Nitrate Reductase for Nitrate Analysis in Water
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of a Microsomal Retinol Dehydrogenase Gene from Amphioxus: Retinoid Metabolism Before Vertebrates
Chemico-Biological Interactions 130–132 (2001) 359–370 www.elsevier.com/locate/chembiont Characterization of a microsomal retinol dehydrogenase gene from amphioxus: retinoid metabolism before vertebrates Diana Dalfo´, Cristian Can˜estro, Ricard Albalat, Roser Gonza`lez-Duarte * Departament de Gene`tica, Facultat de Biologia, Uni6ersitat de Barcelona, A6. Diagonal, 645, E-08028, Barcelona, Spain Abstract Amphioxus, a member of the subphylum Cephalochordata, is thought to be the closest living relative to vertebrates. Although these animals have a vertebrate-like response to retinoic acid, the pathway of retinoid metabolism remains unknown. Two different enzyme systems — the short chain dehydrogenase/reductases and the cytosolic medium-chain alcohol dehydrogenases (ADHs) — have been postulated in vertebrates. Nevertheless, recent data show that the vertebrate-ADH1 and ADH4 retinol-active forms originated after the divergence of cephalochordates and vertebrates. Moreover, no data has been gathered in support of medium-chain retinol active forms in amphioxus. Then, if the cytosolic ADH system is absent and these animals use retinol, the microsomal retinol dehydrogenases could be involved in retinol oxidation. We have identified the genomic region and cDNA of an amphioxus Rdh gene as a preliminary step for functional characterization. Besides, phyloge- netic analysis supports the ancestral position of amphioxus Rdh in relation to the vertebrate forms. © 2001 Elsevier Science Ireland Ltd. All rights reserved. Keywords: Retinol dehydrogenase; Retinoid metabolism; Amphioxus * Corresponding author. Fax: +34-93-4110969. E-mail address: [email protected] (R. Gonza`lez-Duarte). 0009-2797/01/$ - see front matter © 2001 Elsevier Science Ireland Ltd. All rights reserved. PII: S0009-2797(00)00261-1 360 D. -
Methionine Sulfoxide Reductase a Is a Stereospecific Methionine Oxidase
Methionine sulfoxide reductase A is a stereospecific methionine oxidase Jung Chae Lim, Zheng You, Geumsoo Kim, and Rodney L. Levine1 Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-8012 Edited by Irwin Fridovich, Duke University Medical Center, Durham, NC, and approved May 10, 2011 (received for review February 10, 2011) Methionine sulfoxide reductase A (MsrA) catalyzes the reduction Results of methionine sulfoxide to methionine and is specific for the S epi- Stoichiometry. Branlant and coworkers have studied in careful mer of methionine sulfoxide. The enzyme participates in defense detail the mechanism of the MsrA reaction in bacteria (17, 18). against oxidative stresses by reducing methionine sulfoxide resi- In the absence of reducing agents, each molecule of MsrA dues in proteins back to methionine. Because oxidation of methio- reduces two molecules of MetO. Reduction of the first MetO nine residues is reversible, this covalent modification could also generates a sulfenic acid at the active site cysteine, and it is function as a mechanism for cellular regulation, provided there reduced back to the thiol by a fast reaction, which generates a exists a stereospecific methionine oxidase. We show that MsrA disulfide bond in the resolving domain of the protein. The second itself is a stereospecific methionine oxidase, producing S-methio- MetO is then reduced and again generates a sulfenic acid at the nine sulfoxide as its product. MsrA catalyzes its own autooxidation active site. Because the resolving domain cysteines have already as well as oxidation of free methionine and methionine residues formed a disulfide, no further reaction forms. -
Nitrate Reductase-Dependent Nitric Oxide Synthesis in the Defense Response of Arabidopsis Thaliana Against Pseudomonas Syringae
Tropical Plant Pathology, vol. 35, 2, 104-107 (2010) Copyright by the Brazilian Phytopathological Society. Printed in Brazil www.sbfito.com.br SHORT COMMUNICATION / COMUNICAÇÃO Nitrate reductase-dependent nitric oxide synthesis in the defense response of Arabidopsis thaliana against Pseudomonas syringae Halley C. Oliveira, Elzira E. Saviani, Jusceley F. P. Oliveira & Ione Salgado Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil Author for correspondence: Ione Salgado, e-mail: [email protected] ABSTRACT Nitrate reductase (NR) was recently shown to play an important role during phytopathogenic interactions by providing substrates for the synthesis of nitric oxide (NO), a key signal for plant defense responses. In order to give additional support to this hypothesis, we compared NO-mediated defense responses of wild-type and NR double-deficient (nia1 nia2) Arabidopsis thaliana plants inoculated with the IBSBF-1115 (ibs) strain of Pseudomonas syringae pv. maculicola (Psm) and with genetically characterized avirulent (avr) or virulent (vir) strains of Psm. Inoculation of wild-type leaves with avr or ibs, but not vir, stimulated NO emission, as measured by the indicator 4,5-diaminofluorescein. NO emission induced by avr was higher than that induced by ibs. Wild-type plants displayed the hypersensitive response (HR) when infiltrated with the strains avr or ibs, although a stronger HR was induced by avr. The vir strain did not induce HR in wild-type plants, and leaves developed severe infection symptoms. nia1 nia2 plants did not show significantly increased NO emission nor did they develop HR to any of the analyzed strains of Psm, but displayed clorotic lesions and higher bacterial growth in their leaves. -
The Availability of Organic Nitrates from Intravenous Administration Systems
THE AVAILABILITY OF ORGANIC NITRATES FROM INTRAVENOUS ADMINISTRATION SYSTEMS by Paul Adrian Cossum B.Sc., M.P.S. submitted in partial fulfilment of the requirements for the degree of Master of Pharmacy UNIVERSITY OF TASMANIA - HOBART JUNE 1981 SUMMARY Nitroglycerin aind isosorbide dinitrate are two drugs which are infused intravenously during the treatment of ischaemic heart disease. The availability of these two drugs in solutions infused from plastic infusion bags or glass infusion bottles through plastic giving sets has been investigated. During simulated infusions the concentration of nitroglycerin and isosorbide dinitrate appearing in the effluent of the • giving set tubing was found to be much less than the concentration of the drug solution initially contained in the plastic infusion bag or glass infusion bottle. It was found that each component of the plastic infusion equipment sorbed the drugs to a significant extent and that the rate of disappearance of drugs from solutions stored in each component was in the rank order: giving set tubing > giving set burette > plastic infusion bag. There was no significant loss of either drug from solutions stored in glass bottles. The influence of formulation factors and storage conditions on the sorption of nitroglycerin, isosorbide dinitrate and another organic nitrate compound., ethylene glycol dinitrate, by plastic infusion equipment was studied. The extent of loss during simulated infusions was also found to be dependent on flow rate of drug solution through the giving set. The sorption of nitroglycerin and isosorbide dinitrate has clinical and pharmacokinetic significance. Losses of nitroglycerin and isosorbide dinitrate associated with their infusion through plastic Lnfusion equipment were minimised by infusing drug solutions from a glass syringe through high density polyethylene tubing. -
Nitric Oxide Signaling in Plants
plants Editorial Nitric Oxide Signaling in Plants John T. Hancock Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; [email protected]; Tel.: +44-(0)117-328-2475 Received: 3 November 2020; Accepted: 10 November 2020; Published: 12 November 2020 Abstract: Nitric oxide (NO) is an integral part of cell signaling mechanisms in animals and plants. In plants, its enzymatic generation is still controversial. Evidence points to nitrate reductase being important, but the presence of a nitric oxide synthase-like enzyme is still contested. Regardless, NO has been shown to mediate many developmental stages in plants, and to be involved in a range of physiological responses, from stress management to stomatal aperture closure. Downstream from its generation are alterations of the actions of many cell signaling components, with post-translational modifications of proteins often being key. Here, a collection of papers embraces the differing aspects of NO metabolism in plants. Keywords: nitrate reductase; nitration; nitric oxide; reactive oxygen species; stress responses; S-nitrosation; S-nitrosylation; SNO-reductase; thiol modification 1. Introduction Nitric oxide (NO) is now well acknowledged as an instrumental signaling molecule in both plants and animals [1]. First recognized as important as a signal in the control of vascular tone [2], its role in plants came to prominence in the late 1990s [3–5]. The forty years of research into NO in plants has just been highlighted by a review by Kolbert et al. [6]. In plants, NO has been found to be involved in a wide range of developmental stages and physiological responses. -
A Brief Guide to Enzyme Classification and Nomenclature Rev AM
A Brief Guide to Enzyme Nomenclature and Classification Keith Tipton and Andrew McDonald 1) Introduction NC-IUBMB Enzyme List, or, to give it its full title, “Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse,1 is a functional system, based solely on the substrates transformed and products formed by an enzyme. The basic layout of the classification for each enzyme is described below with some indication of the guidelines followed. More detailed rules for enzyme nomenclature and classification are available online.2 Further details of the principles governing the nomenclature of individual enzyme classes are given in the following sections. 2. Basic Concepts 2.1. EC numbers Enzymes are identified by EC (Enzyme Commission) numbers. These are also valuable for relating the information to other databases. They were divided into 6 major classes according to the type of reaction catalysed and a seventh, the translocases, was added in 2018.3 These are shown in Table 1. Table 1. Enzyme classes Name Reaction catalysed 1 Oxidoreductases *AH2 + B = A +BH2 2 Transferases AX + B = BX + A 3 Hydrolases A-B + H2O = AH + BOH 4 Lyases A=B + X-Y = A-B ç ç X Y 5 Isomerases A = B 6 LiGases †A + B + NTP = A-B + NDP + P (or NMP + PP) 7 Translocases AX + B çç = A + X + ççB (side 1) (side 2) *Where nicotinamide-adenine dinucleotides are the acceptors, NAD+ and NADH + H+ are used, by convention. †NTP = nucleoside triphosphate. The EC number is made up of four components separated by full stops. -
The Noncanonical Pathway for in Vivo Nitric Oxide Generation: the Nitrate-Nitrite-Nitric Oxide Pathway
1521-0081/72/3/692–766$35.00 https://doi.org/10.1124/pr.120.019240 PHARMACOLOGICAL REVIEWS Pharmacol Rev 72:692–766, July 2020 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: CHRISTOPHER J. GARLAND The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway V. Kapil, R. S. Khambata, D. A. Jones, K. Rathod, C. Primus, G. Massimo, J. M. Fukuto, and A. Ahluwalia William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.) Abstract ...................................................................................694 Significance Statement. ..................................................................694 I. Introduction . ..............................................................................694 A. Chemistry of ·NO and Its Metabolism to Nitrite and Nitrate . .........................695 II. Inorganic Nitrite and Nitrate . ............................................................697 A. Historical Uses of Inorganic Nitrite.....................................................697 B. Historical Uses of Inorganic Nitrate ....................................................698 III. Sources and Pharmacokinetics of Nitrate . ................................................698 -
Dietary Nitrates, Nitrites, and Food Safety: Risks Versus Benefits
Acta Scientific NUTRITIONAL HEALTH (ISSN:2582-1423) Volume 5 Issue 6 June 2021 Review Article Dietary Nitrates, Nitrites, and Food Safety: Risks Versus Benefits Keith R Martin* Received: April 08, 2021 Center for Nutraceutical and Dietary Supplement Research, College of Health Sci- Published: May 26, 2021 ences, University of Memphis, Memphis, USA © All rights are reserved by Keith R Martin. *Corresponding Author: Keith R Martin, Center for Nutraceutical and Dietary Supplement Research, College of Health Sciences, University of Memphis, Memphis, USA. Abstract Nitrates, as a result, are intermediates in the movement of atmospheric nitrogen into the food chain with rich dietary sources includ- Atmospheric nitrogen, via the environmental nitrogen cycle, is captured, or fixed, by symbiotic bacteria interacting with plants. ing red spinach, beetroot, etc. Nitrate-rich fertilizers may further increase nitrogen content of plants. Other sources include potable water, dietary supplements and food additives. Although prevalent in the diet, nitrates have been viewed negatively because they chemically form carcinogenic nitrosamines in acidic environments, e.g. stomach, purportedly leading to gastric cancer as well as neoplasia of the intestine, brain, pancreas, and contributing to Non-Hodgkin’s lymphoma. Other reports indicate associations with hyperthyroidism and diabetes mellitus. A second major concern with dietary nitrate consumption is the development of methemo- - globinemia particularly in infants caused by increases in methemoglobin where -
SELENOF) with Retinol Dehydrogenase 11 (RDH11
Tian et al. Nutrition & Metabolism (2018) 15:7 DOI 10.1186/s12986-017-0235-x RESEARCH Open Access The interaction of selenoprotein F (SELENOF) with retinol dehydrogenase 11 (RDH11) implied a role of SELENOF in vitamin A metabolism Jing Tian1* , Jiapan Liu1, Jieqiong Li2, Jingxin Zheng3, Lifang Chen4, Yujuan Wang1, Qiong Liu1 and Jiazuan Ni1 Abstract Background: Selenoprotein F (SELENOF, was named as 15-kDa selenoprotein) has been reported to play important roles in oxidative stress, endoplasmic reticulum (ER) stress and carcinogenesis. However, the biological function of SELENOF is still unclear. Methods: A yeast two-hybrid system was used to screen the interactive protein of SELENOF in a human fetal brain cDNA library. The interaction between SELENOF and interactive protein was validated by fluorescence resonance energy transfer (FRET), co-immunoprecipitation (co-IP) and pull-down assays. The production of retinol was detected by high performance liquid chromatograph (HPLC). Results: Retinol dehydrogenase 11 (RDH11) was found to interact with SELENOF. RDH11 is an enzyme for the reduction of all-trans-retinaldehyde to all-trans-retinol (vitamin A). The production of retinol was decreased by SELENOF overexpression, resulting in more retinaldehyde. Conclusions: SELENOF interacts with RDH11 and blocks its enzyme activity to reduce all-trans-retinaldehyde. Keywords: SELENOF (Seleonoprotein F) , Yeast two hybrid system, Protein-protein interaction, Retinol dehydrogenase 11 (RDH11), Fluorescence resonance energy transfer (FRET), Co-immunoprecipitation (co-IP), Pull- down, Retinol (vitamin a), Retinaldehyde Background SELENOF shows that the protein contains a Selenium (Se) is a necessary trace element for human thioredoxin-like motif. The redox potential of this motif health. -
ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity
ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity Agency for Toxic Substances and Disease Registry Case Studies in Environmental Medicine (CSEM) Nitrate/Nitrite Toxicity Course: WB2342 CE Original Date: December 5, 2013 CE Renewal Date: December 5, 2015 CE Expiration Date: December 5, 2017 Key • Nitrate toxicity is a preventable cause of Concepts methemoglobinemia. • Infants younger than 4 months of age are at particular risk of nitrate toxicity from contaminated well water. • The widespread use of nitrate fertilizers increases the risk of well-water contamination in rural areas. About This and This educational case study document is one in a series of Other Case self-instructional modules designed to increase the Studies in primary care provider’s knowledge of hazardous Environmental substances in the environment and to promote the Medicine adoption of medical practices that aid in the evaluation and care of potentially exposed patients. The complete series of Case Studies in Environmental Medicine is located on the ATSDR Web site at URL: http://www.atsdr.cdc.gov/csem/csem.html In addition, the downloadable PDF version of this educational series and other environmental medicine materials provides content in an electronic, printable format. Acknowledgements We gratefully acknowledge the work of the medical writers, editors, and reviewers in producing this educational resource. Contributors to this version of the Case Study in Environmental Medicine are listed below. Please Note: Each content expert for this case study has indicated that there is no conflict of interest that would bias the case study content. CDC/ATSDR Author(s): Kim Gehle MD, MPH CDC/ATSDR Planners: Charlton Coles, Ph.D.; Kimberly Gehle, MD; Sharon L. -
Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophilic
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 9608–9613, September 1997 Biochemistry Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase (archaeayaldehydeydecarboxylationy2-keto acidythiamine pyrophosphate) KESEN MA*, ANDREA HUTCHINS*, SHI-JEAN S. SUNG†, AND MICHAEL W. W. ADAMS*‡ *Center for Metalloenzyme Studies, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602; and †Institute of Tree Root Biology, U.S. Department of Agriculture–Forest Service, Athens, GA 30602 Communicated by Gregory A. Petsko, Brandeis University, Waltham, MA, June 17, 1997 (received for review June 1, 1996) ABSTRACT Pyruvate ferredoxin oxidoreductase (POR) hyperthermophilic archaea and these are involved in peptide has been previously purified from the hyperthermophilic fermentation. They use 2-ketoglutarate (KGOR) (11), in- archaeon, Pyrococcus furiosus, an organism that grows opti- dolepyruvate (IOR) (12), and 2-ketoisovalerate (VOR) (13) as mally at 100°C by fermenting carbohydrates and peptides. The substrates, and function to oxidatively decarboxylate the 2- enzyme contains thiamine pyrophosphate and catalyzes the keto acids generated by the transamination of glutamate, oxidative decarboxylation of pyruvate to acetyl-CoA and CO2 aromatic amino acids, and branched chain amino acids, re- and reduces P. furiosus ferredoxin. Here we show that this spectively, to the corresponding CoA derivative (13). enzyme also catalyzes the formation of acetaldehyde from The growth of hyperthermophilic archaea such as P. furiosus pyruvate in a CoA-dependent reaction. Desulfocoenzyme A is also unusual in that it is dependent upon tungsten (14), a substituted for CoA showing that the cofactor plays a struc- metal seldom used in biological systems (15). -
Analysis of Nitrogen Utilization Capability During the Proliferation and Maturation Phases of Norway Spruce (Picea Abies (L.) H.Karst.) Somatic Embryogenesis
Article Analysis of Nitrogen Utilization Capability during the Proliferation and Maturation Phases of Norway Spruce (Picea abies (L.) H.Karst.) Somatic Embryogenesis Julia Dahrendorf 1, David Clapham 2 and Ulrika Egertsdotter 1,3,* 1 Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; [email protected] 2 BioCentre, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; [email protected] 3 G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA * Correspondence: [email protected]; Tel.: +1-404-663-6950 Received: 1 April 2018; Accepted: 22 May 2018; Published: 24 May 2018 Abstract: Somatic embryogenesis (SE) is a laboratory-based method that allows for cost-effective production of large numbers of clonal copies of plants, of particular interest for conifers where other clonal propagation methods are mostly unavailable. In this study, the effect of L-glutamine as an organic nitrogen source was evaluated for three contrasted media (containing NH4 + NO3 without glutamine, or glutamine + NO3, or glutamine without inorganic nitrogen) during proliferation and maturation of Norway spruce somatic embryos through analyses of activities of the key enzymes of nitrogen metabolism: nitrate reductase (NR), glutamine synthetase (GS) and arginase. A major change in nitrogen metabolism was indicated by the increased activity of GS from zero in the proliferation stage through maturation to high activity in somatic embryo-derived plantlets; furthermore, NR activity increased from zero at the proliferation stage to high activity in maturing embryos and somatic-embryo derived plantlets.