Status and Very First Commissioning of the Astrid2 Synchrotron Light Source S.P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Undulator Radiation & FEL
U.S. Particle Accelerator School January 25 – February 19, 2021 VUV and X-ray Free-Electron Lasers Introduction, Electron Motions in an Undulator, Undulator Radiation & FEL Dinh C. Nguyen,1 Petr Anisimov,2 Nicole Neveu1 1 SLAC National Accelerator Laboratory 2 Los Alamos National Laboratory LA-UR-21-20610 Monday (Jan 25) Lecture Outline Time • VUV and X-ray FELs in the World 10:00 – 10:30 • Properties of electromagnetic radiation 10:30 – 10:50 • Break 10:50 – 11:00 • Electron motions in an undulator 11:00 – 11:20 • Undulator radiation 11:20 – 11:40 • Introduction to FELs 11:40 – Noon 2 VUV and X-ray FELs in the World 3 World Map of VUV and X-ray FELs FLASH FERMI European XFEL Italy Germany SPARC LCLS Italy SwissFEL POLFEL LCLS-II & LCLS-II-HE Switzerland Poland USA PAL XFEL S. Korea SACLA Japan SDUV-SXFEL SHINE China Blue=VUV to Soft X-ray 4 Purple=Soft to Hard X-ray Sub-systems of an RF Linac Driven X-ray FEL An RF-linac driven XFEL has the following sub-systems in order to produce Low-emittance • PHOTOINJECTOR to generate low-emittance electrons in ps bunches electron beams • RF LINAC to accelerate the electron beams to GeV energy • BUNCH COMPRESSORS to shorten the bunches and produce kA current High peak current • LASER HEATER to reduce the microbunching instabilities • BEAM OPTICS to transport the electron beams to the undulators • UNDULATORS to generate and amplify the radiation in a single pass Single-pass, high- gain X-ray FEL • DIAGNOSTICS to characterize the electron & FEL beams Laser Photoinjector heater L2 BC2 L1 L3 Optics -
X-Ray and Optical Diagnostic Beamlines at the Australian Synchrotron Storage Ring
Proceedings of EPAC 2006, Edinburgh, Scotland THPLS002 X-RAY AND OPTICAL DIAGNOSTIC BEAMLINES AT THE AUSTRALIAN SYNCHROTRON STORAGE RING M. J. Boland, A. C. Walsh, G. S. LeBlanc, Y.-R. E. Tan, R. Dowd and M. J. Spencer, Australian Synchrotron, Clayton, Victoria 3168, Australia. Abstract powerful diagnostic tool which will deliver data to the Two diagnostic beamlines have been designed and machine group as well as information to the machine constructed for the Australian Synchrotron Storage Ring status display for the users. [1]. One diagnostic beamline is a simple x-ray pinhole General Layout camera system, with a BESSY II style pinhole array [2], designed to measure the beam divergence, size and Fig. 1. shows the schematic layout of the XDB with a stability. The second diagnostic beamline uses an optical sketch of the expected beam profile measurement. Both chicane to extract the visible light from the photon beam diagnostic beamlines have dipole source points. The and transports it to various instruments. The end-station electron beam parameters for the source points are shown of the optical diagnostic beamline is equipped with a Table 1. for storage ring with the nominal lattice of zero streak camera, a fast ICCD camera, a CCD camera and a dispersion in the straights and assuming 1% coupling. Fill Pattern Monitor to analyse and optimise the electron Table 1: Electron beam parameters at the source points. beam using the visible synchrotron light. Parameter ODB XDB β x (m) 0.386 0.386 MOTIVATION β y (m) 32.507 32.464 The Storage Ring diagnostic beamlines were desiged to σx (μm) 99 98 serve two essential functions: σx′ (μrad) 240 241 1. -
FEL Physics Summary
VUV and X-Ray Free Electron Lasers: The Technology and Its Scientific Promise William Barletta and Carlo Rizzuto Sections I & III – Motivations & FEL Physics List of symbols fine structure constant dimensionless vector potential aw horizontal Twiss x bunching parameter b mean resolution error of BPMs BPMres position error of BPMs BPMpos remanent field BR undulator magnetic field strength Bw horizontal Twiss x speed of light c mean phase error in undulator penetration depth δp horizontal dispersion Dx derivative of Dx D´x FEL beam diameter on optic Dw energy chirp from CSR E/E beam emittance electron charge e beam energy E peak electric field in gun Eo normalized emittance n energy in the FEL pulse EPulse longitudinal space charge force Fsc angle of incidence j i 1 2 relativistic factor (E/ me c ) optical function in transport H magnetic coercivity HC Alfven current at =1 IAo beam current Ib BBU threshold current IBBU undulator parameter K mean undulator strength Krms undulator spatial frequency kw gain length LG th m harmonic wavelength m plasma wavelength P radiation wavelength r undulator wavelength w root of gain equation harmonic number m electron mass me number of electrons Ne electron density ne number of undulator periods Nu radiation power P input laser power Plaser noise power Pn pole roll angle error BNP (or Pierce) parameter quantum FEL parameter ´ atom density A quality factor Q dipole quality factor Qdipole FEL energy constraint ratio r1 FEL emittance constraint ratio r2 FEL diffraction constraint ratio r3 classical radius of electron re bend angle in undulator bend angle in achromat 2 th phase of i electron i kick relative to each pole error j mean energy spread of electrons e bunch length z relativistic plasma frequency p distance along undulator z mean longitudinal velocity <vz> impedance of free space Zo Rayleigh range ZR 3 I. -
Chapter 3: Front Ends and Insertion Devices
Advanced Photon Source Upgrade Project Final Design Report May 2019 Chapter 3: Front Ends and Insertion Devices Document Number : APSU-2.01-RPT-003 ICMS Content ID : APSU_2032071 Advanced Photon Source Upgrade Project 3–ii • Table of Contents Table of Contents 3 Front Ends and Insertion Devices 1 3-1 Introduction . 1 3-2 Front Ends . 2 3-2.1 High Heat Load Front End . 6 3-2.2 Canted Undulator Front End . 11 3-2.3 Bending Magnet Front End . 16 3-3 Insertion Devices . 20 3-3.1 Storage Ring Requirements . 22 3-3.2 Overview of Insertion Device Straight Sections . 23 3-3.3 Permanent Magnet Undulators . 24 3-3.4 Superconducting Undulators . 30 3-3.5 Insertion Device Vacuum Chamber . 33 3-4 Bending Magnet Sources . 36 References 39 Advanced Photon Source Upgrade Project List of Figures • 3–iii List of Figures Figure 3.1: Overview of ID and BM front ends in relation to the storage ring components. 2 Figure 3.2: Layout of High Heat Load Front End for APS-U. 6 Figure 3.3: Model of the GRID XBPM for the HHL front end. 8 Figure 3.4: Layout of Canted Undulator Front End for APS-U. 11 Figure 3.5: Model of the GRID XBPM for the CU front end. 13 Figure 3.6: Horizontal fan of radiation from different dipoles for bending magnet beamlines. 16 Figure 3.7: Layout of Original APS Bending Magnet Front End in current APS. 17 Figure 3.8: Layout of modified APSU Bending Magnet Front End to be installed in APSU. -
Celebrating 40 Years of Beam at Triumf
BEAMTIME News from Canada’s national laboratory for particle and nuclear physics spriNg 2015 | Volume 12 issue 1 Celebrating inside this issue 40 Years of Beam 04 ForTY Years oN 06 FirsT 40 Years at TriumF oF TriumF sCieNCe 08 Ariel e-liNaC 10 ariel sCieNCe program 12 NeWs & aNNouNCemeNTs 14 ProFile Michael Craddock 15 CommerCializaTioN spring Editor: marcello pavan Production: serengeti Design group Beamtime is available online at: www.triumf.ca/home/for-media/ publicationsgallery/newsletter Inquiries or comments to: [email protected] © 2015 TRIUMF Beamtime All Rights Reserved TriumF 4004 Wesbrook Mall Vancouver, BC V6T 2A3 Canada +1 604 222 1047 telephone +1 604 222 1074 fax www.triumf.ca To obtain Beamtime by PDF, sign up at http://lists.triumf.ca/mailman/list- info/triumf-publications TRIUMF is funded by a contribution through the National Research Council of Canada. The province of British Columbia provides capital funding for the construction of buildings for the TRIUMF Laboratory. Director’s VoiCe 3 Jonathan Bagger | Director, TRIUMF Forty Years of reliability Just imagine the excitement and sense of achievement that must have swept through TRIUMF forty years ago, when TRIUMF’s rich the first beam was extracted from the main cyclotron! “history serves An extraordinary feat of engineering, TRIUMF’s 500 MeV cyclotron remains at the as a foundation heart of the laboratory. A machine so robust that it continues to drive cutting-edge on which to build science some four decades later, even being recognized as an Engineering Milestone by the IEEE. new capabilities And that first beam really was just the beginning. -
National Synchrotron Light Source II (NSLS-II) Project
Department of Energy Project Management Workshop 2016 “Enhancing Project Management” National Synchrotron Light Source II (NSLS‐II) Project Frank J. Crescenzo, Federal Project Director Office of Science ‐ Brookhaven Site Office NSLS‐II Project • Synchrotron Radiation Facility (SRF) • 10,000 times brighter than NSLS with ultra‐low emittance and exceptional beam stability • Delivers world leading capability to image single atoms • Total Project Cost (TPC) = $912M, TEC= $791.2M; OPC=$120.8M • $150M ARRA accelerated funding profile (did not increase TPC) • LINAC, 3.0 GeV Booster, 500mA Storage Ring 791.5m circumference • 7 Insertion Device Beamlines (ultimate capability for over 60 beamlines) • Various buildings totaling 628,000 gross square feet • Completed 6 months early, added $68M scope from CD‐2 baseline Injector & Storage Ring LINAC BOOSTER STORAGE RING INSERTION DEVICE Beamlines & Endstations CSX Beamline XPD Endstation CHX Endstation HXN Endstation NSLS‐II Floor Plan L‐ LINAC B‐ Booster RF‐ RF facility 1‐5 – Pendant # Why Was This Project Successful? • Basic Energy Science’s (project sponsor) commitment to project success • Laboratory commitment to project success • Excellent Integrated Project Team • Project team’s technical capabilities 6 Thanks! Steven Dierker Laboratory Project Director Aesook Byon Laboratory Deputy Project Director Robert Caradonna Deputy Federal Project Director Phillip Kraushaar Program Manager, SC‐BES 7 Back‐up Slides 8 National Synchrotron Light Source II (NSLS‐II) Project Storage Ring Lab Office Building (LOB) Satellite Beamline Endstation Building Frank Crescenzo –FPD CD‐4 Achieved March 19, 2015 Brookhaven Site Office (BHSO) Schedule Funding Profile 11 Project Costs WBS WBS Name At CD‐2 Added Scope Final Contingency Utilization Contingency was used primarily for project support which was underestimated and augmented 1.01 PROJECT MANAGEMENT $52,506 $4,743 $69,752 to execute scope additions. -
Insertion Devices Lecture 4 Undulator Magnet Designs
Insertion Devices Lecture 4 Undulator Magnet Designs Jim Clarke ASTeC Daresbury Laboratory Hybrid Insertion Devices – Inclusion of Iron Simple hybrid example Top Array e- Bottom Array 2 Lines of Magnetic Flux Including a non-linear material like iron means that simple analytical formulae can no longer be derived – linear superposition no longer works! Accurate predictions for particular designs can only be made using special magnetostatic software in either 2D (fast) or 3D (slow) e- 3 Field Levels for Hybrid and PPM Insertion Devices Assuming Br = 1.1T and gap of 20 mm When g/u is small the impact of the iron is very significant 4 Introduction We now have an understanding for how we can use Permanent Magnets to create the sinusoidal fields required by Insertion Devices Next we will look at creating more complex field shapes, such as those required for variable polarisation Later we will look at other technical issues such as the challenge of in-vacuum undulators, dealing with the large magnetic forces involved, correcting field errors, and also how and why we might cool undulators to ~150K Finally, electromagnetic alternatives will be considered 5 Helical (or Elliptical) Undulators for Variable Polarisation We need to include a finite horizontal field of the same period so the electron takes an elliptical path when it is viewed head on We want two orthogonal fields of equal period but of different amplitude and phase 3 independent variables Three independent variables are required for the arbitrary selection of any polarisation state -
Persis S. Drell Stanford Helmut Dosch DESY
Persis S. Drell Helmut Dosch Stanford DESY Outline • Introduction • BESAC Contributions & Impact – John Hemminger’s Leadership – Most recent recommendations on future BES light source facilities • Americas Perspective – Science Results & Drivers – New Rings & FELs • Asia & Europe Perspective – Science Results & Drivers – New Rings & FELs • Concluding Remarks 2 BESAC Contributions & Impact to BES Facilities • Dr. John Hemminger: 13 years as BESAC Chairperson – Key BESAC & SC Strategic Planning Reports (See Below) – New Facilities: SNS, 5 NSRCs, LCLS, NSLS-II, LCLS-II, APS-U, … 20000 Near Doubling of BES User Community 8.8K → 16.3K since 2004! 15000 10000 5000 0 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 NSLS II NSLS SSRL ALS APS LCLS HFBR IPNS SNS HFIR LS Users: 7.7K → 11K Lujan EMC NCEM ShaRE CNMS MF CINT CNM CFN Basic Energy Sciences Report of the BESAC Report Facilities Prioritization BESAC Subcommittee on on Future X-ray Light Facility Upgrades Co-Chaired by : Sources John C. Hemminger, Chair Univ ersity of California, Irv ine & William Barletta Approv ed by the Approv ed by the Basic Energy MIT Basic Energy Sciences Sciences Adv isory Committee Adv isory Committee on February 26-27, 2013 on July 25, 2013 June 9, 2016 3 Motivation: Desire to Probe Nature at Atomic Length (Å) & Time (fs) Scales Seeing the Invisible in Real Materials Where are the Atoms? Compositional Newly discovered heterogeneity in a structure of a LiNi1/3Co1/3Mn1/3O2 hydrogen-stuffed, battery hundreds quartz-like form of of hours after ice charging -
Vacuum Ultraviolet Photoabsorption Spectroscopy of Space-Related Ices: 1 Kev Electron Irradiation of Nitrogen- and Oxygen-Rich Ices S
A&A 641, A154 (2020) Astronomy https://doi.org/10.1051/0004-6361/201935477 & © ESO 2020 Astrophysics Vacuum ultraviolet photoabsorption spectroscopy of space-related ices: 1 keV electron irradiation of nitrogen- and oxygen-rich ices S. Ioppolo1, Z. Kanuchovᡠ2, R. L. James3, A. Dawes3, N. C. Jones4, S. V. Hoffmann4, N. J. Mason5, and G. Strazzulla6 1 School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK e-mail: [email protected] 2 Astronomical Institute of Slovak Academy of Sciences, 059 60 Tatranská Lomnica, Slovakia 3 School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK 4 ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark 5 School of Physical Sciences, University of Kent, Park Wood Rd, Canterbury CT2 7NH, UK 6 INAF – Osservatorio Astrofisico di Catania, Via Santa Sofia 78, Catania 95123, Italy Received 15 March 2019 / Accepted 24 July 2020 ABSTRACT Context. Molecular oxygen, nitrogen, and ozone have been detected on some satellites of Saturn and Jupiter, as well as on comets. They are also expected to be present in ice-grain mantles within star-forming regions. The continuous energetic processing of icy objects in the Solar System induces physical and chemical changes within the ice. Laboratory experiments that simulate energetic processing (ions, photons, and electrons) of ices are therefore essential for interpreting and directing future astronomical observations. Aims. We provide vacuum ultraviolet (VUV) photoabsorption spectroscopic data of energetically processed nitrogen- and oxygen-rich ices that will help to identify absorption bands and/or spectral slopes observed on icy objects in the Solar System and on ice-grain mantles of the interstellar medium. -
A Review of High-Gain Free-Electron Laser Theory
atoms Review A Review of High-Gain Free-Electron Laser Theory Nicola Piovella 1,* and Luca Volpe 2 1 Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy 2 Centro de Laseres Pulsados (CLPU), Parque Cientifico, 37185 Salamanca, Spain; [email protected] * Correspondence: [email protected] Abstract: High-gain free-electron lasers, conceived in the 1980s, are nowadays the only bright sources of coherent X-ray radiation available. In this article, we review the theory developed by R. Bonifacio and coworkers, who have been some of the first scientists envisaging its operation as a single-pass amplifier starting from incoherent undulator radiation, in the so called self-amplified spontaneous emission (SASE) regime. We review the FEL theory, discussing how the FEL parameters emerge from it, which are fundamental for describing, designing and understanding all FEL experiments in the high-gain, single-pass operation. Keywords: free-electron laser; X-ray emission; collective effects 1. Basic Concepts The free-electron laser is essentially a device that transforms the kinetic energy of a relativistic electron beam (e-beam) into e.m. radiation [1–4]. The e-beam passing through a transverse periodic magnetic field oscillates in a direction perpendicular to the magnetic Citation: Piovella, N.; Volpe, L. field and the propagation axis, and emits radiation confined in a narrow cone along the A Review of High-Gain Free-Electron propagation direction. The periodic magnetic field is provided by the so-called undulator, an Laser Theory. Atoms 2021, 9, 28. insertion device usually realized with two arrays of permanent magnets with alternating https://doi.org/10.3390/atoms9020028 polarities (see Figure1) or with two helical coils with current circulating in opposite directions. -
Third-Generation Synchrotron X-Ray Diffraction of 6- M Crystal of Raite, Na
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12263–12267, November 1997 Geology Third-generation synchrotron x-ray diffraction of 6-mm crystal of raite, 'Na3Mn3Ti0.25Si8O20(OH)2z10H2O, opens up new chemistry and physics of low-temperature minerals (crystal structureymicrocrystalyphyllosilicate) JOSEPH J. PLUTH*, JOSEPH V. SMITH*†,DMITRY Y. PUSHCHAROVSKY‡,EUGENII I. SEMENOV§,ANDREAS BRAM¶, CHRISTIAN RIEKEL¶,HANS-PETER WEBER¶, AND ROBERT W. BROACHi *Department of Geophysical Sciences, Center for Advanced Radiation Sources, GeologicalySoilyEnvironmental, and Materials Research Science and Engineering Center, 5734 South Ellis Avenue, University of Chicago, Chicago, IL 60637; ‡Department of Geology, Moscow State University, Moscow, 119899, Russia; §Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, 117071, Russia; ¶European Synchrotron Radiation Facility, BP 220, 38043, Grenoble, France; and UOP Research Center, Des Plaines, IL 60017 Contributed by Joseph V. Smith, September 3, 1997 ABSTRACT The crystal structure of raite was solved and the energy and metal industries, hydrology, and geobiology. refined from data collected at Beamline Insertion Device 13 at Raite lies in the chemical cooling sequence of exotic hyperal- the European Synchrotron Radiation Facility, using a 3 3 3 3 kaline rocks of the Kola Peninsula, Russia, and the 65 mm single crystal. The refined lattice constants of the Monteregian Hills, Canada (2). This hydrated sodium- monoclinic unit cell are a 5 15.1(1) Å; b 5 17.6(1) Å; c 5 manganese silicate extends the already wide range of manga- 5.290(4) Å; b 5 100.5(2)°; space group C2ym. The structure, nese crystal chemistry (3), which includes various complex including all reflections, refined to a final R 5 0.07. -
The Radiological Situation in the Beam-Cleaning Sections of the CERN Large Hadron Collider (LHC) I I CHAPTER 5 Benchmark Measurements
Markus Brugger The Radiological Situation in the Beam-Cleaning Sections of the CERN Large Hadron Collider (LHC) DISSERTATION zur Erlangung des akademischen Grades eines Doktors der Technischen Wissenschaften eingereicht an der Technischen Universität Graz Rechbauerstraße 12 A - 8010 Graz CERN-THESIS-2003-039 //2003 Begutachter: Ao.Univ.-Prof. Dr.techn. Ewald Schachinger Institut fur Theoretische Physik der TU Graz Graz, November 2003 Kurzfassung Diese Dissertation beschäftigt sich mit radiologischen Aspekten am "Large Hadron Collider", welcher momentan am CERN gebaut wird. Im Detail handelt es sich dabei um die beiden so genannten "Beam Cleaning Insertions", jene Bereiche in welchen man versucht möglichst alle Teilchen zu absorbieren, welche ansonsten in anderen Teilen des Beschleunigers zu Schäden führen könnten. Es werden zwei kritische Aspekte des Strahlenschutzes behandelt: Dosisleistung durch induzierte Radioaktivität und die Aktivierung von Luft. Die Anpassung des Designs dieser Regionen in Verbindung mit einer detaillierten Abschätzung der jeweiligen Dosisleistungen ist von großer Wichtigkeit für spätere Wartungsarbeiten. Bisher standen lediglich sehr eingeschränkte Studien über die in jenen Regionen zu erwartenden Strahlenniveaus zur Verfügung, welche diese Dissertation nun zu erweitern und vervollständigen sucht. Dabei wird eine neue Methode angewendet um Dosisleistungen zu bestimmen, welche, da sie zum ersten Mal zu deren Berechnung verwendet wird, sorgfältig im Rahmen eines Experimentes überprüft wird. Zusätzlich stellt die Aktivierung der Luft einen wichtigen Aspekt für die Inbetriebnahme des Beschleunigers dar. Jüngste Änderungen im Konzept des Beschleunigers, machen eine Revision vorhandener Ergebnisse und eine umfassende neue Studie notwendig. Die Ergebnisse von beiden Studien sind von großer Wichtigkeit für die weiteren Entscheidungen bezüglich des endgültigen Entwurfs der "Beam Cleaning Insertions".