45. Amery Group Red Beds in Prydz Bay, Antarctica1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PROGETTO ANTARTIDE Rapporto Sulla Campagna Antartica Estate Australe 1996
PROGRAMMA NAZIONALE DI RICERCHE IN ANTARTIDE Rapporto sulla Campagna Antartica Estate Australe 1996 - 97 Dodicesima Spedizione PROGETTO ANTARTIDE ANT 97/02 PROGRAMMA NAZIONALE DI RICERCHE IN ANTARTIDE Rapporto sulla Campagna Antartica Estate Australe 1996 - 97 Dodicesima Spedizione A cura di J. Mϋller, T. Pugliatti, M.C. Ramorino, C.A. Ricci PROGETTO ANTARTIDE ENEA - Progetto Antartide Via Anguillarese,301 c.p.2400,00100 Roma A.D. Tel.: 06-30484816,Fax:06-30484893,E-mail:[email protected] I N D I C E Premessa SETTORE 1 - EVOLUZIONE GEOLOGICA DEL CONTINENTE ANTARTICO E DELL'OCEANO MERIDIONALE Area Tematica 1a Evoluzione Geologica del Continente Antartico Progetto 1a.1 Evoluzione del cratone est-antartico e del margine paleo-pacifico del Gondwana.3 Progetto 1a.2 Evoluzione mesozoica e cenozoica del Mare di Ross ed aree adiacenti..............11 Progetto 1a.3 Magmatismo Cenozoico del margine occidentale antartico..................................17 Progetto 1a.4 Cartografia geologica, geomorfologica e geofisica ...............................................18 Area Tematica 1b-c Margini della Placca Antartica e Bacini Periantartici Progetto 1b-c.1 Strutture crostali ed evoluzione cenozoica della Penisola Antartica e del margine coniugato cileno ......................................................................................25 Progetto 1b-c.2 Indagini geofisiche sul sistema deposizionale glaciale al margine pacifico della Penisola Antartica.........................................................................................42 -
Amanda Bay, Ingrid Christensen Coast, Princess Elizabeth Land, East Antarctica
MEASURE 3 - ANNEX Management Plan for Antarctic Specially Protected Area No 169 AMANDA BAY, INGRID CHRISTENSEN COAST, PRINCESS ELIZABETH LAND, EAST ANTARCTICA Introduction Amanda Bay is located on the Ingrid Christensen Coast of Princess Elizabeth Land, East Antarctica at 69°15' S, 76°49’59.9" E. (Map A). The Antarctic Specially Protected Area (ASPA) is designated to protect the breeding colony of several thousand pairs of emperor penguins annually resident in the south-west corner of Amanda Bay, while providing for continued collection of valuable long- term research and monitoring data and comparative studies with colonies elsewhere in East Antarctica. Only two other emperor penguin colonies along the extensive East Antarctic coastline are protected within ASPAs (ASPA 120, Point Géologie Archipelago and ASPA 167 Haswell Island). Amanda Bay is more easily accessed, from vessels or by vehicle from research stations in the Larsemann Hills and Vestfold Hills, than many other emperor penguin colonies in East Antarctica. This accessibility is advantageous for research purposes, but also creates the potential for human disturbance of the birds. The Antarctic coastline in the vicinity of Amanda Bay was first sighted and named the Ingrid Christensen Coast by Captain Mikkelsen in command of the Norwegian ship Thorshavn on 20 February 1935. Oblique aerial photographs of the coastline were taken by the Lars Christensen expedition in 1937 and by the US Operation Highjump in 1947 for reconnaissance purposes. In the 1954/55 summer, the Australian National Antarctic Research Expedition (ANARE) on the Kista Dan explored the waters of Prydz Bay, and the first recorded landing in the area was made by a sledging party led by Dr. -
S41467-018-05625-3.Pdf
ARTICLE DOI: 10.1038/s41467-018-05625-3 OPEN Holocene reconfiguration and readvance of the East Antarctic Ice Sheet Sarah L. Greenwood 1, Lauren M. Simkins2,3, Anna Ruth W. Halberstadt 2,4, Lindsay O. Prothro2 & John B. Anderson2 How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding 1234567890():,; line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet’s stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet. Here we present geomorphological and acoustic stratigraphic evidence of ice sheet reorganisation in the South Victoria Land (SVL) sector of the western Ross Sea. The opening of a grounding line embayment unzipped ice sheet sub-sectors, enabled an ice flow direction change and triggered enhanced flow from SVL outlet glaciers. These relatively small catchments behaved independently of regional grounding line retreat, instead driving an ice sheet readvance that delivered a significant volume of ice to the ocean and was sustained for centuries. 1 Department of Geological Sciences, Stockholm University, Stockholm 10691, Sweden. 2 Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005, USA. 3 Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA. 4 Department -
Geology of the Northern Convoy Range, Victoria Land, Antarctica
Journal of Maps ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjom20 Geology of the northern Convoy Range, Victoria Land, Antarctica Giovanni Capponi , Chiara Montomoli , Stefano Casale & Matteo Simonetti To cite this article: Giovanni Capponi , Chiara Montomoli , Stefano Casale & Matteo Simonetti (2020) Geology of the northern Convoy Range, Victoria Land, Antarctica, Journal of Maps, 16:2, 702-709, DOI: 10.1080/17445647.2020.1822218 To link to this article: https://doi.org/10.1080/17445647.2020.1822218 © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group View supplementary material Published online: 08 Oct 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjom20 JOURNAL OF MAPS 2020, VOL. 16, NO. 2, 702–709 https://doi.org/10.1080/17445647.2020.1822218 Science Geology of the northern Convoy Range, Victoria Land, Antarctica Giovanni Capponi a, Chiara Montomoli b, Stefano Casalec and Matteo Simonettib aDISTAV, University of Genoa, Genoa, Italy; bDipartimento di Scienze della Terra, University of Turin, Turin, Italy; cDipartimento di Scienze della Terra, University of Pisa, Pisa, Italy ABSTRACT ARTICLE HISTORY In this paper, we supply a geological map of the area between 76°–76°30′S and 159°–163°E, that Received 14 November 2019 was the only missing portion to complete an entire coverage of Victoria Land, filling the gap Revised 17 March 2020 between the GIGAMAP program (to the north) and the maps by the New Zealand Antarctic Accepted 7 September 2020 program (to the south). -
Flow of the Amery Ice Shelf and Its Tributary Glaciers
18th Australasian Fluid Mechanics Conference Launceston, Australia 3-7 December 2012 Flow of the Amery Ice Shelf and its Tributary Glaciers M. L. Pittard1 2 , J. L. Roberts3 2, R. C. Warner3 2, B.K Galton-Fenzi2, C.S. Watson4 and R. Coleman1 1Institute for Marine and Antarctic Studies University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia 2Antarctic Climate & Ecosystems Cooperative Research Centre University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia 3Department of Sustainability, Environment, Water, Population and Communities, Australian Antarctic Division Hobart, Tasmania, Australia 4 School of Geography and Environmental Studies University of Tasmania, Private Bag 76, Hobart, Tasmania 7001, Australia Abstract thickness across the grounding zone to provide information on ice discharge. Strain rates and vorticity can be used to investi- The Amery Ice Shelf (AIS) is a major ice shelf that drains ap- gate the dynamics of the flow. The longitudinal strain rate gives proximately 16% of the East Antarctic Ice Sheet [1]. Here we insight into the way the velocity changes along the flow and use a sequence of visible spectrum Landsat7 satellite images may reflect influences of features beneath the ice. The shear to track persistent surface features over the southern portion of component of the strain rate highlights the localisation of shear the AIS and its three major tributary glaciers. A spatially in- stresses at the margin of the flow. Vorticity displays a combina- complete velocity field is calculated by comparing the distances tion of rotation in flow direction and strong shear deformations. features have moved between image pairs. Key features of the flow field including the vorticity and strain rate distributions are The AIS is one of the largest ice shelves bordering the East discussed. -
History of Benthic Colonisation Beneath the Amery Ice Shelf, East Antarctica
Vol. 344: 29–37, 2007 MARINE ECOLOGY PROGRESS SERIES Published August 23 doi: 10.3354/meps06966 Mar Ecol Prog Ser History of benthic colonisation beneath the Amery Ice Shelf, East Antarctica Alexandra L. Post1,*, Mark A. Hemer1, Philip E. O’Brien1, Donna Roberts2, Mike Craven3 1Marine and Coastal Environment Group, Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia 2Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, Tasmania 7001, Australia 3Australian Antarctic Division and Antarctic Climate and Ecosystems Co-operative Research Centre, Private Bag 80, Hobart, Tasmania 7001, Australia ABSTRACT: This study presents compelling evidence for a diverse and abundant seabed community that developed over the course of the Holocene beneath the Amery Ice Shelf, East Antarctica. Fossil analysis of a 47 cm long sediment core revealed a rich modern fauna dominated by filter feeders (sponges and bryozoans). The down-core assemblage indicated a succession in the colonisation of this site. The lower portion of the core (before ~9600 yr BP) was completely devoid of preserved fauna. The first colonisers (at ~10 200 yr BP) were mobile benthic organisms. Their occurrence was matched by the first appearance of planktonic taxa, indicating a retreat of the ice shelf following the last glaciation to within sufficient distance to advect planktonic particles via bottom currents. The benthic infauna and filter feeders emerged during the peak abundance of the planktonic organisms, indicating their dependence on the food supply sourced from the open shelf waters of Prydz Bay. Understanding patterns of species succession in this environment has important implications for determining the potential significance of future ice shelf collapse. -
Ocean-Driven Thinning Enhances Iceberg Calving and Retreat of Antarctic Ice Shelves
Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves Yan Liua,b, John C. Moorea,b,c,d,1, Xiao Chenga,b,1, Rupert M. Gladstonee,f, Jeremy N. Bassisg, Hongxing Liuh, Jiahong Weni, and Fengming Huia,b aState Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; bJoint Center for Global Change Studies, Beijing 100875, China; cArctic Centre, University of Lapland, 96100 Rovaniemi, Finland; dDepartment of Earth Sciences, Uppsala University, Uppsala 75236, Sweden; eAntarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia; fVersuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Eidgenössische Technische Hochschule Zürich, 8093 Zurich, Switzerland; gDepartment of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143; hDepartment of Geography, McMicken College of Arts & Sciences, University of Cincinnati, OH 45221-0131; and iDepartment of Geography, Shanghai Normal University, Shanghai 200234, China Edited by Anny Cazenave, Centre National d’Etudes Spatiales, Toulouse, France, and approved February 10, 2015 (received for review August 7, 2014) Iceberg calving from all Antarctic ice shelves has never been defined as the calving flux necessary to maintain a steady-state directly measured, despite playing a crucial role in ice sheet mass calving front for a given set of ice thicknesses and velocities along balance. Rapid changes to iceberg calving naturally arise from the the ice front gate (2, 3). Estimating the mass balance of ice sporadic detachment of large tabular bergs but can also be shelves out of steady state, however, requires additional in- triggered by climate forcing. -
Detection of Iceberg Calving Events in Prydz Bay, East Antarctica During 2013 – 2015 Using LISS-IV/IRS-P6 Satellite Data
CZECH POLAR REPORTS 8 (2): 275-285, 2018 Detection of iceberg calving events in Prydz Bay, East Antarctica during 2013 – 2015 using LISS-IV/IRS-P6 satellite data Shridhar Digambar Jawak1,2*, Meghna Sengupta3,4, Alvarinho Joaozinho Luis2 1Svalbard Integrated Arctic Earth Observing System (SIOS), SIOS Knowledge Centre, University Centre in Svalbard (UNIS), P.O. Box 156, N-9171, Longyearbyen, Svalbard, Norway 2Polar Remote Sensing Section, Polar Sciences Group, Earth System Science Organiza- tion (ESSO), National Centre for Antarctic and Ocean Research (NCAOR), Ministry of Earth Sciences (MoES), Govt. of India, Headland Sada, Goa 403804, India 3Department of Civil Engineering, SRM University, Chennai, Tamil Nadu–603203, India 4Department of Environment, Faculty of Science, University of Auckland, New Zealand Abstract This study discusses the calving event took place in Prydz Bay of East Antarctica during the epoch of 2013–2015 using high resolution multispectral data from Indian Linear Imaging Self Scanning Sensor (LISS-IV) aboard IRS-P6 satellite. The present study has been conducted on Larsemann Hills, Prydz Bay, East Antarctica. The two LISS-IV images (5.8 m spatial resolution) acquired specifically 384 days apart (December 31, 2013 and January 19, 2015) were utilized to study the significant changes that have occurred in icebergs during this short epoch. A total of 369 common icebergs present in both images were identified for analysing the changes in their dimensions because of surface melting. All of these icebergs were found to have lost mass because of surface melting and ocean forced base melting; therefore, they have reduced in dimension depicted by 12.51% lapse in terms of surface area. -
(FIPS) for Land-Fast Sea Ice at Prydz Bay, East Antarctica: an Operational Service for CHINARE
Annals of Glaciology Fast Ice Prediction System (FIPS) for land-fast sea ice at Prydz Bay, East Antarctica: an operational service for CHINARE Jiechen Zhao1,2, Bin Cheng3 , Timo Vihma3, Petra Heil4, Fengming Hui5,6, Article Qi Shu7,2 , Lin Zhang1 and Qinghua Yang8,6 Cite this article: Zhao J, Cheng B, Vihma T, Heil P, Hui F, Shu Q, Zhang L, Yang Q (2020). 1Key Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Centre (NMEFC), Fast Ice Prediction System (FIPS) for land-fast Ministry of Natural Resources, Beijing 100081, China; 2Laboratory for Regional Oceanography and Numerical sea ice at Prydz Bay, East Antarctica: an Modelling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; 3Finnish operational service for CHINARE. Annals of Meteorological Institute (FMI), Helsinki 00101, Finland; 4Australia Antarctic Division & Australian Antarctic Glaciology 61(83), 271–283. https://doi.org/ Programmer Partnership, Private Bag 80, Hobart, TAS 7001, Australia; 5School of Geospatial Engineering and 10.1017/aog.2020.46 Science, Sun Yat-sen University, Zhuhai 519082, China; 6Southern Marine Science and Engineering Guangdong 7 Received: 26 November 2019 Laboratory (Zhuhai), Zhuhai 519082, China; First Institute of Oceanography, Ministry of Natural Resources, 8 Revised: 1 June 2020 Qingdao 266061, China and School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Accepted: 2 June 2020 Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China First published online: 9 July 2020 Key words: Abstract Antarctica; land-fast sea ice; operational A Fast Ice Prediction System (FIPS) was constructed and is the first regional land-fast sea-ice service; Prydz Bay; snow and ice thickness; forecasting system for the Antarctic. -
Draft Comprehensive Environmental Evaluation of New Indian Research Base at Larsemann Hills, Antarctica
Draft Comprehensive Environmental Evaluation of New Indian Research Base at Larsemann Hills, Antarctica 4. ALTERNATIVES TO PROPOSED ACTIVITY A review of the Indian Antarctic Programme was undertaken by an Expert Committee (Rao, 1996), which recommended broadening of India’s scientific data base in Antarctica for having a regional spread of the data rather than a localized one. A Task Force was, therefore, constituted to go into the details and recommend a suitable site after considering all the pros and cons. This Task Force undertook reconnaissance traverses all along the eastern coast of Antarctica from India Bay at 11° E. longitude to 78°E longitude in Prydz Bay, to examine all possible alternatives suiting the scientific and logistic requirements set for the future station. 4.1 Alternative Locations at Regional Level Three alternatives were suggested in the Review Report, mentioned above, based on the scrutiny of published literature and feedback from different Indian and international expeditions to Antarctica. These were: a) Antarctic Peninsula, b) Filchner Ice shelf c) Amery Ice shelf – Prydz Bay area 4.1.1 Antarctic Peninsula Antarctic Peninsula is the most crowded place in Antarctica, so far as the stations of different nations and the visits of the tourists to the icy continent are concerned. The area is also very sensitive to the global warming as has been demonstrated by the international studies, which have shown that the Peninsula has warmed by 2° C since 1950 (Cook et al., 2005). 4.1.2 Filchner Ice Shelf The Filchner Ice Shelf poses serious logistic constraints in maintaining a research station as the sea ice condition in this area are very tough. -
Properties of a Marine Ice Layer Under the Amery Ice Shelf, East Antarctica
Journal of Glaciology, Vol. 55, No. 192, 2009 717 Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica Mike CRAVEN,1 Ian ALLISON,1 Helen Amanda FRICKER,2 Roland WARNER1 1Australian Antarctic Division and Antarctic Climate and Ecosystems CRC, Hobart, Tasmania 7001, Australia E-mail: [email protected] 2Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California–San Diego, La Jolla, California 92093-0225, USA ABSTRACT. The Amery Ice Shelf, East Antarctica, undergoes high basal melt rates near the southern limit of its grounding line where 80% of the ice melts within 240 km of becoming afloat. A considerable portion of this later refreezes downstream as marine ice. This produces a marine ice layer up to 200 m thick in the northwest sector of the ice shelf concentrated in a pair of longitudinal bands that extend some 200 km all the way to the calving front. We drilled through the eastern marine ice band at two locations 70 km apart on the same flowline. We determine an average accretion rate of marine ice of 1.1 Æ 0.2 m a–1, at a reference density of 920 kg m–3 between borehole sites, and infer a similar average rate of 1.3 Æ 0.2 m a–1 upstream. The deeper marine ice was permeable enough that a hydraulic connection was made whilst the drill was still 70–100 m above the ice-shelf base. Below this marine close-off depth, borehole video imagery showed permeable ice with water-filled cavities and individual ice platelets fused together, while the upper marine ice was impermeable with small brine-cell inclusions. -
Dynamics of Dalk Glacier in East Antarctica Derived from Multisource Satellite Observations Since 2000
remote sensing Article Dynamics of Dalk Glacier in East Antarctica Derived from Multisource Satellite Observations Since 2000 Yiming Chen 1,2 , Chunxia Zhou 1,2,*, Songtao Ai 1,2 , Qi Liang 1,2, Lei Zheng 1,2, Ruixi Liu 1,2 and Haobo Lei 1,2 1 Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China; [email protected] (Y.C.); [email protected] (S.A.); [email protected] (Q.L.); [email protected] (L.Z.); [email protected] (R.L.); [email protected] (H.L.) 2 Key Laboratory of Polar Surveying and Mapping, Ministry of Natural Resources of the People’s Republic of China, Wuhan 430079, China * Correspondence: [email protected] Received: 26 April 2020; Accepted: 1 June 2020; Published: 3 June 2020 Abstract: Monitoring variability in outlet glaciers can improve the understanding of feedbacks associated with calving, ocean thermal forcing, and climate change. In this study, we present a remote-sensing investigation of Dalk Glacier in East Antarctica to analyze its dynamic changes. Terminus positions and surface ice velocities were estimated from Landsat and Sentinel-1 data, and the high-precision Worldview digital elevation model (DEM) was generated to determine the location of the potential ice rumple. We detected the cyclic behavior of glacier terminus changes and similar periodic increases in surface velocity since 2000. The terminus retreated in 2006, 2009, 2010, and 2016 and advanced in other years. The surface velocity of Dalk Glacier has a 5-year cycle with interannual speed-ups in 2007, 2012, and 2017.