From the Early Triassic Wordie Creek Formation of East Greenland

Total Page:16

File Type:pdf, Size:1020Kb

From the Early Triassic Wordie Creek Formation of East Greenland Remains of Saurichthys (Pisces, Actinopterygii) from the Early Triassic Wordie Creek Formation of East Greenland ILJA KOGAN Kogan, I. 2011. Remains of Saurichthys (Pisces, Actinopterygii) from the Early Triassic Wordie Creek Formation of East Greenland © 2011 by Bulletin of the Geological Society of Denmark, Vol. 59, pp. 93–100. ISSN 0011–6297. (www.2dgf.dk/publikationer/bulletin) https://doi.org/10.37570/bgsd-2011-59-09 Previously undescribed specimens of Saurichthys from the basal part of the Early Triassic Wordie Creek Formation (Griesbachian) of East Greenland demonstrate a remarkably complete squamation especially in the anterior trunk portion. Scales of the mid-lateral row are high and those of the mid- dorsal and mid-ventral rows broad and conspicuous by having a pronounced longitudinal keel on their inner surface; additional dorso-lateral and ventro-lateral scale rows are present. This pattern resembles that of Saurichthys dayi from the Early Triassic of Alberta and British Columbia. Differences in fin morphology suggest, however, that the Greenland form is probably not conspecific. A second Early Triassic species of Saurichthys occurring in East Greenland probably comes from a higher stratigraphic level (late Griesbachian to early Dienerian) with a different ichthyofaunal composition. Received 28 July 2011 Accepted in revised form 11 November 2011 Key words: Saurichthys, East Greenland, Wordie Creek Formation, stratigraphy. Published online 2 December 2011 I. Kogan [[email protected]], Freiberg University of Mining and Technology, Geological Institute, Bernhard- von-Cotta str. 2, 09599 Freiberg, Germany. Numerous fossil fishes from the Early Triassic of East Material and methods Greenland have been collected in the course of several Danish palaeontological expeditions in the 1930s. First The three specimens described below have been col- remains of Saurichthys Agassiz, 1834 were discovered lected by E. Nielsen during the 1930s in the Kap Stosch by Eigil Nielsen in 1932 and only briefly mentioned in area at the north coast of Hold with Hope, East Green- his subsequent publications (Nielsen 1935, 1936, 1961). land (Fig. 1). Nielsen (1935) distinguished six subsequent The fourteen specimens reported in Nielsen (1961) are vertebrate-bearing levels, i.e. five “fish zones” and one stored in The Natural History Museum of Denmark, “tetrapod zone”, in his study area. Of the 14 Saurichthys Copenhagen (Geological Museum – MGUH numbers) specimens enumerated in Nielsen (1961), five were and have never been described in detail, except for referred to his fish zone 2 and nine to his fish zone 5. two skulls (MGUH-VP-992 and -994) that were pub- According to the labels, specimens MGUH-VP-1000 and lished by Mutter et al. (2008) who referred to them as -997 were found in 1933 at the so-called Østlokaliteten Saurichthys cf. ornatus. and Vestlokaliteten, respectively. These localities are Already Nielsen (1936) suggested the possible mentioned in Nielsen (1935: fig. 19) and belong to his fish presence of more than one saurichthyid species in his zone 2 (Nielsen 1935: 100 ff.). Both localities are situated collection because of differences in size and propor- in the Neviatiakdal area and placed in the former Otocer- tions. A preliminary survey of the material indicates as beds. This level corresponds to the interval from that the occurrence of different morphotypes prob- Hypophiceras martini to Metophiceras subdemissum zone ably corresponds to two distinct stratigraphic levels. (lowermost upper Griesbachian) in the stratigraphic At least the specimens MGUH-VP-988, -997 and -1000 scheme of Bjerager et al. (2006) and occurs near the base are referable to a single morphotype based on their of the Wordie Creek Formation only few metres above peculiar squamation. They are described in the fol- the presumed Permian-Triassic boundary. No detailed lowing account. information is given on the specimen MGUH-VP-988. Remains of Saurichthys (Pisces, Actinopterygii) from the Early Triassic Wordie Creek Formation · 93 All specimens are preserved as concretions in laminated Systematic palaeontology mudstones deposited under marine conditions during a period of local sea-level rise (Bjerager et al. 2006). Subclass: Actinopterygii Cope, 1887 The fossils were studied under a WILD binocular Order: Saurichthyiformes Aldinger, 1937 microscope and photographed with a NIKON D 80 Family: Saurichthyidae Owen, 1860 digital camera with a 35-70 mm zoom lens. Drawings [sensu Stensiö 1925] were made by means of a camera lucida as well as on Genus: Saurichthys Agassiz, 1834 the basis of photographs. To enhance contrasts, speci- Type species: Saurichthys apicalis Agassiz, 1834 men MGUH-VP-988 B was examined and photographed immersed in alcohol. Saurichthys aff. dayi (Raymond, 1925) The use of open nomenclature follows Bengston (1988). Referred material: MGUH-VP-1000 (anterior trunk portion and incomplete skull), MGUH-VP-997 (trunk fragment), MGUH-VP-988 A, B (trunk fragment with dorsal and anal fins in part and counterpart); possibly also MGUH-VP-990 (fragmentary skull) and MGUH- VP-996 (caudal peduncle). Description Specimen MGUH-VP-1000 (Fig. 2) is an incomplete skull with the anterior body portion preserved in a concretion. Most dermal bones of the skull are weath- ered away and only the right mandible and the right opercular are preserved in lateral view. The preserved portion of the mandible is 124 mm long and the tip of the snout is missing. Delicate subvertical striae can be recognized on the dentary. Some teeth are preserved on both jaws, the largest of them being ca. 4 mm high by 2.5 mm wide. The opercular is considerably higher than long (28 mm high, 17 mm long) and ornamented with con- centric ridges of ganoin parallel to its margins. The cleithrum has the shape of an inverted ‘T’ whose ante- rior and posterior branches are nearly equal in length. The pectoral fin is fan-shaped and consists of at least 18 unsegmented lepidotrichia. The postcranial body fragment shows 18 mid-lateral scales. They are very high (ca. 25 mm in height to 5 mm in length along the lateral line) and roughly rec- tangular in shape, and the lateral line sensory canal divides them into a somewhat smaller upper (dorsal) part and a larger lower (ventral) part. The scales are inclined anteroventrally and ornamented with a combination of ridges and tubercles of ganoin. In the lower parts, subvertical and somewhat sigmoidal ridges predominate and tubercles are restricted to the margins of the scale. The pattern is similar in the up- per parts of the anteriormost scales, whereas farther back the ornament is composed of tubercles arranged Fig. 1. Map of East Greenland showing the outcrop areas of the in subhorizontal rows. Early Triassic Wordie Creek Formation and the assumed find Further scales are present on the body but neither locality of Saurichthys aff. dayi on the north coast of Hold With their number nor their exact shape can be determined Hope. Modified from Bjerager et al. (2006). due to the preservation. It seems, however, that the 94 · Bulletin of the Geological Society of Denmark anterior scales of the mid-dorsal row are oval and very mid-lateral scales. The ornamentation is composed of small, increasing in size posteriorly. tubercles arranged in longitudinal rows. Specimen MGUH-VP-997 (Fig. 3) represents a cast The portion dorsally to the mid-lateral scales is in- of a body fragment presumably between the skull and sufficiently preserved. Several scales of different size the pelvic fins. Remnants of 8 mid-lateral scales are are present, which could possibly reflect the pattern visible. They show the same proportions as described in the ventral part. for specimen MGUH-VP-1000, but it can be seen that Specimen MGUH-VP-988 A and B (Fig. 4) repre- the sigmoidal subvertical ridges that constitute the sents the region of the dorsal and anal fin in part and ornamentation of their lower parts are mainly com- counterpart. About 20 mid-lateral scales are preserved posed of fused tubercles. The upper parts of the scales anteriorly to the fins; compared to the mid-lateral are ornamented with distinct tubercles arranged in scales of more anterior body segments, documented curved, subhorizontal rows. by specimens MGUH-VP-1000 and -997 (apparently Three rows of scales can be distinguished between belonging to individuals of comparable size) they are the mid-lateral and the mid-ventral scale row. The less high (about 20 mm) and slightly more rhombic scales correspond to the mid-lateral scales in number. than rectangular in outline. Their length, however, The long axis of all of these ventrolateral scales is is still between 4 and 5 mm, and the ornamentation anteroventrally directed, opposing the anterodorsal follows the pattern described above. Comparatively axis of the mid-lateral scales. Scales of the uppermost larger areas of the lower part of the scales, near their ventrolateral row are bigger and rectangular in shape anterior and ventral margins, are covered with tu- (ca. 8 to 4 mm), the remaining scales are 3-5 mm long bercles. The scales of the mid-dorsal and mid-ventral and oval to triangular. All of them are ornamented rows are only half as numerous as the mid-lateral ones; with tubercles. further scale rows seem not to be present. The mid-ventral scales are preserved only as im- Scales of the mid-ventral and mid-dorsal rows have pressions of their outside. They are cordiform to V- the same shape in front of the dorsal and anal fins. shaped, pointing posteriorly, 5 mm wide and 7 mm They are rounded, 10-11 mm broad and 11-12 mm long. long. They also roughly correspond in number to the On the inside, a prominent longitudinal keel runs Fig. 2. Saurichthys aff. dayi, incomplete skull and anterior body portion. Specimen MGUH-VP-1000. Remains of Saurichthys (Pisces, Actinopterygii) from the Early Triassic Wordie Creek Formation · 95 along the midline, passing from one scale to another.
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • A New Species of Saurichthys from the Middle Triassic (Anisian)
    第56卷 第4期 古 脊 椎 动 物 学 报 pp. 273–294 2018年10月 VERTEBRATA PALASIATICA figs. 1–9 DOI: 10.19615/j.cnki.1000-3118.171023 A new species of Saurichthys from the Middle Triassic (Anisian) of southwestern China WU Fei-Xiang1,2 SUN Yuan-Lin3* FANG Geng-Yu4 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University Beijing 100871 * Corresponding author: [email protected]) (4 School of Public Health, Peking University Beijing 100191) Abstract The saurichthyiform fishes were effective predators and hence the significant consumers in the aquatic ecosystems during the Early Mesozoic. They showed a notable diversification in the Anisian (Middle Triassic) Lagerstätten of southwestern China. In this contribution, we report a new species of Saurichthys from the Anisian of Yunnan, China, that displays some peculiar modifications of the axial skeleton and the longate body of the group. This new species, Saurichthys spinosa is a small-sized saurichthyid fish characterized by a very narrow interorbital region of the skull roof, an anteriorly expansive and ventrally arched cleithrum, proportionally large abdominal vertebrae lacking neural spines and alternately bearing laterally- stretching paraneural plates, few fin rays in the median fins, and two paralleling rows of needle- like flank scales with strong thorns. This fish has slimmed down the body by reducing the depth of the head and the epaxial part of the trunk.
    [Show full text]
  • The Early Triassic Jurong Fish Fauna, South China Age, Anatomy, Taphonomy, and Global Correlation
    Global and Planetary Change 180 (2019) 33–50 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Research article The Early Triassic Jurong fish fauna, South China: Age, anatomy, T taphonomy, and global correlation ⁎ Xincheng Qiua, Yaling Xua, Zhong-Qiang Chena, , Michael J. Bentonb, Wen Wenc, Yuangeng Huanga, Siqi Wua a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China b School of Earth Sciences, University of Bristol, BS8 1QU, UK c Chengdu Center of China Geological Survey, Chengdu 610081, China ARTICLE INFO ABSTRACT Keywords: As the higher trophic guilds in marine food chains, top predators such as larger fishes and reptiles are important Lower Triassic indicators that a marine ecosystem has recovered following a crisis. Early Triassic marine fishes and reptiles Fish nodule therefore are key proxies in reconstructing the ecosystem recovery process after the end-Permian mass extinc- Redox condition tion. In South China, the Early Triassic Jurong fish fauna is the earliest marine vertebrate assemblage inthe Ecosystem recovery period. It is constrained as mid-late Smithian in age based on both conodont biostratigraphy and carbon Taphonomy isotopic correlations. The Jurong fishes are all preserved in calcareous nodules embedded in black shaleofthe Lower Triassic Lower Qinglong Formation, and the fauna comprises at least three genera of Paraseminotidae and Perleididae. The phosphatic fish bodies often show exceptionally preserved interior structures, including net- work structures of possible organ walls and cartilages. Microanalysis reveals the well-preserved micro-structures (i.e. collagen layers) of teleost scales and fish fins.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • ISPH-PROGRAM-And-ABSTRACT-BOOK.Pdf
    - ISPH 2015 logo (front cover) designed by Jasmina Wiemann. The logo highlights several aspects well suited for the Bonn, 2015 meeting. The dwarf sauropod dinosaur, Europasaurus, stands in front of a histology-filled silhouette of the main dome of Poppelsdorf Palace, the main venue for ISPH 2015. This Late Jurassic sauropod is a fitting representative, as it was discovered in Lower Saxony, Germany, and its dwarf status was verified with histological investigations. - Cover, program and abstract book designed by Aurore Canoville and Jessica Mitchell. - Program and abstract book editors: Aurore Canoville, Jessica Mitchell, Koen Stein, Dorota Konietzko-Meier, Elzbieta Teschner, Anneke van Heteren, and P. Martin Sander. ISPH 2015 – Bonn, Germany ISPH 2015 – Bonn, Germany Table of Contents TABLE OF CONTENTS Symposium Organizers and Acknowledgements ...................................................... 4 Welcome Address ........................................................................................................ 5 Program ........................................................................................................................ 6 Main Events ........................................................................................................ 6 Venues ................................................................................................................ 8 Scientific Sessions / Oral Presentations ........................................................... 11 Scientific Sessions / List of Posters .................................................................
    [Show full text]
  • New Evidence of Saurichthys from the Lower Triassic with an Evaluation of Early Saurichthyid Diversity
    Mesozoic Fishes 4 – Homology and Phylogeny, G. Arratia, H.-P. Schultze & M. V. H. Wilson (eds.): pp. 103-127, 18 figs., 2 apps. © 2008 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 978-3-89937-080-5 New evidence of Saurichthys from the Lower Triassic with an evaluation of early saurichthyid diversity Raoul J. MUTTER, Joan CARTANYÀ & Susan A. U. BASARABA Abstract A new Early Triassic species from the Vega-Phroso Siltstone Member of the Sulphur Mountain Formation of western Canada, Saurichthys toxolepis sp. nov., is described, and we confirm the presence of a second species, Saurichthys dayi, in the same formation. Another species from the Wordy Creek Formation of East Greenland, Saurichthys cf. S. ornatus, is introduced. Our review of the Early-Middle Triassic record of the genus Saurichthys reveals that species with striking differences in skull anatomy and squamation were already present in the Early Triassic. We briefly review saurichthyid evolution and Early-Middle Triassic paleobiogeography. Saurichthys was predominantly marine, and a significant taphonomic bias is identified in the Triassic record. The new evidence highlights the importance of often poorly dated Early Triassic saurichthyids and shows that evolutionary trends are more complex than previously believed. Introduction Saurichthyids share a slender and elongate body with far posteriorly positioned pelvic, anal, and dorsal fins and an oblong-slender, pointed snout, usually with long jaws. Saurichthyid remains have caused much confusion due to the lack of diagnostic especially features in isolated teeth, leaving basically the elongate, slender jaws as the universally accepted diagnostic feature of saurichthyids. Saurichthyids were long known by teeth only.
    [Show full text]
  • Body-Shape Diversity in Triassic–Early Cretaceous Neopterygian fishes: Sustained Holostean Disparity and Predominantly Gradual Increases in Teleost Phenotypic Variety
    Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety John T. Clarke and Matt Friedman Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years— roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare.
    [Show full text]
  • A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes Romano, Carlo Abstract: About half of all vertebrate species today are ray-finned fishes (Actinopterygii), and nearly all of them belong to the Neopterygii (modern ray-fins). The oldest unequivocal neopterygian fossils are known from the Early Triassic. They appear during a time when global fish faunas consisted of mostly cosmopolitan taxa, and contemporary bony fishes belonged mainly to non-neopterygian (“pale- opterygian”) lineages. In the Middle Triassic (Pelsonian substage and later), less than 10 myrs (million years) after the Permian-Triassic boundary mass extinction event (PTBME), neopterygians were already species-rich and trophically diverse, and bony fish faunas were more regionally differentiated compared to the Early Triassic. Still little is known about the early evolution of neopterygians leading up to this first diversity peak. A major factor limiting our understanding of this “Triassic revolution” isaninter- val marked by a very poor fossil record, overlapping with the Spathian (late Olenekian, Early Triassic), Aegean (Early Anisian, Middle Triassic), and Bithynian (early Middle Anisian) substages. Here, I review the fossil record of Early and Middle Triassic marine bony fishes (Actinistia and Actinopterygii) at the substage-level in order to evaluate the impact of this hiatus–named herein the Spathian–Bithynian gap (SBG)–on our understanding of their diversification after the largest mass extinction event of the past. I propose three hypotheses: 1) the SSBE hypothesis, suggesting that most of the Middle Triassic diver- sity appeared in the aftermath of the Smithian-Spathian boundary extinction (SSBE; ฀2 myrs after the PTBME), 2) the Pelsonian explosion hypothesis, which states that most of the Middle Triassic ichthyo- diversity is the result of a radiation event in the Pelsonian, and 3) the gradual replacement hypothesis, i.e.
    [Show full text]
  • Early Jurassic) of Fontenoille (Province of Luxembourg, South Belgium)
    KONINKLIJK BELGISCH INSTITUUT INSTITUT ROYAL DES SCIENCES VOOR NATUURWETENSCHAPPEN NATURELLES DE BELGIQUE ROYAL BELGIAN INSTITUTE OF NATURAL SCIENCES MEMOIRS OF THE GEOLOGICAL SURVEY OF BELGIUM N. 48 - 2002 A new microvertebrate fauna from the Middle Hettangian (Early Jurassic) of Fontenoille (Province of Luxembourg, south Belgium) par Dominique DELSATE1, Christopher J. DUFFIN2 & Robi WEIS3 1 : Musée national d’Histoire naturelle de Luxembourg – Paléontologie , 25 rue Münster, L-2160 Luxembourg 2 : 146, Church Hill Road, Sutton, Surrey SM3 8NF, England 3 : 31c, Rue Norbert Metz, L-3524 Dudelange, Grand Duché de Luxembourg cover illustration: Isolated teeth of Synechodus streitzi sp. nov. from the Marnes de Jamoigne (Liasicus Zone, Hettangian, Early Jurassic) of Fontenoille, south east Belgium. a: occlusal view; b: labial view; c: lingual view (Plate 6 of this volume). Comité éditorial: L. Dejonge, P. Laga Redactieraad: L. Dejonge, P. Laga Secrétaire de rédaction: M. Dusar Redactiesecretaris: M. Dusar Service Géologique de Belgique Belgische Geologische Dienst Rue Jenner, 13 - 1000 Bruxelles Jennerstraat 13, 1000 Brussel 1 MEMOIRS OF THE GEOLOGICAL SURVEY OF BELGIUM N. 48 - 2002 A NEW MICROVERTEBRATE FAUNA FROM THE MIDDLE HETTANGIAN (EARLY JURASSIC) OF FONTENOILLE (PROVINCE OF LUXEMBOURG, SOUTH BELGIUM) ISSN 0408-9510 © Geological Survey of Belgium Guide for authors: see website Geologica Belgica (http://www.ulg.ac.be/geolsed/GB) Editeur responsable: Daniel CAHEN Verantwoordelijke uitgever: Daniel CAHEN Institut royal des Sciences Koninklijk Belgisch naturelles de Belgique Instituut voor 29, rue Vautier Natuurwetenschappen B-1000 Bruxelles Vautierstraat 29 B-1000 Brussel Dépôt légal: D 2002/0880/5 Wettelijk depot: D 2002/0880/5 Impression: Ministère des Affaires économiques Drukwerk: Ministerie van Economische Zaken * “The Geological Survey of Belgium cannot be held responsible for the accuracy of the contents, the opinions given and the statements made in the articles published in this series, the responsability resting with the authors”.
    [Show full text]
  • Predators and Preys: a Case History for Saurichthys (Costasaurichthys) Costasquamosus Rieppel, 1985 from the Ladinian of Lombardy (Italy)
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 125(1): 271-282. March 2019 PREDATORS AND PREYS: A CASE HISTORY FOR SAURICHTHYS (COSTASAURICHTHYS) COSTASQUAMOSUS RIEPPEL, 1985 FROM THE LADINIAN OF LOMBARDY (ITALY) ANDREA TINTORI Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, Italy. Present address: TRIASSICA, Institute for Triassic Fossil Lagerstätten I-23828 Perledo (LC). E-mail: [email protected] To cite this article: Tintori A. (2019) - Predators and preys: a case history for Saurichthys (Costasaurichthys) costasquamosus Rieppel, 1985 from the Ladinian of Lombardy (Italy). Riv. It. Paleontol. Strat., 125(1): 271-282. Keywords: Predation; Preys; Scavenging; Saurichthys; Middle Triassic; Lombardy; Taphonomy. Abstract: A large specimen of Saurichthys (Costasaurichthys) costasquamosus from the lower Ladinian of the Nor- thern Grigna mountain is described. It is an incomplete specimen, lacking the caudal region, and showing gut content. This latter consists of totally scattered remains of at least two specimens of adult Ctenognathichthys bellottii, a medium size fish quite common in this fossil assemblage. Saurichthys has been always considered an active predator on small fishes, but it cannot be the case for this specimen, with remains in the gut are totally disarticulated and evenly scatte- red all along the abdomen. Scavenging on floating carcasses is proposed, the hypothesis being also supported by the common preservation of Ctenognathichthys as incomplete individuals. Although the Saurichthys specimen shows some “in situ” disarticulation, caudal region elements are totally missing on the slab yielding the anterior part of the fish. As for other large Saurichthys specimens from the same site, it is supposed that this is the result of a predation by a much larger marine organism, possibly an ichthyosaur.
    [Show full text]
  • A New Species of Saurichthys (Actinopterygii: Saurichthyidae) Extends Its Group’S Range to the Late Triassic in Eastern Tethys
    Geophysical Research Abstracts Vol. 21, EGU2019-11965, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. A new species of Saurichthys (Actinopterygii: Saurichthyidae) extends its group’s range to the Late Triassic in eastern Tethys Gengyu Fang (1,2), Feixiang Wu (2), Yuanlin Sun (3), and Cheng Ji (4) (1) College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 101408, China ([email protected]), (2) Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China ([email protected]), (3) Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China ([email protected]), (4) CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Nanjing 210008, China ([email protected]) The saurichthyiform fishes are a kind of ray-finned fishes which lived from the Upper Permian to the Middle Jurassic. Featured with a pointed rostrum and a streamlined long and slender body plan, they are considered among the top predators of the Mesozoic oceanic ecosystem. They were greatly diversified during the Middle Triassic, both in eastern and western Tethys, but appeared to vanish thereafter on both sides, with no undoubted record in the eastern Tethys for a long time. Recently, a new material of saurichthys was found from the Carnian (Upper Triassic) of Yunnan province, southwestern China. The material includes a nearly complete skull preserved together with some ammonites and bivalves. Based on the fairly long rostrum and some distinguishing features of the opercular bones, it is assigned as a new species of Saurichthys.
    [Show full text]
  • Internal Cranial Anatomy of Early Triassic Species of †Saurichthys
    Argyriou et al. BMC Evolutionary Biology (2018) 18:161 https://doi.org/10.1186/s12862-018-1264-4 RESEARCH ARTICLE Open Access Internal cranial anatomy of Early Triassic species of †Saurichthys (Actinopterygii: †Saurichthyiformes): implications for the phylogenetic placement of †saurichthyiforms Thodoris Argyriou1* , Sam Giles2, Matt Friedman3, Carlo Romano1 , Ilja Kogan4,5 and Marcelo R. Sánchez-Villagra1 Abstract Background: †Saurichthyiformes were a successful group of latest Permian–Middle Jurassic predatory actinopterygian fishes and constituted important, widely-distributed components of Triassic marine and freshwater faunas. Their systematic affinities have long been debated, with †saurichthyiforms often being aligned with chondrosteans, a group today comprising sturgeons and paddlefishes. However, their character-rich endocranial anatomy has not been investigated in detail since the first half of the 20th century. Since then, major advances have occurred in terms of our understanding of early actinopterygian anatomy, as well as techniques for extracting morphological data from fossils. Results: We used μCT to study the internal cranial anatomy of two of the stratigraphically oldest representatives of †Saurichthys, from the Early Triassic of East Greenland and Nepal. Our work revealed numerous previously unknown characters (e.g., cryptic oticooccipital fissure; intramural diverticula of braincase; nasobasal canals; lateral cranial canal; fused dermohyal), and permitted the reevalution of features relating to the structure of cranial fossae, basicranial circulation and opercular anatomy of the genus. Critically, we reinterpret the former †saurichthyiform opercle as an expanded subopercle. For comparison, we also produced the first digital models of a braincase and endocast of a sturgeon (A. brevirostrum). New information from these taxa was included in a broad phylogenetic analysis of Actinopterygii.
    [Show full text]