KIF2C Regulates Synaptic Plasticity and Cognition by Mediating
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455197; this version posted August 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 KIF2C regulates synaptic plasticity and cognition by mediating 2 dynamic microtubule invasion of dendritic spines 3 Rui Zheng1,2†, Yong-Lan Du1,2†, Xin-Tai Wang2, Tai-Lin Liao1,2, Zhe Zhang1,2, Na Wang1,2, Xiu- 4 Mao Li3, Ying Shen4, Lei Shi5, Jian-Hong Luo1,2*, Jun Xia6*, Ziyi Wang7*, Junyu Xu1,2* 5 6 1Department of Neurobiology and Department of Rehabilitation of the Children’s 7 Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. 8 2NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier 9 Science Center for Brain Research and Brain Machine Integration, School of Brain Science and 10 Brain Medicine, Zhejiang University, Hangzhou, 310058, China. 11 3Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School 12 of Medicine, Hangzhou, 310058, China. 13 4Department of Physiology and Department of Neurology of First Affiliated Hospital, Zhejiang 14 University School of Medicine, Hangzhou, 310058, China. 15 5JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, 16 Guangzhou, China. 17 6Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong 18 University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. 19 7Innovative Institute of Basic Medical Sciences of Zhejiang University (Yuhang), Hangzhou, 20 310012, China.
[Show full text]