Archiv Für Naturgeschichte

Total Page:16

File Type:pdf, Size:1020Kb

Archiv Für Naturgeschichte © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Bericht über die Leistungen in der Ichthyologie während des Jahres 1889. Von Dr. F. Hilg'endopf. Allgemeines. J. M. Hinterwaldner. Wegrv^eiser iür Naturaliensammler. Wien 1889, 663 S., 331 Xyl. 8« (Vergl. ornith. Ber. 89, p. 82). — Ein Sammelwerk, das nach den verschiedensten Richtungen hin Auskunft giebt. Ausser dem Ausstopfen wird auch die Herstellung antom. u. mikroskopischen Präparate, die Aquarienkunde (Macro- poden ausführlicher), berücksichtigt. lieber Nomenklaturregeln vergl. C. r. congres intern, de zool. Paris 1889. Jordan u.Goss, p.298, zählen 16 Fisch-Namen auf, die gegen ihre Ansicht umgeändert werden müssten, wenn Verschiedenheit der Endung etc. nicht genügen sollte, sie gegenüber ähnlichen als zulässig zu erachten, (vergl. Pleuronectidae). N. U. Zograff u. F. F. Kavraiski. Verzeichniss der Fische des Mus. der Universität Moskau (Russisch) Isvestiya imper. ob- schestwa lyubitelei estestwozn. Anthrop. Ethn. Sostoya, pre Mosk. Univ. Bd. 56, 1. Abth., 50 S. E. Perrier. L'eau de mer artificieUe ä l'expos. univ. de 1889. — 2 Recepte die sich gut bewährten. — C. r. soc. biol., (9) I 711-3. A. de Monaco. Appareil nouv. pour les rech. zool. et biol. dans des profondeurs determinees de la mer. — Am Ende des Kabels ein Gewicht „heurtoir'^, dies wird bis zur gewünschten Tiefe hinabgelassen, dann der Fangapparat selbst am Kabel nachgeschickt, wobei der Stoss gegen das (jewicht den App. öffnet. Nach dem Fang wird durch einen am Kabel niederlaufenden Ring der Deckel wieder zugeschoben. — C. r. ac. Paris, CIX 17—20, 2 Xyl. Vergl. auch C. r. congres intern. Paris, 89, wo versch. Apparate beschr. u. abgebildet. © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 186 Dr. F. Hilgendorf: Bericht über die Leistungen A. C. Haddon. Zool. notes from Torres Straits : Caudal respir. in Periophtlialmus. Employment of Echeneis in turtle-fisliing. Am- phioxus. — Nature, Vol. 39 p. 285— 6, s. Systematik. Francis Day starb am 10. Juli 89 zu Cheltenham. Vergl. Zoologist (3) XIII 306—8; Nature XL 282. Vergleiche ferner: Trivialnamen schottisclier Seefisclie bei Faunen. Netze für Unters, der pelag. Fauna dicht über den Boden, im Midwater und an der Oberfläche, M'Intosh, „Pel. Fauna" bei Britannien. Anatomie u. Physiologie. Allgemeines. R. Schneider, Verbreit. u. Bedeut. des Eisens im anim. Org. — Abb. von Fischzähnen (Gadus) an denen stets der s. g. Schmelz stark eisenhaltig, auch schon in den halb ausgebildeten Zähnen. — Humboldt, VIII Heft 9 (Vergl. Ber. 88). Vergleiche: Allg. Stoffwechsel, List (bei Haut). Maximum der Asymmetrie durch Verschwinden einer Kiemenöffnung bei Achi- ropsis, Jordan u. Goss (Pleuronectidae). Anatomie des Amphioxus, Lankester (System.); desgl. von Protopterus, W. N. Parker. Haut. L. Pogojeff. lieber die Haut des Neunauges. — Alkohol- härtung, Goldbehandlung^ l^icrokarmin oder Haematox. - Färbung, oder auch Holzessig u. danach Alk.; die Schnitte dann 3— 20 Tage in Alk. u. Essig. Ferner Macerationspräp. (Alk., schweflige Säure u. Glycerin nach vorheriger Goldbehandlung). An den Epithelzellen sah Vf. keine Stacheln, nur 1 feinen Fortsatz zur Tiefe; nahe der Basalmembran sind die Epz. gestreckter (sog. Ersatzz.) u. zwischen ihnen spärliche Z. mit Forts, nach oben u. unten (Nervenzellen), ausserdem Becherzellen. Die viel grösseren Kolben werden mit den Pacinischen Körp. der höh. Vertebr. verglichen; es wird ihnen e. concentrisch geschichtete Hülle, ein centraler Cylinder mit ein- tretendem axialen Ner^^enfaden zugeschrieben. Direkte Verbindung mit Nerven des Coriums wurde aber nicht beob. Die Körnerzellen hält Vf. für Drüsen (nicht für Nervz.) Zu den Grübchen auf dem Kopfe von Petr. fiuv. ziehen Nervenbündel, von denen mehrfach Fasern zu langen spindelf. Zellen, welche das Centrum des Grüb- chens erfüllen u. den Nervz. der Epidermis (s. o.) gleichen, verfolgt wurden, sodass hier Gefühlsorgane vorliegen dürften. — Arch. für mikr. Anat., Bd, 34, S. 106—22, Tf.V. G. Wolf f. Die Cuticula der Wirbelthierepidermis. — lieber dem gestrichelten Saum (= Pseudocuticula Wolff) findet sich bei Amphioxus (Abb.) u. undeutlicher bei Petr. noch eine sehr feine echte, bisher übersehene Cuticula. Bei anderen Fischen, Cobitis, Rhodeus, A-nguilla (Abb.) ebenfalls eine Cut. aber ohne gestr. Saum. — Jenai. Zschr. f. Natw. XXIII 567—584, Tf. 28 (Fig. 1, 2). J. H. List. Zur Herkunft des Pigmentes in der Oberhaut. — Das in den Gefässen (nach Unters, bei Triton, vergl. Böttger's © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at in der Ichthyologie während des Jahres 1889. 187 Ber. 89 p. 266) gebildete u. von Leucocyten aufgenommene Pigm. wandert von den Zapfen aus, welche das Corium in die Epidermis sendet, nach der Oberfläche der Haut. Zweck des Transports ist Entfernung der Pigmentstoffe aus dem Körper [wozu aber die intensiv schwarze Pigmentirung des Peritoneums vieler Fische wenig har- monirt, sodass eher biolog. Momente in Frage kommen dürften. R.]. Beob. an den Barteln von Cobitis foss. u. der Haut von Torpedo marm. — Anat. Anz. IV 596—9. B. Solger. Zur Structur der Pigmentzelle- — Bei Gastrosteus pung. u. Esox mehrkernige Pigz. Die Melaninstäbchen richten sich (in der expandirten Zelle) radiär gegen einen hellen, zw. den 2 Kernen liegenden Fleck u. erinnern an Eabl's Schema vom Bau der ruhenden Zelle. - Z. Anz. XII 671—3, 1 Xyl. C. H. Eigen mann. Genesis of color-cells of fishes. — Bilden sich als grosse, anfangs farblose „Chromatoblasten", wenn die Gastrula 1/2 od. V3 des Eies überzogen hat, u. zwar sprossen sie zunächst vom Embryo in die Furchungshöhle hinein an der Stelle, wo der E. den Embryonalwulst trifft. Beob. an Hypsopsetta (Pleuro- nectide) u. Sciaena. West American Scientist, Juli 89. A. Bottard [„Bottarel" wohl Druckfehler]. L'appareil a venin des poissons. — Vf. unterscheidet 5 Typen. 1) Synanceia, die Gift- drüsen lagern in der Wand des Reservoirs zur Seite der Rücken- stacheln; 5 Todesfälle bei Bourbon. 2) Trachinus, Vf. bestätigt Gressin's Angaben (1884); dazu auch Cottus (scorpio u. bub.), bei dem die Scheiden der Opercularstacheln zur Laichzeit von Giftzellen aus- gekleidet sind, sonst aber höchstens inselartige Flecke solcher Z. zeigen. 3) Thalassophryme retic, hier ein Giftapp, an Opercularst. u. an den 2 Stacheln der D. I. 4) Muraena besitzt am Gaumen, ventral dem Os palatinum angelagert, eine Tasche, die an den Scheiden von 3 —4 bewegl. Palzähnen mündet u. auch mit einigen Maxillarz. in Verbindung steht; das Sekret hat starke verdauende Eigenschaft, daher Zerstörung der Drüse am todten Fisch. 5) Scor- paena (scrofa u. porcus). Das Gift wird in den Scheiden der D.- u. A. -Stacheln abgesondert, ähnlich wie bei Trachinus. — C. r. acad. Paris, T. 108 p. 534—7. A. Bottard. L'appareil a venin des poissons. — Enthält ausser den 5 Typen (s. C. r, ac. sei.) noch Angaben über Plotosus (lineatus). Er hat hinten am Pectoral- u. Dorsalstachel einen Canal, der das Gift aus e. birnf. Drüse an der Basis leitet; erst durch Abbrechen der Stachelspitze findet das Gift den Ausweg (Typ. Synanceia). — C. r. soc. de biol. Paris, (9) I (1889), p. 131-8. A. Bottard. Les poissons venimeux. Gontribution ä l'hygiene navale. Paris, 198 S. 8». Abb. E. Beraneck. Organes des sens branchiaux. Bull. soc. sei. nat. Neuchätel VI 240—1. — Nur Referat betreffend Arb. üb. die Kiemen-Sinnesorg. E. Ph. Allis. The anatomy and development of the lateral line System in Amia calva. — Vf. schildert Vertheilung u. Entw. der © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 188 Dr. F. Hilgendorf: Bericht über die Leistungen Seitenlinien (d. h. der in Knochenröliren eingeschlossenen, mit ein- ander communicirenden u. mit dem Wasser erst durch einen ent- fernteren seitlichen Porus sich verbindenden Organe), darm der „pit Organs", d. h. linienf. angeordneter Org., die nur durch ein niedriges Grübchen des (an der Unterfläche gleichmässig verlaufenden) Epithels von der Oberfläche der Haut getrennt sind u. mit den zur selben Linie gehörigen Nachbarorg. sich nur durch sohde Epithelstränge verbinden. [Die durch eine Einsenkung des Epithels in seiner ganzen Dicke gebildeten „Nervensäckchen" anderer Ganoiden erwähnt und vergleicht Vf. nicht.] Die Seitenlorg. u. die Pit-Org. gehören beide zu den Nervenhügeln Merkels. Dagegen zähjt die 3. Art der Haut- sinnesorg. bei Amia, die „surface sense-organs" zu den Endknospen M.'s; sie gehören nicht nach Linien zusammen, sie bedecken den ganzen Kopf, auch die von den Nervhüg. freigelassenen Theile (Mund- ränder, Operkeln, Scheitel, Kiemenhaut wie auch Mundhöhle) ; dorsal gehen sie bis zur Rückenflosse nach hinten. — Die Grübchen- organe bilden jederseits 3 Querreihen auf dem Hinterkopf, 1 Längs- u. 1 Qlinie auf der Wange, 1 Ql. hinten auf der Mandibel u. 1 Ql. in d. Mitte der Gularplatte, ausserdem 1 vom Anf. der L. 1. zur Rückfl. aufsteigende u. 1 dicht üb. der L. 1. an dieser verlaufende („accescor. L. 1.") Reihe. Die Org. der Seiten! verlaufen in der bei Knochen- fischen typ. Weise, jedoch ist eine Quercommissur vorn an der Infra- orbitallinie vorh., die durch das Ethmoid verläuft u. nur bei Ganoiden auftritt. Vf. unterscheidet als Theile: den Infraorbital - Canal (21), Supraorbitalc. (7), Operculo- Mandibulare. (17), die supratemporale Quercommissur (3), die Laterallinie des Rumpfes. Die Zahlen der in jedem Theil auftretenden Sinnesorgane (vergl. die Klammern) werden von vorn gezählt. In dem Infrorbc. gehört das 1. — 4. Sinn- organ eigentlich
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • A New Species of Saurichthys from the Middle Triassic (Anisian)
    第56卷 第4期 古 脊 椎 动 物 学 报 pp. 273–294 2018年10月 VERTEBRATA PALASIATICA figs. 1–9 DOI: 10.19615/j.cnki.1000-3118.171023 A new species of Saurichthys from the Middle Triassic (Anisian) of southwestern China WU Fei-Xiang1,2 SUN Yuan-Lin3* FANG Geng-Yu4 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University Beijing 100871 * Corresponding author: [email protected]) (4 School of Public Health, Peking University Beijing 100191) Abstract The saurichthyiform fishes were effective predators and hence the significant consumers in the aquatic ecosystems during the Early Mesozoic. They showed a notable diversification in the Anisian (Middle Triassic) Lagerstätten of southwestern China. In this contribution, we report a new species of Saurichthys from the Anisian of Yunnan, China, that displays some peculiar modifications of the axial skeleton and the longate body of the group. This new species, Saurichthys spinosa is a small-sized saurichthyid fish characterized by a very narrow interorbital region of the skull roof, an anteriorly expansive and ventrally arched cleithrum, proportionally large abdominal vertebrae lacking neural spines and alternately bearing laterally- stretching paraneural plates, few fin rays in the median fins, and two paralleling rows of needle- like flank scales with strong thorns. This fish has slimmed down the body by reducing the depth of the head and the epaxial part of the trunk.
    [Show full text]
  • The Early Triassic Jurong Fish Fauna, South China Age, Anatomy, Taphonomy, and Global Correlation
    Global and Planetary Change 180 (2019) 33–50 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Research article The Early Triassic Jurong fish fauna, South China: Age, anatomy, T taphonomy, and global correlation ⁎ Xincheng Qiua, Yaling Xua, Zhong-Qiang Chena, , Michael J. Bentonb, Wen Wenc, Yuangeng Huanga, Siqi Wua a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China b School of Earth Sciences, University of Bristol, BS8 1QU, UK c Chengdu Center of China Geological Survey, Chengdu 610081, China ARTICLE INFO ABSTRACT Keywords: As the higher trophic guilds in marine food chains, top predators such as larger fishes and reptiles are important Lower Triassic indicators that a marine ecosystem has recovered following a crisis. Early Triassic marine fishes and reptiles Fish nodule therefore are key proxies in reconstructing the ecosystem recovery process after the end-Permian mass extinc- Redox condition tion. In South China, the Early Triassic Jurong fish fauna is the earliest marine vertebrate assemblage inthe Ecosystem recovery period. It is constrained as mid-late Smithian in age based on both conodont biostratigraphy and carbon Taphonomy isotopic correlations. The Jurong fishes are all preserved in calcareous nodules embedded in black shaleofthe Lower Triassic Lower Qinglong Formation, and the fauna comprises at least three genera of Paraseminotidae and Perleididae. The phosphatic fish bodies often show exceptionally preserved interior structures, including net- work structures of possible organ walls and cartilages. Microanalysis reveals the well-preserved micro-structures (i.e. collagen layers) of teleost scales and fish fins.
    [Show full text]
  • Biogenic Habitats on New Zealand's Continental Shelf. Part II
    Biogenic habitats on New Zealand’s continental shelf. Part II: National field survey and analysis New Zealand Aquatic Environment and Biodiversity Report No. 202 E.G. Jones M.A. Morrison N. Davey S. Mills A. Pallentin S. George M. Kelly I. Tuck ISSN 1179-6480 (online) ISBN 978-1-77665-966-1 (online) September 2018 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-and-resources/publications http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright – Fisheries New Zealand TABLE OF CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 3 1.1 Overview 3 1.2 Objectives 4 2. METHODS 5 2.1 Selection of locations for sampling. 5 2.2 Field survey design and data collection approach 6 2.3 Onboard data collection 7 2.4 Selection of core areas for post-voyage processing. 8 Multibeam data processing 8 DTIS imagery analysis 10 Reference libraries 10 Still image analysis 10 Video analysis 11 Identification of biological samples 11 Sediment analysis 11 Grain-size analysis 11 Total organic matter 12 Calcium carbonate content 12 2.5 Data Analysis of Core Areas 12 Benthic community characterization of core areas 12 Relating benthic community data to environmental variables 13 Fish community analysis from DTIS video counts 14 2.6 Synopsis Section 15 3. RESULTS 17 3.1
    [Show full text]
  • Marine Discharge Consent Application ‐ Deck Drainage
    MARINE DISCHARGE CONSENT APPLICATION ‐ DECK DRAINAGE Taranaki Basin Prepared for: OMV New Zealand Limited The Majestic Centre Level 20, 100 Willis Street PO Box 2621, Wellington 6015 New Zealand SLR Ref: 740.10078.00000 Version No: ‐v1.0 March 2018 OMV New Zealand Limited SLR Ref No: 740.10078.00000‐R01 Marine Discharge Consent Application ‐ Deck Drainage Filename: 740.10078.00000‐R01‐v1.0 Marine Discharge Consent Taranaki Basin 20180326 (FINAL).docx March 2018 PREPARED BY SLR Consulting NZ Limited Company Number 2443058 5 Duncan Street Port Nelson 7010, Nelson New Zealand T: +64 274 898 628 E: [email protected] www.slrconsulting.com BASIS OF REPORT This report has been prepared by SLR Consulting NZ Limited with all reasonable skill, care and diligence, and taking account of the timescale and resources allocated to it by agreement with OMV New Zealand Limited. Information reported herein is based on the interpretation of data collected, which has been accepted in good faith as being accurate and valid. This report is for the exclusive use of OMV New Zealand Limited. No warranties or guarantees are expressed or should be inferred by any third parties. This report may not be relied upon by other parties without written consent from SLR SLR disclaims any responsibility to the Client and others in respect of any matters outside the agreed scope of the work. DOCUMENT CONTROL Reference Date Prepared Checked Authorised 740.10078.00000‐R01‐v1.0 26 March 2018 SLR Consulting NZ Ltd Dan Govier Dan Govier 740.10078.00000‐R01‐v1.0 Marine Discharge Consent 20180326 (FINAL).docx Page 2 OMV New Zealand Limited SLR Ref No: 740.10078.00000‐R01 Marine Discharge Consent Application ‐ Deck Drainage Filename: 740.10078.00000‐R01‐v1.0 Marine Discharge Consent Taranaki Basin 20180326 (FINAL).docx March 2018 EXECUTIVE SUMMARY OMV New Zealand Limited (OMV New Zealand) is applying for a Marine Discharge Consent (hereafter referred to as a Discharge Consent) under Section 38 of the Exclusive Economic Zone and Continental Shelf (Environmental Effects) Act 2012 (EEZ Act).
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • ISPH-PROGRAM-And-ABSTRACT-BOOK.Pdf
    - ISPH 2015 logo (front cover) designed by Jasmina Wiemann. The logo highlights several aspects well suited for the Bonn, 2015 meeting. The dwarf sauropod dinosaur, Europasaurus, stands in front of a histology-filled silhouette of the main dome of Poppelsdorf Palace, the main venue for ISPH 2015. This Late Jurassic sauropod is a fitting representative, as it was discovered in Lower Saxony, Germany, and its dwarf status was verified with histological investigations. - Cover, program and abstract book designed by Aurore Canoville and Jessica Mitchell. - Program and abstract book editors: Aurore Canoville, Jessica Mitchell, Koen Stein, Dorota Konietzko-Meier, Elzbieta Teschner, Anneke van Heteren, and P. Martin Sander. ISPH 2015 – Bonn, Germany ISPH 2015 – Bonn, Germany Table of Contents TABLE OF CONTENTS Symposium Organizers and Acknowledgements ...................................................... 4 Welcome Address ........................................................................................................ 5 Program ........................................................................................................................ 6 Main Events ........................................................................................................ 6 Venues ................................................................................................................ 8 Scientific Sessions / Oral Presentations ........................................................... 11 Scientific Sessions / List of Posters .................................................................
    [Show full text]
  • New Evidence of Saurichthys from the Lower Triassic with an Evaluation of Early Saurichthyid Diversity
    Mesozoic Fishes 4 – Homology and Phylogeny, G. Arratia, H.-P. Schultze & M. V. H. Wilson (eds.): pp. 103-127, 18 figs., 2 apps. © 2008 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 978-3-89937-080-5 New evidence of Saurichthys from the Lower Triassic with an evaluation of early saurichthyid diversity Raoul J. MUTTER, Joan CARTANYÀ & Susan A. U. BASARABA Abstract A new Early Triassic species from the Vega-Phroso Siltstone Member of the Sulphur Mountain Formation of western Canada, Saurichthys toxolepis sp. nov., is described, and we confirm the presence of a second species, Saurichthys dayi, in the same formation. Another species from the Wordy Creek Formation of East Greenland, Saurichthys cf. S. ornatus, is introduced. Our review of the Early-Middle Triassic record of the genus Saurichthys reveals that species with striking differences in skull anatomy and squamation were already present in the Early Triassic. We briefly review saurichthyid evolution and Early-Middle Triassic paleobiogeography. Saurichthys was predominantly marine, and a significant taphonomic bias is identified in the Triassic record. The new evidence highlights the importance of often poorly dated Early Triassic saurichthyids and shows that evolutionary trends are more complex than previously believed. Introduction Saurichthyids share a slender and elongate body with far posteriorly positioned pelvic, anal, and dorsal fins and an oblong-slender, pointed snout, usually with long jaws. Saurichthyid remains have caused much confusion due to the lack of diagnostic especially features in isolated teeth, leaving basically the elongate, slender jaws as the universally accepted diagnostic feature of saurichthyids. Saurichthyids were long known by teeth only.
    [Show full text]
  • Body-Shape Diversity in Triassic–Early Cretaceous Neopterygian fishes: Sustained Holostean Disparity and Predominantly Gradual Increases in Teleost Phenotypic Variety
    Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety John T. Clarke and Matt Friedman Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years— roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare.
    [Show full text]
  • Determining the Diet of New Zealand King Shag Using DNA Metabarcoding
    Determining the diet of New Zealand king shag using DNA metabarcoding New Zealand King Shag, (Leucocarbo carunculatus) on Blumine Island, Marlborough Sounds, New Zealand in 2016 (Wikipedia commons). Aimee van der Reis & Andrew Jeffs Report Prepared For: Department of Conservation, Conservation Services Programme, Project BCBC2019-05. DOC MarineDRAFT Science Advisors Graeme Taylor and Dr Karen Middlemiss. November 2020 Reports from Auckland UniServices Limited should only be used for the purposes for which they were commissioned. If it is proposed to use a report prepared by Auckland UniServices Limited for a different purpose or in a different context from that intended at the time of commissioning the work, then UniServices should be consulted to verify whether the report is being correctly interpreted. In particular it is requested that, where quoted, conclusions given in Auckland UniServices reports should be stated in full. INTRODUCTION The New Zealand king shag (Leucocarbo carunculatus) is an endemic seabird that is classed as nationally endangered (Miskelly et al., 2008). The population is confined to a small number of colonies located around the coastal margins of the outer Marlborough Sounds (South Island, New Zealand); with surveys suggesting the population is currently stable (~800 individuals surveyed in 2020; Aquaculture New Zealand, 2020; Schuckard et al., 2015). Monitoring the colonies has become a priority and research is being conducted to better understand their population dynamics and basic ecology to improve the management of the population, particularly in relation to human activities such as fishing, aquaculture and land use (Fisher & Boren, 2012). The diet of the New Zealand king shag is strongly linked to the waters surrounding their colonies and it has been suggested that anthropogenic activities, such as marine farm structures, may displace foraging habitat that could affect the population of New Zealand king shag (Fisher & Boren, 2012).
    [Show full text]
  • A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes Romano, Carlo Abstract: About half of all vertebrate species today are ray-finned fishes (Actinopterygii), and nearly all of them belong to the Neopterygii (modern ray-fins). The oldest unequivocal neopterygian fossils are known from the Early Triassic. They appear during a time when global fish faunas consisted of mostly cosmopolitan taxa, and contemporary bony fishes belonged mainly to non-neopterygian (“pale- opterygian”) lineages. In the Middle Triassic (Pelsonian substage and later), less than 10 myrs (million years) after the Permian-Triassic boundary mass extinction event (PTBME), neopterygians were already species-rich and trophically diverse, and bony fish faunas were more regionally differentiated compared to the Early Triassic. Still little is known about the early evolution of neopterygians leading up to this first diversity peak. A major factor limiting our understanding of this “Triassic revolution” isaninter- val marked by a very poor fossil record, overlapping with the Spathian (late Olenekian, Early Triassic), Aegean (Early Anisian, Middle Triassic), and Bithynian (early Middle Anisian) substages. Here, I review the fossil record of Early and Middle Triassic marine bony fishes (Actinistia and Actinopterygii) at the substage-level in order to evaluate the impact of this hiatus–named herein the Spathian–Bithynian gap (SBG)–on our understanding of their diversification after the largest mass extinction event of the past. I propose three hypotheses: 1) the SSBE hypothesis, suggesting that most of the Middle Triassic diver- sity appeared in the aftermath of the Smithian-Spathian boundary extinction (SSBE; ฀2 myrs after the PTBME), 2) the Pelsonian explosion hypothesis, which states that most of the Middle Triassic ichthyo- diversity is the result of a radiation event in the Pelsonian, and 3) the gradual replacement hypothesis, i.e.
    [Show full text]
  • Early Jurassic) of Fontenoille (Province of Luxembourg, South Belgium)
    KONINKLIJK BELGISCH INSTITUUT INSTITUT ROYAL DES SCIENCES VOOR NATUURWETENSCHAPPEN NATURELLES DE BELGIQUE ROYAL BELGIAN INSTITUTE OF NATURAL SCIENCES MEMOIRS OF THE GEOLOGICAL SURVEY OF BELGIUM N. 48 - 2002 A new microvertebrate fauna from the Middle Hettangian (Early Jurassic) of Fontenoille (Province of Luxembourg, south Belgium) par Dominique DELSATE1, Christopher J. DUFFIN2 & Robi WEIS3 1 : Musée national d’Histoire naturelle de Luxembourg – Paléontologie , 25 rue Münster, L-2160 Luxembourg 2 : 146, Church Hill Road, Sutton, Surrey SM3 8NF, England 3 : 31c, Rue Norbert Metz, L-3524 Dudelange, Grand Duché de Luxembourg cover illustration: Isolated teeth of Synechodus streitzi sp. nov. from the Marnes de Jamoigne (Liasicus Zone, Hettangian, Early Jurassic) of Fontenoille, south east Belgium. a: occlusal view; b: labial view; c: lingual view (Plate 6 of this volume). Comité éditorial: L. Dejonge, P. Laga Redactieraad: L. Dejonge, P. Laga Secrétaire de rédaction: M. Dusar Redactiesecretaris: M. Dusar Service Géologique de Belgique Belgische Geologische Dienst Rue Jenner, 13 - 1000 Bruxelles Jennerstraat 13, 1000 Brussel 1 MEMOIRS OF THE GEOLOGICAL SURVEY OF BELGIUM N. 48 - 2002 A NEW MICROVERTEBRATE FAUNA FROM THE MIDDLE HETTANGIAN (EARLY JURASSIC) OF FONTENOILLE (PROVINCE OF LUXEMBOURG, SOUTH BELGIUM) ISSN 0408-9510 © Geological Survey of Belgium Guide for authors: see website Geologica Belgica (http://www.ulg.ac.be/geolsed/GB) Editeur responsable: Daniel CAHEN Verantwoordelijke uitgever: Daniel CAHEN Institut royal des Sciences Koninklijk Belgisch naturelles de Belgique Instituut voor 29, rue Vautier Natuurwetenschappen B-1000 Bruxelles Vautierstraat 29 B-1000 Brussel Dépôt légal: D 2002/0880/5 Wettelijk depot: D 2002/0880/5 Impression: Ministère des Affaires économiques Drukwerk: Ministerie van Economische Zaken * “The Geological Survey of Belgium cannot be held responsible for the accuracy of the contents, the opinions given and the statements made in the articles published in this series, the responsability resting with the authors”.
    [Show full text]