Th`Ese Présentée Pour Obtenir Le Grade De Docteur De L'ecole Polytechnique Spécialité : Physique

Total Page:16

File Type:pdf, Size:1020Kb

Th`Ese Présentée Pour Obtenir Le Grade De Docteur De L'ecole Polytechnique Spécialité : Physique Th`ese pr´esent´ee pour obtenir le grade de Docteur de l’Ecole Polytechnique Sp´ecialit´e:Physique - Sciences des Mat´eriaux par Fabien BRUNEVAL Exchange and Correlation in the Electronic Structure of Solids, from Silicon to Cuprous Oxide: GW Approximation and beyond Soutenue le 7 octobre 2005 devant le jury compos´ede Pr. Antoine Georges Pr´esident Pr. Giovanni Onida Rapporteur Dr. Christophe Delerue Rapporteur Dr. Martine Gautier-Soyer Examinatrice Dr. Lucia Reining Directrice Dr. Nathalie Vast Directrice Remerciements Bienquenefaisantapparaˆıtre qu’un seul nom en premi`ere page, un travail de th`ese n’est pas un effort individuel. Je tiens `a exprimer ma gratitudea ` une multitude de personnes qui m’ont accueilli, encourag´e, conseill´e, aid´e, envoy´eenconf´erence, et tout simplement, fait confiance. Ces trois ann´ees pass´ees au Laboratoire des Solides Irradi´es de l’Ecole Polytechnique se sont d´eroul´ees dans une excellente ambiance, en partic- ulier, grˆace `a son directeur Guillaume Petite etason´ ` equipe administra- tive et technique Catherine Julien, Marie-Madeleine Lemartinel, Christine Houy, Bernard Allali et Bernard Jou´eo. Dans l’ordre chronologique, je remercie tout d’abord les deux personnes qui m’ont donn´e envie de me plonger dans la physique num´erique et m’ont accueilli au LSI pour mon stage de DEA et de fin d’´etudes : Nathalie Vast et Silvana Botti. Je remercie mes deux directrices de th`ese, Nathalie Vast et Lucia Rein- ing, pour leur encadrement, mais aussi pour la libert´e dont j’ai joui quant aux orientations scientifiques de mes travaux. Grˆace `a elles, j’ai profit´e d’excellentes conditions de travail et j’ai ´et´eencourag´e`apr´esenter mon ac- tivit´e`a des conf´erences vari´ees. Ces quelques mots sont bien faibles pour exprimer toute ma reconnaissance. Je remercie l’ensemble de l’´equipe th´eorie du LSI, ceux qui restent, ceux qui sont arriv´es et ceux qui sont partis, pour leur aide scientifique, leur com- pagnie, leur amiti´e : (par ordre approximatif d’apparition) Silvana Botti, Valerio Olevano, Francesco Sottile, Marc Hayoun, Olivier Hardouin-Duparc, Andrea Cucca, Hansi Weissker, Philippe Baranek, Virginie Trinit´e, Wojtek Welnic, Jorge Serrano, Louise Dash, Christine Georgetti, Val´erie Veiniard, Jelena Sjakste, et Xavier Andrade-Valencia. J’aurais aim´e dire quelques mots d´edi´es `a chacun, mais pour cela, il aurait fallu rajouter un chapitre complet `a ce manuscript. Je tiens notammenta ` louer la patience des diff´erents occupants de la pi`ece 05 10 29 : Tolis Marinopoulos, Madeleine Meyer, Matteo Gatti et Fran¸coise Maury-Levesque, qui ont support´ema symphonie quotidienne en clavier mineur. Mes coll`egues exp´erimentateurs m’ont permis d’´elargir mon horizon. Je remercie particuli`erement Manuel Izquierdo, Nick Barrett et Fausto Sirotti. Les r´eseaux europ´eens NANOPHASE et NANOQUANTA sonta ` l’origine de rencontres et de collaborations fructueuses avec d’autres chercheurs eu- ii rop´eens, en particulier : Rodolfo Del Sole, Patrick Rinke, Gian-Marco Rig- nanese et Xavier Gonze. Merci ´egalement `a Brice Arnaud pour ses calculs sur Cu2O, mais aussi pour sa sympathie. Je tiens `a exprimer ma reconnaissance au jury de cette th`ese : les rap- porteurs, Christophe Delerue et Giovanni Onida, qui ont accept´e de lire ce manuscript en plein cœur de l’´et´e ; Martine Gautier-Soyer qui a permis de teinter ce jury d’une touche exp´erimentale ; Antoine Georges, enfin, qui m’a fait l’honneur de pr´esider ce jury. La lisibilit´e et la correction de ce manuscript ont ´et´e grandement am´elior´ees par les lectures et relectures de Miguel Marques, Silvana Botti, Lucia Rein- ing et Nathalie Vast. La rigueur et la pertinence de leurs remarques m’ont beaucoup aid´e, aussi bien en ce qui concerne la grammaire anglaise que l’´energie d’ionisation des syst`emes finis. Ces remerciements seraient incomplets, si je ne soulignais le rˆoledema famille, mes parents et mes soeurs. Pour finir, mes pens´ees vont `aAgn`es qui m’a soutenu durant toute ma th`ese, qui a fait l’effort d’apprendre ce qu’´etaient un photon et un electron. Contents Contents iii Notations ix Feynman diagrams xi Introduction 1 I Theoretical background 5 1 Presentation of the tremendous problem of electrons in solids 7 1.1 Electronic Hamiltonian in solids within Born-Oppenheimer approximation.......................... 8 1.2 Wavefunction methods or “integrated” variable methods . 9 1.3Structuralexperiments..................... 10 1.4 Photoemission and inverse photoemission experiments . 12 1.5 Optical measurements and energy-loss experiments . 14 2 Approach to the Many-Body Problem by means of Green’s functions 17 2.1IntroductionofGreen’sfunctions............... 17 2.2 Lehmann representation and physical interpretation . 19 2.3Definitionofthespectralfunction............... 21 2.4Spectralfunctionandphotoemission............. 23 2.5Dysonequationandself-energy................ 24 2.6Non-interactingandinteractingGreen’sfunctions...... 26 2.7Quasiparticlesandspectralfunctions............. 27 2.8Hartree-Fockself-energy.................... 28 3 Hedin’s equations, Bethe-Salpeter equation, and GW ap- proximations 33 3.1 Green’s functions in presence of an external perturbation . 33 iv CONTENTS 3.2Hedin’sequations........................ 35 3.3 GW approximation....................... 39 3.4 Static screened exchange and COHSEX approximation . 40 3.5 Bethe-Salpeter equation for the polarizability ........ 43 3.6 Approximations to the kernel of the Bethe-Salpeter equation 45 4 Approach to the Many-Body Problem by means of the electronic density 49 4.1 Ground-state density as a basic variable ........... 49 4.1.1 Hohenberg-Kohntheorems............... 50 4.1.2 Kohn-ShamapproachtoDFT............. 51 4.1.3 Exchange-correlationpotentials............ 52 4.2Time-dependentdensityasthebasicvariable......... 53 4.2.1 Runge-Gross theorem and time-dependent Kohn-Sham 54 4.2.2 Linear-responseregime................. 55 4.2.3 Exchange-correlationkernels.............. 57 5 Practical implementation of standard GW 61 5.1 Evaluation of W ........................ 61 5.1.1 Representation of ε−1 .................. 61 5.1.2 RPA polarizability χ0 .................. 62 5.1.3 Plasmon-polemodel.................. 64 5.2EvaluationofΣ......................... 64 5.2.1 First-orderperturbation................ 64 5.2.2 Linearizationoftheenergydependence........ 65 5.2.3 Bare exchange part Σx ................. 66 5.2.4 Correlation part Σc ................... 67 6 Connecting DFT and Green’s function theory 69 6.1 Exchange-correlation potentials derived from MBPT . 70 6.1.1 Sham-Schl¨uterequation................ 70 6.1.2 Optimizedeffectivepotentials............. 71 6.2Exchange-correlationkernelsderivedfromMBPT...... 71 6.2.1 Time-dependent optimized effective potentials . 72 6.2.2 Direct comparison between BSE and TDDFT . 72 6.2.3 Perturbative approach of the TDDFT/BSE comparison 74 II Methodological developments 77 7 GW with no plasmon-pole model 79 7.1Methodusingspectralfunctions................ 80 7.1.1 Formula for the imaginary part of the self-energy . 80 7.1.2 Practicalimplementation................ 82 7.1.3 Results for Silicon .................... 83 CONTENTS v 7.2Methodusingcontourintegrals................ 84 7.2.1 Descriptionofthemethod............... 84 7.2.2 Practicalimplementation................ 86 7.2.3 Results for bulk Silicon ................. 89 8 Self-consistent quasiparticle calculations 91 8.1 Looking for a better starting point for GW .......... 91 8.2RestrictedLDAbasisset.................... 92 8.3 Testing the code against published data ............ 95 8.4Somehistoricalapproximations................ 97 8.5Effectofself-consistencyonoperators.............100 8.6 COHSEX+GW .........................101 8.7 Self-consistent GW bandstructure..............103 III Theoretical developments 105 9 Derivation of TDDFT kernels from MBPT 107 9.1 Time-dependent Sham-Schl¨utercondition...........107 9.2 Integral equation for δΣ/δρ ..................109 9.3First-orderTDDFTkernel...................111 9.3.1 LinktoTD-OEP:exact-exchange...........111 9.3.2 Linktomorerealisticapproximations.........113 9.4Second-orderTDDFTkernels.................114 10 How to include vertex corrections using density-functional concept 119 10.1Density-functionalconcept...................120 vLDA 10.2 Practical applications: initiating with Σ = xc .......122 10.3 Practical applications: initiating with Σ = ΣCOHSEX .....123 IV Electronic excitations of Cu2O 127 11 Presentation of Cu2O 129 11.1Structure............................129 11.2Cu-Cubonding.........................130 11.3Excitonseries..........................131 12 DFT study of Cu2O 135 12.1Issueofsemicorestatesofcopper...............135 12.2DFTtheoreticalstructure...................137 12.3Kohn-Shambandstructure...................140 12.3.1Technicalchecks....................140 12.3.2Symmetryanalysis...................142 vi CONTENTS 12.3.3Projectedandtotaldensities-of-states.........143 12.3.4 Band structure features and overview of other works 147 12.4DFTchargedensity.......................149 13 Standard GW study of Cu2O 153 13.1 Importance of semi-core states for the GW Self-energy . 153 13.2 GW quasiparticlebandstructure...............155 13.3 Failure of GW approximation or failure of additional assump- tions?..............................156 13.3.1 Reliability of pseudo eigenvalues and eigenvectors . 157 13.3.2 Reliability of the plasmon-pole model .........159 13.3.3 Reliability of first-order perturbation technique . 161 13.3.4 Reliability of LDA
Recommended publications
  • Light-Matter Interaction and Optical Spectroscopy from Infrared to X-Rays
    24th ETSF Workshop on Electronic Excitations Light-Matter Interaction and Optical Spectroscopy from Infrared to X-Rays Jena, Germany 16 – 20 September 2019 Welcome The workshop series of the European Theoretical Spectroscopy Facility (ETSF) provides a fo- rum for excited states and spectroscopy in condensed-matter physics, chemistry, nanoscience, materials science, and molecular physics attracting theoreticians, code developers, and experi- mentalists alike. Light-matter interaction will be at core of the 2019 edition of the ETSF workshop. Cutting-edge spectroscopy experiments allow to probe electrons, plasmons, excitons, and phonons across different energy and time scales with unprecedented accuracy. A deep physical understanding of the underlying quantum many-body effects is of paramount importance to analyze exper- imental observations and render theoretical simulations predictive. The workshop aims at discussing the most recent advances in the theoretical description of the interaction between light and matter focusing on first-principles methods. This broad subject will be covered in its diverse declinations, from core-level spectroscopy to collective low-energy excitations, dis- cussing also matter under extreme conditions, and systems driven out of equilibrium by strong laser pulses. Exchange between theorists and experimentalists is fostered to open new horizons towards the next generation of novel spectroscopy techniques. The workshop will also face the challenges posed by the formidable complexity of heterogeneous and nanostructured systems such as those of interest for light harvesting and energy generation, prompting to bridge the gap be- tween experimental and in silico spectroscopy. Workshop topics include: Linear and nonlinear optical spectroscopy • Core-level spectroscopies • Ultrafast excitation dynamics • Electron-phonon coupling • Light harvesting in natural and synthetic systems • We are glad to welcome you in Jena, the city of light, and wish you an inspiring workshop with lots of interesting science and fruitful discussions.
    [Show full text]
  • Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids
    Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Tancogne-Dejean, Nicolas et al. “Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids.” Physical Review Letters 118.8 (2017): n. pag. © 2017 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevLett.118.087403 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/107908 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. week ending PRL 118, 087403 (2017) PHYSICAL REVIEW LETTERS 24 FEBRUARY 2017 Impact of the Electronic Band Structure in High-Harmonic Generation Spectra of Solids † Nicolas Tancogne-Dejean,1,2,* Oliver D. Mücke,3,4 Franz X. Kärtner,3,4,5,6 and Angel Rubio1,2,3,5, 1Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany 2European Theoretical Spectroscopy Facility (ETSF), Luruper Chaussee 149, 22761 Hamburg, Germany 3Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany 4The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany 5Physics Department, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany 6Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA (Received 29 September 2016; published 24 February 2017) An accurate analytic model describing the microscopic mechanism of high-harmonic generation (HHG) in solids is derived.
    [Show full text]
  • Programming Models for Quantum Many-Body Methods on Multicore and Manycore Processors
    Programming models for quantum many-body methods on multicore and manycore processors Jeff Hammond1 and Eugene DePrince2 1 Argonne 2 Georgia Tech 6 February 2011 Jeff Hammond Electronic Structure Calculation Methods on Accelerators Abstract The growing diversity in computer processor architectures poses a serious challenge to the computational chemistry community. This talk considers some of the key issues, including disjoint address spaces, non-standard architectures and execution models, and the different APIs required to use them. Specifically, we will describe our experiences in developing coupled-cluster methods for Intel multicore, Intel MIC, NVIDIA Fermi and Blue Gene/Q in both a clean-sheet implementation and NWChem. Of fundamental interest is the development of codes that scale not only within the node but across thousands of nodes; hence, the interaction between the processor and the network will be analyzed in detail. Jeff Hammond Electronic Structure Calculation Methods on Accelerators Software Automation Jeff Hammond Electronic Structure Calculation Methods on Accelerators The practical TCE { NWChem many-body codes What does it do? 1 GUI input quantum many-body theory e.g. CCSD. 2 Operator specification of theory. 3 Apply Wick's theory to transform operator expressions into array expressions. 4 Transform input array expression to operation tree using many types of optimization. 5 Produce Fortran+Global Arrays+NXTVAL implementation. Developer can intercept at various stages to modify theory, algorithm or implementation. Jeff Hammond Electronic Structure Calculation Methods on Accelerators The practical TCE { Success stories First parallel implementation of many (most) CC methods. First truly generic CC code (not string-based): fRHF,ROHF,UHF}×CCfSD,SDT,SDTQ}×{T /Λ,EOM,LR/QRg Most of the largest calculations of their kind employ TCE: CR-EOMCCSD(T), CCSD-LR α, CCSD-QR β, CCSDT-LR α Reduces implementation time for new methods from years to hours, TCE codes are easy to verify.
    [Show full text]
  • Propriétés Structurales, Opto-Électroniques, Élastiques Et Dynamiques Des Semi-Conducteurs Type II-VI
    REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE FERHAT ABBAS – SETIF THESE Présentée à la faculté des Sciences Département de Physique Pour l’obtention du diplôme de DOCTORAT EN SCIENCES Option : physique du solide Par Mr. Benamrani Ammar Thème Propriétés structurales, opto-électroniques, élastiques et dynamiques des Semi-conducteurs type II-VI Soutenue le : 02/06/2012 Devant la commission d’examen : Dr. L. Louail Prof. U. F. A. SETIF Président Dr. K. Kassali Prof. U. F. A. SETIF Rapporteur Dr. Kh. Bouamama Prof. U. F. A. SETIF Co-Encadreur Dr. B. Bennecer Prof. U. Guelma Examinateur Dr. A. El Akrmi Prof. U. Annaba Examinateur Dr. H. Belkhir Prof. U. Annaba Examinateur À la mémoire de mon père, À ma mère, qui m’a enseigné le sens de la patience et de l’espoir, À ma femme, À toute ma famille À toute personne qui explore honnêtement les secrets de ce monde vaste, Je dédie ce modeste travail Remerciements REMERCIEMENTS Ce travail a été réalisé au laboratoire d’optoélectronique et des composants à l’université Ferhat Abbes à Sétif. Je tiens à remercier profondément Pr. Kamel Kassali, mon directeur de thèse pour m’avoir proposé ce thème intéressant et pour sa patience durant toutes les années de préparation de la thèse ainsi que ses conseils précieux et ses réponses à toutes mes questions reliées à mon sujet de thèse. J’exprime également toute ma reconnaissance à Mr. Kh. Bouamama, Professeur à l’université Ferhat Abbes de Sétif, qui m’a grandement fait profiter de ses fructueuses discussions en codes de calcul et dans mon sujet de thèse.
    [Show full text]
  • DFT-Absorption Spectra
    2054-9 Structure and Dynamics of Hydrogen-Bonded Systems 26 - 27 October 2009 Effect of Proton Disorder on the Excited State Properties of Ice Olivia PULCI Universita' di Roma II "Tor Vergata" Dipt. di Fisica, Via della Ricerca Scientfica 1, 00133 Rome Italy EffectEffect ofof protonproton disorderdisorder onon thethe excitedexcited statestate propertiesproperties ofof iceice V. Garbuio,Garbuio M. Cascella, R. Del Sole, O. Pulci OUTLINE: •Theoretical approaches •Ice Ic(bulk) • Ice Ih surface Theoretical approaches c MBPT c c EXC W hν hν ωcv hν ωcv ωcv v v v DFT GW BSE 1) 2) 3) Ground state properties Electronic band Optical spectra structure, I, A TDDFT (Step 2) Lars Hedin 1965 Σ = iGW G: single particle Green’s function −1 W: screened Coulomb interaction = ε VW Theoretical approaches c MBPT c c EXC W hν hν ωcv hν ωcv ωcv v v v DFT GW BSE 1) 2) 3) Ground state properties Electronic band Optical spectra structure, I, A TDDFT Step 3: calculation of optical spectra within the Bethe Salpeter Equation c Absorption spectra A photon excites an electron from an occupied state to a conduction state hν e 4 4 4 4 4 PPPP=IQP +IQP Ξ v h Bethe Salpeter Equation (BSE) Kernel: Ξ v= − W e-h exchange bound excitons GWBSE ApplicableApplicable to:to: Ab-initio: (NOT “one puts nothing in, one gets nothing out”!!) •Generality, transferability 0D-3D Biological systems •Detailed physical informations •Complex theory+large comp.cost 3-D 0-D 1-D 2-D Nanowires Surfaces Nanoclusters bulks OUTLINE: •Theoretical approaches •Ic Ice (bulk) • Ice Ih surface HH2OO phasephase diagramdiagram CubicCubic iceice ((IcIc)) • It is a metastable form of ice that can be formed, by condensation of water vapor, at ambient pressure but low temperatures Cubic ice (Ic) – diamond lattice 153 K down to 113 K Studied within DFT and Tight-binding G.
    [Show full text]
  • New Frontiers in Quantum Chemistry Using Supercomputers
    New frontiers in quantum chemistry using supercomputers Jeff Hammond Leadership Computing Facility Argonne National Laboratory 4 May 2011 Jeff Hammond NREL Atomistic simulation in chemistry 1 classical molecular dynamics (MD) with empirical potentials 2 ab initio molecular dynamics based upon density-function theory (DFT) 3 quantum chemistry with wavefunctions e.g. perturbation theory (PT), Coupled-Cluster (CC) or Quantum Monte Carlo (QMC). Jeff Hammond NREL Classical molecular dynamics Solves Newton's equations of motion with empirical terms and classical electrostatics. Size: 100K-10M atoms Time: 1-10 ns/day Scaling: ∼ Natoms Data from K. Schulten, et al. \Biomolecular modeling in the era of petascale computing." In D. Bader, ed., Petascale Computing: Algorithms and Applications. Image courtesy of Beno^ıtRoux via ALCF. Jeff Hammond NREL Car-Parrinello molecular dynamics Forces obtained from solving an approximate single-particle Schr¨odingerequation; time-propagation via Lagrangian approach. Size: 100-1000 atoms Time: 0.01-1 ps/day x Scaling: ∼ Nel (x=1-3) F. Gygi, IBM J. Res. Dev. 52, 137 (2008); E. J. Bylaska et al. J. Phys.: Conf. Ser. 180, 012028 (2009). Image courtesy of Giulia Galli via ALCF. Jeff Hammond NREL Wavefunction theory MP2 is second-order PT and is accurate via magical cancellation of error. CC is infinite-order solution to many-body Schr¨odingerequation truncated via clusters. QMC is Monte Carlo integration applied to the Schr¨odingerequation. Size: 10-100 atoms, maybe 100-1000 atoms with MP2. Time: N/A x Scaling: ∼ Nbf (x=2-7) Image courtesy of Karol Kowalski and Niri Govind. Jeff Hammond NREL Quantum chemistry | standard model 1 Separate molecule(s) from environment (closed to both matter and energy) 2 Ignore relativity, QED, spin-orbit coupling 3 Separate electronic and nuclear degrees of freedom −! non-relativistic electronic Schr¨odingerequation in a vacuum at zero temperature.
    [Show full text]
  • 0.1 Report on the 12Th Nanoquanta Workshop on Electronic Excitations
    0.1 Report on the 12th Nanoquanta Workshop on Electronic Excitations. Time-Dependent Density-Functional Theory: Advances and Prospects Aussois (France) 18-22 September 2007 SPONSORS NANOQUANTA Network of Excellence ESF Psi k Programme CNRS IdNano ORGANIZERS Valerio OLEVANO (LEPES-CNRS, Grenoble, France) John J. REHR (University of Washington, Seattle, USA) Gian-Marco RIGNANESE (Universit´eCatholique de Louvain, Louvain-la-Neuve, Belgium) Patrick RINKE (Fritz-Haber-Institut, Berlin, Germany) Francesco SOTTILE (Universidad del Pais Vasco, San Sebasti´an,Spain) Ludger WIRTZ (IEMN/ISEN, Villeneuve d’Ascq, France) WEBSITE http://lab-neel.grenoble.cnrs.fr/etsf/nanoquanta-workshop07 1 The workshop gathered 120 participants from leading international theory groups. There were 46 oral presen- tations (23 invited speakers and 23 contributed talks) and 32 posters. The workshop allowed the participants to discuss the advances in the theoretical and computational treatment of optical and dielectric spectroscopy, photoemission spectroscopy and quantum transport in the framework of time-dependent density-functional theory (TDDFT), many-body perturbation theory (MBPT) and non-equilibrium Green’s function (NEGF) theory. Invited speakers from leading international groups gave an in-depth overview of current research activities within these theories and placed recent results into context. Young researchers (Ph.D. students and Post- Docs) also had the opportunity to present their work (more than half of the oral presentations were given by non-permanent researchers). A special emphasis was placed on advances and perspectives in time-dependent density-functional theory. Indeed, the first session presented two review talks on TDDFT and DFT-like methods applied to quantum transport. A particular effort has been done by the two invited speakers to present the arguments in the most pedagogical manner, ad usum of the youngest participants to the workshop.
    [Show full text]
  • Plasmon Dispersion in Graphite: a Comparison of Current Ab Initio Methods Sean Anderson, Bernardo Mendoza, Giorgia Fugallo, Francesco Sottile
    Plasmon dispersion in graphite: A comparison of current ab initio methods Sean Anderson, Bernardo Mendoza, Giorgia Fugallo, Francesco Sottile To cite this version: Sean Anderson, Bernardo Mendoza, Giorgia Fugallo, Francesco Sottile. Plasmon dispersion in graphite: A comparison of current ab initio methods. Physical Review B: Condensed Matter and Mate- rials Physics (1998-2015), American Physical Society, 2019, 100 (4), 10.1103/PhysRevB.100.045205. hal-02191262 HAL Id: hal-02191262 https://hal.archives-ouvertes.fr/hal-02191262 Submitted on 23 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW B 100, 045205 (2019) Plasmon dispersion in graphite: A comparison of current ab initio methods Sean M. Anderson,1,* Bernardo S. Mendoza,1 Giorgia Fugallo,2 and Francesco Sottile3,4 1Centro de Investigaciones en Óptica, León, Guanajuato, México 2CNRS, UMR 6607, Laboratorie de Thermique et Energie de Nantes (LTeN) Polytech’Nantes, Université de Nantes, Rue Christian Pauc, F-44306 Nantes Cedex 3, France 3Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA, Université Paris-Saclay, F-91128 Palaiseau, France 4European Theoretical Spectroscopy Facility (ETSF) (Received 10 December 2018; revised manuscript received 9 May 2019; published 22 July 2019) We perform a systematic study of the macroscopic dielectric function and electron energy loss (EEL) spectra for graphite.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Computer Physics Communications 183 (2012) 2272–2281 Contents lists available at SciVerse ScienceDirect Computer Physics Communications journal homepage: www.elsevier.com/locate/cpc Libxc: A library of exchange and correlation functionals for density functional theory✩ Miguel A.L. Marques a,b,∗, Micael J.T. Oliveira c, Tobias Burnus d a Université de Lyon, F-69000 Lyon, France b LPMCN, CNRS, UMR 5586, Université Lyon 1, F-69622 Villeurbanne, France c Center for Computational Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal d Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, and Jülich Aachen Research Alliance, 52425 Jülich, Germany a r t i c l e i n f o a b s t r a c t Article history: The central quantity of density functional theory is the so-called exchange–correlation functional. This Received 8 March 2012 quantity encompasses all non-trivial many-body effects of the ground-state and has to be approximated Received in revised form in any practical application of the theory. For the past 50 years, hundreds of such approximations have 7 May 2012 appeared, with many successfully persisting in the electronic structure community and literature. Here, Accepted 8 May 2012 we present a library that contains routines to evaluate many of these functionals (around 180) and their Available online 19 May 2012 derivatives. Keywords: Program summary Density functional theory Program title: LIBXC Density functionals Catalogue identifier: AEMU_v1_0 Local density approximation Generalized gradient approximation Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMU_v1_0.html Hybrid functionals Program obtainable from: CPC Program Library, Queen’s University, Belfast, N.
    [Show full text]
  • DFT TDDFT ● Many-Body Green Function: Adjustable GW Parameters BSE Approximations (U, J, ...) (LDA, ...) 8 Why Do We Need Ab Initio Theories?
    Introduction to TDDFT Linear-Response TDDFT in Frequency-Reciprocal space on a Plane-Waves basis: the DP (Dielectric Properties) code Valerio Olevano CNRS, Institut Néel, Grenoble, France 2 Résumé ● Motivation ● TDDFT ● Linear-Response TDDFT ● Frequency-Reciprocal space TDDFT ● TDDFT on a Plane Waves basis: the DP code ● Approximations: RPA, ALDA, new kernels ● Results ● Conclusions [email protected] Condensed Matter: 3 a Formidable Many-Body Problem ● Well known interaction: electromagnetic (like in QED) ● All our ignorance in Cond-Mat has roots into the many-body problem. [email protected] 4 the Many-Body Problem ● Already a problem in Classical Physics: 3-body problem (Euler, Lagrange, …) and on ● In Quantum Mechanics even 2 bodies is a problem [email protected] The Many-Body problem 5 kinetic e-ions many-body interaction e-e interaction where N can be up to the Avogadro number 1023!!! many-body wavefunction [email protected] 6 The Many-Body problem Factorizable Hamiltonian Solvable single-particle Schrödinger equation Many-body ground-state total energy Total many-body ground state wavefunction Condensed Matter 7 Theory Models Ab Initio (first principles) simplify and search (if possible) numerical solution but analytical solutions microscopic Hamiltonian ● Quantum Chemistry: ● Anderson CI ● Hubbard CC DMFT Subject Headings: … ● Kondo ● QMC ● Ising ● Density-Functional: ● Heisenberg DFT TDDFT ● Many-body Green function: adjustable GW parameters BSE approximations (U, J, ...) (LDA, ...) 8 Why do we need ab initio theories? 1) To understand and explain observed phenomena; 2) To offer experimentalists reference data; 3) To predict properties before the synthesis, the experiment.
    [Show full text]
  • S.A. Raja Pharmacy College Vadakkangulam-627 116
    S.A. RAJA PHARMACY COLLEGE VADAKKANGULAM-627 116 MEDICINAL CHEMISTRY -III VI SEMESTER B. PHARM PRACTICAL MANUAL CONTENT S.No Experiment Name Page No. 1. Synthesis of Sulphanilamide 01 2. Synthesis of 7- Hydroxy -4- methyl coumarin 03 3. Synthesis of Chlorbutanol 05 4. Synthesis of Tolbutamide 07 5. Synthesis of Hexamine 09 6. Assay of Isonicotinic acid hydrazide 11 7. Assay of Metronidazole 13 8. Assay of Dapsone 16 9. Assay of Chlorpheniramine Maleate 18 10. Assay of Benzyl Penicillin 20 11. Synthesis of Phenytoin from Benzil by Microwave 23 Irradiation 12. Synthesis of Aspirin Assisted by Microwave Oven 26 13. Drawing structure and Reaction using Chemsketch 28 MEDICINAL CHEMISTRY- III Experiment No: 01 Synthesis of Sulphanilamide Aim: To synthesis and submit sulphanilamide from p-acetamido benzene sulphanilamide and calculate its percentage yield. Principle: Sulphanilamide can be prepared by the reaction of P-acetamido benzene sulphanilamide with Hydrochloric acid or ammonium carbonate. The acetamido groups are easily undergo acid catalysed hydrolysis reaction to form p-amino benzene sulphonamide. Reaction: O HN H2N HCl O S O O S O NH NH2 2 4 Acetamidobenzene sulphonamide p Amino benzene sulphonamide Chemical Required: Resorcinol - 1.2 g Ethyl acetoacetate - 2.4 ml Conc. Sulphuric acid - 7.5 ml Procedure: 1.5 gm of 4- acetamido benzene sulphonamide is treated with a mixture of 1 ml of conc. Sulphuric acid diluted with 2 ml water. This mixture is gently heated under reflux for 1 hour. Then 3ml of water is added and the solution is boiled again, with the addition of a small quantity of activated charcoal.
    [Show full text]
  • Quantum Chemistry Many-Body Methods on Gpus and Multicore Cpus
    Quantum chemistry many-body methods on GPUs and multicore CPUs Jeff Hammond1 and Eugene DePrince2 Argonne National Laboratory 1 Leadership Computing Facility ([email protected]) 2 Center for Nanoscale Materials ([email protected]) 26 January 2011 Jeff Hammond ICCS 2011 Abstract Quantum chemistry many-body methods (QMBM) solve the Schr¨odinger approximately, but at relatively high accuracy as compared to molecular dynamics (MD) and density-functional theory (DFT). While both MD and DFT have been implemented on GPGPUs by a number of groups, very little work has been done with QMBM on GPGPUs despite the excellent match between their regular and floating-point intensive algorithmic structure and the data-parallel capability of GPGPUs. In this talk we discuss the implementation of one variant of QMBM { the coupled-cluster method { on NVIDIA Tesla and Fermi processors. The performance is compared to an identically structured multicore CPU implementation as well as many existing software packages (NWChem, GAMESS, Molpro, PSI, Dalton and Aces II). The performance of our prototype implementation is 7 to 10 times faster than the fastest available CPU implementation (Molpro) and our mixed-precision algorithm achieves over 500 GF while converging to the same double precision accuracy achievable with a CPU code. Finally, we will compare our single-node CPU/GPU implementation to the massively-parallel implementation in NWChem, highlighting the challenges and opportunities for realizing petaflop QMBM using large GPU clusters. Jeff Hammond ICCS 2011 Atomistic simulation in chemistry 1 classical molecular dynamics (MD) with empirical potentials 2 ab initio molecular dynamics based upon density-function theory (DFT) 3 quantum chemistry with wavefunctions e.g.
    [Show full text]