Exoplanets in our Backyard 2020 (LPI Contrib. No. 2195) 3054.pdf THE SOLAR SYSTEM AS AN EXOPLANET GUIDE: FINDINGS, SURPRISES AND CAVEATS FROM THE FIRST PHASE OF HUMAN AND ROBOTIC EXPLORATION. James W. Head1, 1Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI USA (
[email protected]). Introduction: Sixty years of space exploration has is unlikely (Earth, Venus, Mercury). Tectonic systems provided unprecedented knowledge of, and perspec- and heat-loss mechanisms: The terrestrial planets, tives on, the origin and evolution of our Solar System. including “Earth-like” Venus, do not have multiple This initial phase of human and robotic exploration lithospheric plates and plate tectonics, instead being has both confirmed and rejected previous theories, characterized by single global lithospheric plates revealed completely new information, and unveiled (“one-plate planets”) and losing heat by conduction sobering new insights into the reality of the multiple (Fig. 3). The role of size in planetary evolution: Small paths of planetary formation and evolution, all of planets (Mercury, Mars) and the Moon lost heat effi- which can be applied to the exploration of exoplanets ciently due to the high surface area to volume ratio, and other planetary systems. We are in the early stag- stabilizing lithospheres that thickened with time. In- es of an unprecedented period of mutual, bilateral ternal structure and mantle convection: The first-order education and learning. internal structure of the terrestrial planets is known Opportunities for the Solar System Community: but the details of mantle composition, convection Other planetary systems offer untold numbers of indi- scale-lengths, and history, are not uniformly known or vidual examples of planets, systems of planets, and understood.