pdf THE TRANSITION FROM PRIMARY TO SECONDARY ATMOSPHERES ON ROCKY EXOPLANETS. M. N. Barnett1 and E. S. Kite1, 1The University of Chicago, Department of Geophysical Sciences. ([email protected]) Introduction: How massive are rocky-exoplanet hydrodynamic escape is illustrated below in Figure 1. atmospheres? For how long do they persist? These ques- tions are compelling in part because an atmosphere is necessary for surface life. Magma oceans on rocky ex- oplanets are significant reservoirs of volatiles, and could potentially assist a planet in maintaining its secondary atmosphere [1,2]. We are modeling the atmospheric evolution of R ≲ 2 REarth exoplanets by combining a magma ocean source model with hydrodynamic escape. This work will go be- yond [2] as we consider generalized volatile outgassing, various starting planetary models (varying distance from the star, and the mass of initial “primary” atmos- phere accreted from the nebula), atmospheric condi- tions, and magma ocean conditions, as well as incorpo- rating solid rock outgassing after magma ocean solidifi- cation. Through this, we aim to predict the mass and lon- Figure 1: Key processes of our magma ocean and hydrody- gevity of secondary atmospheres for various sized rocky namic escape model are shown above. The green circles exoplanets around different stellar type stars and a range marked with a V indicate volatiles that are outgassed from the of orbital periods. We also aim to identify which planet solidifying magma and accumulate in the atmosphere. These volatiles are lost from the exoplanet’s atmosphere through hy- sizes, orbital separations, and stellar host star types are drodynamic escape aided by outflow of hydrogen, which is de- most conducive to maintaining a planet’s secondary at- rived from the nebula.
    [Show full text]
  • From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets Permalink https://escholarship.org/uc/item/9jq3136f Author Perez-Becker, Daniel Alonso Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets By Daniel Alonso Perez-Becker A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Eugene Chiang, Co-chair Professor Christopher McKee, Co-chair Professor Eliot Quataert Professor Geoffrey Marcy Fall 2013 From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets Copyright 2013 by Daniel Alonso Perez-Becker 1 Abstract From Dust to Dust: Protoplanetary Disk Accretion, Hot Jupiter Climates, and the Evaporation of Rocky Planets by Daniel Alonso Perez-Becker Doctor of Philosophy in Physics University of California, Berkeley Professor Eugene Chiang, Co-chair Professor Christopher McKee, Co-chair This dissertation is composed of three independent projects in astrophysics concerning phenomena that are concurrent with the birth, life, and death of planets. In Chapters 1 & 2, we study surface layer accretion in protoplanetary disks driven stellar X-ray and far-ultraviolet (FUV) radiation. In Chapter 3, we identify the dynamical mechanisms that control atmospheric heat redistribution on hot Jupiters. Finally, in Chapter 4, we characterize the death of low-mass, short-period rocky planets by their evaporation into a dusty wind.
    [Show full text]
  • Arxiv:1711.02098V2 [Astro-Ph.EP] 13 Jan 2018
    Draft version January 16, 2018 Typeset using LATEX twocolumn style in AASTeX61 SIMULATED JWST/NIRISS TRANSIT SPECTROSCOPY OF ANTICIPATED TESS PLANETS COMPARED TO SELECT DISCOVERIES FROM SPACE-BASED AND GROUND-BASED SURVEYS Dana R. Louie,1 Drake Deming,1, 2 Loic Albert,3 L. G. Bouma,4 Jacob Bean,5, 2 and Mercedes Lopez-Morales6, 2 1Department of Astronomy, University of Maryland, College Park, MD 20742, USA 2TESS Atmospheric Characterization Working Group 3Institut de recherche sur les exoplanetes (iREx), Universite de Montreal, Montreal, Quebec, Canada 4Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA 5Department of Astronomy and Astrophysics, University of Chicago, IL 60637, USA 6Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA Submitted to PASP ABSTRACT The Transiting Exoplanet Survey Satellite (TESS) will embark in 2018 on a 2-year wide-field survey mission, discov- ering over a thousand terrestrial, super-Earth and sub-Neptune-sized exoplanets (Rpl ≤ 4R⊕) potentially suitable for follow-up observations using the James Webb Space Telescope (JWST). This work aims to understand the suitability of anticipated TESS planet discoveries for atmospheric characterization by JWST's Near InfraRed Imager and Slitless Spectrograph (NIRISS) by employing a simulation tool to estimate the signal-to-noise (S/N) achievable in transmission spectroscopy. We applied this tool to Monte Carlo predictions of the TESS expected planet yield and then compared the S/N for anticipated TESS discoveries to our estimates of S/N for 18 known exoplanets. We analyzed the sensitivity of our results to planetary composition, cloud cover, and presence of an observational noise floor.
    [Show full text]
  • Part 1: the 1.7 and 3.9 Earth Radii Rule
    Hi this is Steve Nerlich from Cheap Astronomy www.cheapastro.com and this is What are exoplanets made of? Part 1: The 1.7 and 3.9 earth Radii rule. As of August 2016, the current count of confirmed exoplanets is up around 3,400 in 2,617 systems – with 590 of those systems confirmed to be multiplanet systems. And the latest thinking is that if you want to understand what exoplanets are made of you need to appreciate the physical limits of planet-hood, which are defined by the boundaries of 1.7 and 3.9 Earth radii . Consider that the make-up of an exoplanet is largely determined by the elemental make up of its protoplanetary disk. While most material in the Universe is hydrogen and helium – these are both tenuous gases. In order to generate enough gravity to hang on to them, you need a lot of mass to start with. So, if you’re Earth, or anything up to 1.7 times the radius of Earth – you’ve got no hope of hanging onto more than a few traces of elemental hydrogen and helium. Indeed, any exoplanet that’s less than 1.7 Earth radii has to be primarily composed of non-volatiles – that is, things that don’t evaporate or blow away easily – to have any chance of gravitationally holding together. A non-volatile exoplanet might be made of rock – which for our Solar System is a primarily silicon/oxygen based mineral matrix, but as we’ll hear, small sub-1.7 Earth radii exoplanets could be made of a whole range of other non-volatile materials.
    [Show full text]