Deep Learning Enables High-Quality and High-Throughput Prediction Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison of the Effects on Mrna and Mirna Stability Arian Aryani and Bernd Denecke*
Aryani and Denecke BMC Research Notes (2015) 8:164 DOI 10.1186/s13104-015-1114-z RESEARCH ARTICLE Open Access In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability Arian Aryani and Bernd Denecke* Abstract Background: MicroRNA has become important in a wide range of research interests. Due to the increasing number of known microRNAs, these molecules are likely to be increasingly seen as a new class of biomarkers. This is driven by the fact that microRNAs are relatively stable when circulating in the plasma. Despite extensive analysis of mechanisms involved in microRNA processing, relatively little is known about the in vitro decay of microRNAs under defined conditions or about the relative stabilities of mRNAs and microRNAs. Methods: In this in vitro study, equal amounts of total RNA of identical RNA pools were treated with different ribonucleases under defined conditions. Degradation of total RNA was assessed using microfluidic analysis mainly based on ribosomal RNA. To evaluate the influence of the specific RNases on the different classes of RNA (ribosomal RNA, mRNA, miRNA) ribosomal RNA as well as a pattern of specific mRNAs and miRNAs was quantified using RT-qPCR assays. By comparison to the untreated control sample the ribonuclease-specific degradation grade depending on the RNA class was determined. Results: In the present in vitro study we have investigated the stabilities of mRNA and microRNA with respect to the influence of ribonucleases used in laboratory practice. Total RNA was treated with specific ribonucleases and the decay of different kinds of RNA was analysed by RT-qPCR and miniaturized gel electrophoresis. -
Enzymes Handling/Processing
Enzymes Handling/Processing 1 Identification of Petitioned Substance 2 3 This Technical Report addresses enzymes used in used in food processing (handling), which are 4 traditionally derived from various biological sources that include microorganisms (i.e., fungi and 5 bacteria), plants, and animals. Approximately 19 enzyme types are used in organic food processing, from 6 at least 72 different sources (e.g., strains of bacteria) (ETA, 2004). In this Technical Report, information is 7 provided about animal, microbial, and plant-derived enzymes generally, and more detailed information 8 is presented for at least one model enzyme in each group. 9 10 Enzymes Derived from Animal Sources: 11 Commonly used animal-derived enzymes include animal lipase, bovine liver catalase, egg white 12 lysozyme, pancreatin, pepsin, rennet, and trypsin. The model enzyme is rennet. Additional details are 13 also provided for egg white lysozyme. 14 15 Chemical Name: Trade Name: 16 Rennet (animal-derived) Rennet 17 18 Other Names: CAS Number: 19 Bovine rennet 9001-98-3 20 Rennin 25 21 Chymosin 26 Other Codes: 22 Prorennin 27 Enzyme Commission number: 3.4.23.4 23 Rennase 28 24 29 30 31 Chemical Name: CAS Number: 32 Peptidoglycan N-acetylmuramoylhydrolase 9001-63-2 33 34 Other Name: Other Codes: 35 Muramidase Enzyme Commission number: 3.2.1.17 36 37 Trade Name: 38 Egg white lysozyme 39 40 Enzymes Derived from Plant Sources: 41 Commonly used plant-derived enzymes include bromelain, papain, chinitase, plant-derived phytases, and 42 ficin. The model enzyme is bromelain. -
Characterization of a Microsomal Retinol Dehydrogenase Gene from Amphioxus: Retinoid Metabolism Before Vertebrates
Chemico-Biological Interactions 130–132 (2001) 359–370 www.elsevier.com/locate/chembiont Characterization of a microsomal retinol dehydrogenase gene from amphioxus: retinoid metabolism before vertebrates Diana Dalfo´, Cristian Can˜estro, Ricard Albalat, Roser Gonza`lez-Duarte * Departament de Gene`tica, Facultat de Biologia, Uni6ersitat de Barcelona, A6. Diagonal, 645, E-08028, Barcelona, Spain Abstract Amphioxus, a member of the subphylum Cephalochordata, is thought to be the closest living relative to vertebrates. Although these animals have a vertebrate-like response to retinoic acid, the pathway of retinoid metabolism remains unknown. Two different enzyme systems — the short chain dehydrogenase/reductases and the cytosolic medium-chain alcohol dehydrogenases (ADHs) — have been postulated in vertebrates. Nevertheless, recent data show that the vertebrate-ADH1 and ADH4 retinol-active forms originated after the divergence of cephalochordates and vertebrates. Moreover, no data has been gathered in support of medium-chain retinol active forms in amphioxus. Then, if the cytosolic ADH system is absent and these animals use retinol, the microsomal retinol dehydrogenases could be involved in retinol oxidation. We have identified the genomic region and cDNA of an amphioxus Rdh gene as a preliminary step for functional characterization. Besides, phyloge- netic analysis supports the ancestral position of amphioxus Rdh in relation to the vertebrate forms. © 2001 Elsevier Science Ireland Ltd. All rights reserved. Keywords: Retinol dehydrogenase; Retinoid metabolism; Amphioxus * Corresponding author. Fax: +34-93-4110969. E-mail address: [email protected] (R. Gonza`lez-Duarte). 0009-2797/01/$ - see front matter © 2001 Elsevier Science Ireland Ltd. All rights reserved. PII: S0009-2797(00)00261-1 360 D. -
Methionine Sulfoxide Reductase a Is a Stereospecific Methionine Oxidase
Methionine sulfoxide reductase A is a stereospecific methionine oxidase Jung Chae Lim, Zheng You, Geumsoo Kim, and Rodney L. Levine1 Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-8012 Edited by Irwin Fridovich, Duke University Medical Center, Durham, NC, and approved May 10, 2011 (received for review February 10, 2011) Methionine sulfoxide reductase A (MsrA) catalyzes the reduction Results of methionine sulfoxide to methionine and is specific for the S epi- Stoichiometry. Branlant and coworkers have studied in careful mer of methionine sulfoxide. The enzyme participates in defense detail the mechanism of the MsrA reaction in bacteria (17, 18). against oxidative stresses by reducing methionine sulfoxide resi- In the absence of reducing agents, each molecule of MsrA dues in proteins back to methionine. Because oxidation of methio- reduces two molecules of MetO. Reduction of the first MetO nine residues is reversible, this covalent modification could also generates a sulfenic acid at the active site cysteine, and it is function as a mechanism for cellular regulation, provided there reduced back to the thiol by a fast reaction, which generates a exists a stereospecific methionine oxidase. We show that MsrA disulfide bond in the resolving domain of the protein. The second itself is a stereospecific methionine oxidase, producing S-methio- MetO is then reduced and again generates a sulfenic acid at the nine sulfoxide as its product. MsrA catalyzes its own autooxidation active site. Because the resolving domain cysteines have already as well as oxidation of free methionine and methionine residues formed a disulfide, no further reaction forms. -
The Coffee Protective Effect on Catalase System in the Preneoplastic Induced Rat Liver
Hindawi Publishing Corporation Journal of Chemistry Volume 2016, Article ID 8570321, 9 pages http://dx.doi.org/10.1155/2016/8570321 Research Article The Coffee Protective Effect on Catalase System in the Preneoplastic Induced Rat Liver Cristiana Schmidt de Magalhães,1 Jéssica Emi Takarada,1 Nathália Costa Carvalho,1 Dayene do C. Carvalho,2 Felipe Lopes de Andrade,1 Eric Batista Ferreira,1 Pedro Orival Luccas,2 and Luciana Azevedo3 1 Exact Sciences Institute, Federal University of Alfenas, Rua Gabriel Monteiro da Silva 700, Centro, 37130-000 Alfenas, MG, Brazil 2Chemistry Institute, Federal University of Alfenas, Rua Gabriel Monteiro da Silva 700, Centro, 37130-000 Alfenas, MG, Brazil 3Nutrition Faculty, Federal University of Alfenas, Rua Gabriel Monteiro da Silva 700, Centro, 37130-000 Alfenas, MG, Brazil Correspondence should be addressed to Cristiana Schmidt de Magalhaes;˜ [email protected] Received 15 October 2015; Revised 2 March 2016; Accepted 28 March 2016 Academic Editor: Philippe Jeandet Copyright © 2016 Cristiana Schmidt de Magalhaes˜ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This study aimed to evaluate the effect of organic/conventional coffee in liver tissues in the cancer process, taking into account the level and activities of catalase. The experiments were carried out with 8 groups of rats during 12 weeks. They received two injections of ethylenediaminetetraacetic acid solution 1.5% (v/v) prepared in 0.9% NaCl or 1,2-dimethylhydrazine (DMH) subcutaneous dose −1 −1 of 40 mg⋅kg ⋅bw for 2 weeks. -
„Transformation Von Phospholipiden Durch Phospholipasen A1 Und
„Transformation von Phospholipiden durch Phospholipasen A1 und Phospholipasen D“ Kumulative Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Martin Dippe geboren am 3. August 1981 in Wernigerode (Harz) Gutachter: 1. Prof. Renate Ulbrich-Hofmann (Martin-Luther-Universität Halle-Wittenberg) 2. Prof. Ingo Heilmann (Martin-Luther-Universität Halle-Wittenberg) 3. Prof. Uwe T. Bornscheuer (Ernst-Moritz-Arndt-Universität Greifswald) Halle (Saale), den 08. Dezember 2011 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis .............................................................................................................. 1 Abkürzungsverzeichnis ..................................................................................................... 2 1 Einleitung und Zielstellung .......................................................................................... 3 2 Theoretischer Teil ....................................................................................................... 5 2.1. Phospholipide – Molekularer Bau, Verwendung und chemische Synthese .... 6 2.2. Phospholipase-vermittelte Modifizierung von Phospholipiden ....................... 8 2.3. PLD-Enzyme............................................................................................... 10 2.3.1. Funktion und Mechanismus ............................................................ 10 2.3.2. Kopfgruppenaustausch -
Morelloflavone and Its Semisynthetic Derivatives As Potential Novel Inhibitors of Cysteine and Serine Proteases
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/276087209 Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases ARTICLE in JOURNAL OF MEDICINAL PLANT RESEARCH · APRIL 2015 Impact Factor: 0.88 · DOI: 10.5897/JMPR2014.5641 DOWNLOADS VIEWS 2 17 8 AUTHORS, INCLUDING: Ihosvany Camps Claudio Viegas-jr Universidade Federal de Alfenas Universidade Federal de Alfenas 35 PUBLICATIONS 128 CITATIONS 6 PUBLICATIONS 22 CITATIONS SEE PROFILE SEE PROFILE Available from: Ihosvany Camps Retrieved on: 08 September 2015 Vol. 9(13), pp. 426-434, 3 April, 2015 DOI: 10.5897/JMPR2014.5641 Article Number: A42115152263 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Morelloflavone and its semisynthetic derivatives as potential novel inhibitors of cysteine and serine proteases Vanessa Silva Gontijo1, Jaqueline Pereira Januário1, Wagner Alves de Souza Júdice2, Alyne Alexandrino Antunes2, Ingridy Ribeiro Cabral1, Diego Magno Assis3, Maria Aparecida Juliano3, Ihosvany Camps4, Marcos José Marques4, Claudio Viegas Junior1 and Marcelo Henrique dos Santos1* 1Department of Exact Science, Laboratory of Phytochemistry and Medicinal Chemistry, Federal University of Alfenas, MG, Brazil. 2Interdisciplinary Center of Biochemical Investigation, Mogi das Cruzes University, Mogi das Cruzes, SP, Brazil. 3Department of Biophysics, Federal University of São Paulo, SP, Brazil. 4Department of Biological Sciences, Laboratory of Molecular Biology, Federal University of Alfenas, MG, Brazil. Received 9 October, 2014; Accepted 11 March, 2015 This article reports the three biflavonoids isolated from the fruit pericarp of Garcinia brasiliensis Mart. -
A Brief Guide to Enzyme Classification and Nomenclature Rev AM
A Brief Guide to Enzyme Nomenclature and Classification Keith Tipton and Andrew McDonald 1) Introduction NC-IUBMB Enzyme List, or, to give it its full title, “Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse,1 is a functional system, based solely on the substrates transformed and products formed by an enzyme. The basic layout of the classification for each enzyme is described below with some indication of the guidelines followed. More detailed rules for enzyme nomenclature and classification are available online.2 Further details of the principles governing the nomenclature of individual enzyme classes are given in the following sections. 2. Basic Concepts 2.1. EC numbers Enzymes are identified by EC (Enzyme Commission) numbers. These are also valuable for relating the information to other databases. They were divided into 6 major classes according to the type of reaction catalysed and a seventh, the translocases, was added in 2018.3 These are shown in Table 1. Table 1. Enzyme classes Name Reaction catalysed 1 Oxidoreductases *AH2 + B = A +BH2 2 Transferases AX + B = BX + A 3 Hydrolases A-B + H2O = AH + BOH 4 Lyases A=B + X-Y = A-B ç ç X Y 5 Isomerases A = B 6 LiGases †A + B + NTP = A-B + NDP + P (or NMP + PP) 7 Translocases AX + B çç = A + X + ççB (side 1) (side 2) *Where nicotinamide-adenine dinucleotides are the acceptors, NAD+ and NADH + H+ are used, by convention. †NTP = nucleoside triphosphate. The EC number is made up of four components separated by full stops. -
Immobilization of Trypsin for Peptide Synthesis and Hydrolysis Reactions
IMMOBILIZATION OF TRYPSIN FOR PEPTIDE SYNTHESIS AND HYDROLYSIS REACTIONS zur Erlangung des akademischen Grades eines DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.) der Fakultät für Chemieingenieurwesen und Verfahrenstechnik des Karlsruher Instituts für Technologie (KIT) vorgelegte genehmigte DISSERTATION von Dipl. Biol. (t.o.) Julia Andre geb. Stolarow aus Odessa, Ukraine Referent: Prof. Dr. rer. nat. Christoph Syldatk Korreferent: Prof. Dr.-Ing. Rudolf Hausmann Tag der mündlichen Prüfung: 19. November 2015 Maybe I will be something that you would be good at Für meine Eltern Acknowledgements I wish to express my sincere thanks to people who continuously supported and guided me throughout my work. Prof. Dr. rer. nat. Christoph Syldatk for giving me the opportunity to conduct my research work at his group, his guidance and his enormous scientific knowledge giving me a great opportunity to learn. Prof. Dr.-Ing. Rudolf Hausmann for his supervision, productive scientific discussions, his motivating personality and professional advice helping me to overcome many obstacles in my research work. Former and current members of the Technical Biology group for the great friendly and supporting atmosphere during my work and spare time: Dr.-Ing. Ines Schulze, Dr. rer. nat. Mareike Perzborn, Laura Krämer, Dr.-Ing. Berna Gerçe, Dr.-Ing. Martin Pöhnlein, Dipl.-Ing. Melanie Gerlitzki, Dipl.-Biotechnol. Johannes Kügler, Dr.-Ing. Marius Henkel, Dr. rer. nat. Markus Andre, Dr.-Ing. Ulrike Engel, M. Sc. Janina Beuker, Dipl.-Ing. Michaela Zwick, M. Sc. Judit Willenbacher, M. Sc. Sarah Dold, M. Sc. Christin Slomka, Sandra Baumann, Dr.-Ing. Katrin Ochsenreither, Dipl.-Ing. Florian Oswald, Desiree Westermann, Werner Mandel, Harald Gotzmann, Siegfried Almstedt, Katja Rupp, Susanne Warth, M. -
Characterisation, Classification and Conformational Variability Of
Characterisation, Classification and Conformational Variability of Organic Enzyme Cofactors Julia D. Fischer European Bioinformatics Institute Clare Hall College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 11 April 2011 This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the word limit of 60,000 words. Acknowledgements I would like to thank all the members of the Thornton research group for their constant interest in my work, their continuous willingness to answer my academic questions, and for their company during my time at the EBI. This includes Saumya Kumar, Sergio Martinez Cuesta, Matthias Ziehm, Dr. Daniela Wieser, Dr. Xun Li, Dr. Irene Pa- patheodorou, Dr. Pedro Ballester, Dr. Abdullah Kahraman, Dr. Rafael Najmanovich, Dr. Tjaart de Beer, Dr. Syed Asad Rahman, Dr. Nicholas Furnham, Dr. Roman Laskowski and Dr. Gemma Holli- day. Special thanks to Asad for allowing me to use early development versions of his SMSD software and for help and advice with the KEGG API installation, to Roman for knowing where to find all kinds of data, to Dani for help with R scripts, to Nick for letting me use his E.C. tree program, to Tjaart for python advice and especially to Gemma for her constant advice and feedback on my work in all aspects, in particular the chemistry side. Most importantly, I would like to thank Prof. Janet Thornton for giving me the chance to work on this project, for all the time she spent in meetings with me and reading my work, for sharing her seemingly limitless knowledge and enthusiasm about the fascinating world of enzymes, and for being such an experienced and motivational advisor. -
Recent Progress in the Microbial Production of Pyruvic Acid
fermentation Review Recent Progress in the Microbial Production of Pyruvic Acid Neda Maleki 1 and Mark A. Eiteman 2,* 1 Department of Food Science, Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran; [email protected] 2 School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA * Correspondence: [email protected]; Tel.: +1-706-542-0833 Academic Editor: Gunnar Lidén Received: 10 January 2017; Accepted: 6 February 2017; Published: 13 February 2017 Abstract: Pyruvic acid (pyruvate) is a cellular metabolite found at the biochemical junction of glycolysis and the tricarboxylic acid cycle. Pyruvate is used in food, cosmetics, pharmaceutical and agricultural applications. Microbial production of pyruvate from either yeast or bacteria relies on restricting the natural catabolism of pyruvate, while also limiting the accumulation of the numerous potential by-products. In this review we describe research to improve pyruvate formation which has targeted both strain development and process development. Strain development requires an understanding of carbohydrate metabolism and the many competing enzymes which use pyruvate as a substrate, and it often combines classical mutation/isolation approaches with modern metabolic engineering strategies. Process development requires an understanding of operational modes and their differing effects on microbial growth and product formation. Keywords: auxotrophy; Candida glabrata; Escherichia coli; fed-batch; metabolic engineering; pyruvate; pyruvate dehydrogenase 1. Introduction Pyruvic acid (pyruvate at neutral pH) is a three carbon oxo-monocarboxylic acid, also known as 2-oxopropanoic acid, 2-ketopropionic acid or acetylformic acid. Pyruvate is biochemically located at the end of glycolysis and entry into the tricarboxylic acid (TCA) cycle (Figure1). -
Trehalose-Mediated Enhancement of Glycosaminoglycan Degradation in the Lysosomal Storage Disorder Mucopolysaccharidosis III
Aus dem Institut für Humangenetik der Universität zu Köln Direktorin: Frau Universitätsprofessor Dr. rer. nat. B. Wirth Trehalose-mediated enhancement of glycosaminoglycan degradation in the lysosomal storage disorder Mucopolysaccharidosis III Trehalose vermittelte Steigerung des Glykosaminoglykan-Abbaus in der lysosomalen Speichererkrankung Mukopolysaccharidose III Inaugural-Dissertation zur Erlangung der Doktorwürde der Hohen Medizinischen Fakultät der Universität zu Köln vorgelegt von Victor Mauri aus Stuttgart promoviert am 29. Januar 2014 Gedruckt mit Genehmigung der Medizinischen Fakultät der Universität zu Köln, 2014 Dekan: Universitätsprofessor Dr. med. Dr. h.c. Th. Krieg 1. Berichterstatterin: Frau Universitätsprofessor Dr. rer. nat. B. Wirth 2. Berichterstatter: Professor Dr. rer. nat. F.-G. Hanisch Erklärung Ich erkläre hiermit, dass ich die vorliegende Dissertationsschrift ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskriptes habe ich Unterstützungsleistungen von folgenden Personen erhalten: Univ.-Prof. Dr. rer. nat. Brunhilde Wirth Marco Sardiello, PhD, Assistant Professor BCM Christian Schaaf, MD, PhD, Assistant Professor BCM Weitere Personen waren an der geistigen Herstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich nicht die Hilfe einer Promotionsberaterin/eines