Multiple Waves of Recent DNA Transposon Activity in the Bat, Myotis Lucifugus

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Waves of Recent DNA Transposon Activity in the Bat, Myotis Lucifugus Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus David A. Ray,1,5,6 Cedric Feschotte,2,5 Heidi J.T. Pagan,1 Jeremy D. Smith,1 Ellen J. Pritham,2 Peter Arensburger,3 Peter W. Atkinson,3 and Nancy L. Craig4 1Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA; 2Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA; 3Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA; 4Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA DNA transposons, or class 2 transposable elements, have successfully propagated in a wide variety of genomes. However, it is widely believed that DNA transposon activity has ceased in mammalian genomes for at least the last 40 million years. We recently reported evidence for the relatively recent activity of hAT and Helitron elements, two distinct groups of DNA transposons, in the lineage of the vespertilionid bat Myotis lucifugus. Here, we describe seven additional families that have also been recently active in the bat lineage. Early vespertilionid genome evolution was dominated by the activity of Helitrons, mariner-like and Tc2-like elements. This was followed by the colonization of Tc1-like elements, and by a more recent explosion of hAT-like elements. Finally, and most recently, piggyBac-like elements have amplified within the Myotis genome and our results indicate that one of these families is probably still expanding in natural populations. Together, these data suggest that there has been tremendous recent activity of various DNA transposons in the bat lineage that far exceeds those previously reported for any mammalian lineage. The diverse and recent populations of DNA transposons in genus Myotis will provide an unprecedented opportunity to study the impact of this class of elements on mammalian genome evolution and to better understand what makes some species more susceptible to invasion by genomic parasites than others. [Supplemental material is available online at www.genome.org.] Transposable elements represent a substantial fraction of many man DNA transposon families younger than ∼37 Myr (Pace and eukaryotic genomes. For example, ∼50% of the human genome is Feschotte 2007). derived from transposable element sequences (Lander et al. In stark contrast to the situation in human and mouse, there 2001). Other genomes, especially those of plants, may consist of is mounting evidence for recent and substantial DNA transposon substantially higher proportions of transposable element-derived activity in the vespertilionid bat Myotis lucifugus. In one study, DNA (SanMiguel and Bennetzen 1998; Bennetzen 2000). Trans- this conclusion was inferred from the presence of minimally di- posable elements are typically divided into two classes (Wicker et verged nonautonomous hAT transposons, the polymorphic sta- al. 2007). Class 1 is represented by the retrotransposons (LINEs, tus of some of these transposons in natural Myotis populations, SINEs, LTRs, and ERVs). Class 2 includes the “cut-and-paste” and the discovery of an apparently full-length and potentially DNA transposons, which are characterized by terminal inverted functional autonomous hAT transposon (Ray et al. 2007). In a repeats (TIRs) and are mobilized by an element-encoded trans- separate report, an extensive and recently amplified population posase. Currently, 10 superfamilies of cut-and-paste DNA trans- of Helitrons, a distinct subclass of DNA transposons, was discov- posons are recognized in eukaryotes (Feschotte and Pritham ered in the M. lucifugus genome (Pritham and Feschotte 2007). 2007). These surprising observations raised a number of intriguing ques- While class 2 elements are widespread and active in a variety tions about the activity of DNA transposons and its genomic of eukaryotes, they have been thought to be transpositionally impact in Myotis and other bats. In particular, we wondered inactive in mammalian genomes. This conclusion was based pri- whether the discovery of relatively recent hAT and Helitron ac- marily on the initial analyses of the human and mouse genome tivity in Myotis were merely coincidental or whether it reflected sequences. While both species harbor a significant number and a some unique biological or genomic features of bats in general or diverse assortment of DNA transposons, they show no signs of vespertilionids in particular that has allowed DNA transposons to recent activity (Lander et al. 2001; Waterston et al. 2002). For invade and expand in these genomes, while such occurrences example, there are more than 300,000 DNA elements recogniz- appear to be rare or nonexistent in other mammalian genomes. able in the human genome, which are grouped into 120 families As a prelude to addressing these questions we examined M. lu- and belong to five superfamilies. A large subset of these elements cifugus for additional traces of DNA transposon activity. Conse- (40 families; ∼98,000 copies) were integrated in the last 40–80 quently, we explored the diversity, abundance, and evolutionary million years (Myr), but there remains no evidence for any hu- history of DNA transposons in the M. lucifugus genome. Herein, we characterize seven new families of DNA trans- 5These authors contributed equally to this work. posons from the current whole-genome sequence of M. lucifugus. 6 Corresponding author. In addition, we provide additional information on the previously E-mail [email protected]; fax (304) 293-6363. Article published online before print. Article and publication date are at http:// described Myotis_hAT transposons (Ray et al. 2007). Together, www.genome.org/cgi/doi/10.1101/gr.071886.107. these elements represent three distinct superfamilies and exhibit 18:000–000 ©2008 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/08; www.genome.org Genome Research 1 www.genome.org Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Ray et al. clear signs of recent activity in the vespertilionid lineage, that is, Tigger-like elements called Tigger1_ML. A tentative consensus was within the last 40–50 Myr. We also identified a ninth transposon reconstructed from the alignment of the seven longest copies. lineage that likely expanded prior to the chiropteran divergence. The size (2.8 kb) and TIRs are consistent with other Tigger ele- One family represents the youngest DNA transposon family so ments and the consensus is similar to consensus sequences in far recorded in any mammalian species, one that is likely still Repbase as Tigger1a_CAR and Tigger1a_ART, which represent Tig- expanding in the genome. The discovery of this unprecedented ger1-like families specific to carnivores and artiodactyls, respec- level of DNA transposon activity in a mammalian genome rep- tively. We also identified several highly eroded copies of a related resents a dramatic shift in our view of mobile element biology in family of Tigger1 transposons in the European hedgehog, Erina- mammals. ceus europaeus (e.g., accession AANN01830819, position 1599– 4234). Given that hedgehog, carnivores, artiodactyls, and chirop- terans are all part of the well-supported Laurasiatheria super- Results order, we hypothesize that Tigger1_ML amplified during the early part of the Laurasiatherian radiation. This is by far the oldest hAT superfamily family of DNA transposons that we identified and, as it does not The consensus sequence for Myotis_hAT1 was previously de- appear to be unique to chiropterans, we have chosen not to focus scribed (Ray et al. 2007). To summarize, the entire sequence on the details of this family in the current study. spans 2921 nucleotides with a single ORF consisting of bases The Tc2 group is sister to the pogo lineage and was first 700–2631 that encodes an apparently intact transposase of 643 identified in Caenorhabditis elegans (Ruvolo et al. 1992). There are amino acids (aa). The present analysis confirms the characteristic relatively few Tc2-like elements in human, and their amplifica- target-site duplications (TSDs) for Myotis hAT elements, 8 bp with tion predates the split of eutherian mammals (Pace and Feschotte a central TA dinucleotide, and the typical short TIR (terminal 2007). In contrast, we identified a distinct and much more recent inverted repeats) sequence. Myotis_hAT1 and its nonautonomous family of Tc2-like elements in M. lucifugus. The Tc2_1_ML con- derivatives are by far the most abundant family of elements ana- sensus is 1728 bp with 23 bp TIRs similar to known or newly lyzed in this study, with >96,000 hits of Ն100 bp in the current identified Tc2 elements. It contains a single ORF spanning posi- WGS data. tions 213–1559 and encoding a putative transposase of 448 aa. We identified a second family of hAT elements, called Phylogenetic analysis confirms that Tc2_1_ML belongs to the Tc2 hAT2_ML. The TIRs of hAT2_ML are highly similar to Myotis_ group, but does not cluster with either of the mammalian Tc2- hAT1, but the internal sequence is only weakly similar. hAT2_ML like transposases identified in human (Kanga), opposum is predicted to encode a 428-aa transposase with only minimal (Tc2_MD2), and tenrec (Tc2_Et), or with the human transposase- sequence similarity and 33% amino acid identity to the Myotis_
Recommended publications
  • Diversity and Abundance of Roadkilled Bats in the Brazilian Atlantic Forest
    diversity Article Diversity and Abundance of Roadkilled Bats in the Brazilian Atlantic Forest Lucas Damásio 1,2 , Laís Amorim Ferreira 3, Vinícius Teixeira Pimenta 3, Greiciane Gaburro Paneto 4, Alexandre Rosa dos Santos 5, Albert David Ditchfield 3,6, Helena Godoy Bergallo 7 and Aureo Banhos 1,3,* 1 Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Universidade Federal do Espírito Santo, Alto Universitário, s/nº, Guararema, Alegre 29500-000, ES, Brazil; [email protected] 2 Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, DF, Brazil 3 Programa de Pós-Graduação em Ciências Biológicas (Biologia Animal), Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Prédio Bárbara Weinberg, Vitória 29075-910, ES, Brazil; [email protected] (L.A.F.); [email protected] (V.T.P.); [email protected] (A.D.D.) 4 Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Farmácia e Nutrição, Universidade Federal do Espírito Santo, Alto Universitário, s/nº, Guararema, Alegre 29500-000, ES, Brazil; [email protected] 5 Centro de Ciências Agrárias e Engenharias, Departamento de Engenharia Rural, Universidade Federal do Espírito Santo, Alto Universitário, s/nº, Guararema, Alegre 29500-000, ES, Brazil; [email protected] 6 Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Vitória 29075-910, ES, Brazil 7 Departamento de Ecologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, Rio de Janeiro 20550-900, RJ, Brazil; [email protected] Citation: Damásio, L.; Ferreira, L.A.; * Correspondence: [email protected] Pimenta, V.T.; Paneto, G.G.; dos Santos, A.R.; Ditchfield, A.D.; Abstract: Faunal mortality from roadkill has a negative impact on global biodiversity, and bats are Bergallo, H.G.; Banhos, A.
    [Show full text]
  • Four Species in One: Multigene Analyses Reveal Phylogenetic
    Published by Associazione Teriologica Italiana Volume 29 (1): 111–121, 2018 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00017-2017 Research Article Four species in one: multigene analyses reveal phylogenetic patterns within Hardwicke’s woolly bat, Kerivoula hardwickii-complex (Chiroptera, Vespertilionidae) in Asia Vuong Tan Tu1,2,3,4,∗, Alexandre Hassanin1,2,∗, Neil M. Furey5, Nguyen Truong Son3,4, Gábor Csorba6 1Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 MNHN CNRS UPMC, Muséum national d’Histoire naturelle, Case postale N°51–55, rue Buffon, 75005 Paris, France 2Service de Systématique Moléculaire, UMS 2700, Muséum national d’Histoire naturelle, Case postale N°26–43, rue Cuvier, 75005 Paris, France 3Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam 4Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam 5Fauna & Flora International, Cambodia Programme, 19 Street 360, Boeng Keng Kang 1, Chamkarmorn, Phnom Penh, Cambodia 6Department of Zoology, Hungarian Natural History Museum, Baross u. 13., H-1088, Budapest, Hungary Keywords: Abstract Kerivoulinae Asia We undertook a comparative phylogeographic study using molecular, morphological and morpho- phylogeography metric approaches to address systematic issues in bats of the Kerivoula hardwickii complex in Asia. taxonomy Our phylogenetic reconstructions using DNA sequences of two mitochondrial and seven nuclear cryptic species genes reveal a distinct clade containing four small-sized species (K. hardwickii sensu stricto, K. depressa, K. furva and Kerivoula sp.
    [Show full text]
  • A Recent Bat Survey Reveals Bukit Barisan Selatan Landscape As A
    A Recent Bat Survey Reveals Bukit Barisan Selatan Landscape as a Chiropteran Diversity Hotspot in Sumatra Author(s): Joe Chun-Chia Huang, Elly Lestari Jazdzyk, Meyner Nusalawo, Ibnu Maryanto, Maharadatunkamsi, Sigit Wiantoro, and Tigga Kingston Source: Acta Chiropterologica, 16(2):413-449. Published By: Museum and Institute of Zoology, Polish Academy of Sciences DOI: http://dx.doi.org/10.3161/150811014X687369 URL: http://www.bioone.org/doi/full/10.3161/150811014X687369 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Acta Chiropterologica, 16(2): 413–449, 2014 PL ISSN 1508-1109 © Museum and Institute of Zoology PAS doi: 10.3161/150811014X687369 A recent
    [Show full text]
  • Ixodida: Argasidae) En México
    Universidad Nacional Autónoma de México Facultad de Estudios Superiores – Zaragoza Diferenciación morfológica y molecular de garrapatas del género Antricola (Ixodida: Argasidae) en México. TESIS Que para obtener el título de: BIÓLOGO Presenta: Jesús Alberto Lugo Aldana Directora de tesis: Dra. María del Carmen Guzmán Cornejo Asesor interno: Dr. David Nahum Espinosa Organista México, D. F. Abril 2013 Facultad de Estudios Superiores Zaragoza, UNAM. *** Laboratorio de Acarología “Anita Hoffman” Facultad de Ciencias, UNAM. Dedicatoria A mi esposa Diana Sánchez y mi pequeña princesa Quetzalli por ser el motivo, para ser mejor día con día. A mi mamá Sara H. Aldana G. y mi papá Jesús G. Lugo C. por enseñarme los valores que hoy me hacen ser una gran persona, además de ser el ejemplo para superarme todos los días. A mi hermana Mitzi Saraí y hermano José Luis por su apoyo incondicional, que además de ser inspiración, lograron alentarme en todo momento para concluir este gran proyecto. A la familia Aldana Sánchez, Aldana Godínez, Del Moral Aldana, Lugo Cid, Lugo Romero, Lugo Maldonado y a la Sra. Irene Cabrera R., por todos sus consejos y apoyo incondicional a lo largo de toda mi carrera. Mil gracias… Agradecimientos o A mi alma mater U.N.A.M., por darme la oportunidad de ser parte de ésta gran institución. o A la Facultad de Estudios Superiores Zaragoza, por brindarme los conocimientos esenciales en toda mi formación como biólogo. o A la Dra. Ma. Del Carmen Guzmán Cornejo, “Meli”, por todo su apoyo incondicional durante la realización de éste trabajo, ya que sin sus consejos, orientación, confianza y amistad no se hubieran alcanzado tantas satisfacciones.
    [Show full text]
  • Chiroptera: Vespertilionidae) from Taiwan and Adjacent China
    Zootaxa 3920 (1): 301–342 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3920.2.6 http://zoobank.org/urn:lsid:zoobank.org:pub:8B991675-0C48-40D4-87D2-DACA524D17C2 Molecular phylogeny and morphological revision of Myotis bats (Chiroptera: Vespertilionidae) from Taiwan and adjacent China MANUEL RUEDI1,5, GÁBOR CSORBA2, LIANG- KONG LIN3 & CHENG-HAN CHOU3,4 1Department of Mammalogy and Ornithology, Natural History Museum of Geneva, Route de Malagnou 1, BP 6434, 1211 Geneva (6), Switzerland. E-mail: [email protected] 2Department of Zoology, Hungarian Natural History Museum, Budapest, Baross u. 13., H-1088. E-mail: [email protected] 3Laboratory of Wildlife Ecology, Department of Biology, Tunghai University, Taichung, Taiwan 407, R.O.C. E-mail: [email protected] 4Division of Zoology, Endemic Species Research Institute, Nantou, Taiwan 552, R.O.C. E-mail: [email protected] 5Corresponding author Table of contents Abstract . 301 Introduction . 302 Material and methods . 310 Results . 314 Discussion . 319 Systematic account . 319 Submyotodon latirostris (Kishida, 1932) . 319 Myotis fimbriatus (Peters, 1870) . 321 Myotis laniger (Peters, 1870) . 322 Myotis secundus sp. n. 324 Myotis soror sp. n. 327 Myotis frater Allen, 1923 . 331 Myotis formosus (Hodgson, 1835) . 334 Myotis rufoniger (Tomes, 1858) . 335 Biogeography and conclusions . 336 Key to the Myotinae from Taiwan and adjacent mainland China . 337 Acknowledgments . 337 References . 338 Abstract In taxonomic accounts, three species of Myotis have been traditionally reported to occur on the island of Taiwan: Watase’s bat (M.
    [Show full text]
  • Biology and Parasites of Pteronotus Gymnonotus from the Caatinga Shrublands of Ceará (Brazil)
    THERYA, 2021, Vol. 12(1):131-137 DOI:10.12933/therya-21-1078 ISSN 2007-3364 Biology and parasites of Pteronotus gymnonotus from the Caatinga shrublands of Ceará (Brazil) SHIRLEY SEIXAS PEREIRA DA SILVA1*, PATRÍCIA GONÇALVES GUEDES1, FLÁVIA SILVA SEVERINO1, AND JULIANA CARDOSO DE ALMEIDA2 1 Instituto Resgatando o Verde – IRV. Rua Tirol, 536, sala 609, Freguesia, Rio de Janeiro – RJ, C.P. 22750-009, Brazil. E-mail: [email protected] (SSPDS), [email protected] (PGG), [email protected] (FSS). 2 Instituto Resgatando o Verde – IRV. Rua Tirol, 536, sala 609, Freguesia, Rio de Janeiro – RJ, 22750-009, Brazil. Universidade Iguaçu (UNIG). Av. Abílio Augusto Távora, 2134, Nova Iguaçu – RJ, C.P. 26260-0454, Brazil. Centro Universitário Geraldo di Biase (UGB). Rodovia Benjamim Ielpo, km 11, Parque São José, Barra do Piraí - RJ, C.P. 27101-970, Brazil. E-mail: [email protected]. *Corresponding author Mormoopid bats are distributed from southern United States of America to Brazil and comprise the genera Mormoops and Pteronotus. Although forms of Mormoops in Bahia, Brazil were described for the Quaternary, only some of the extant species of Pteronotus occur in this country, including P. gymnonotus. The species distribution ranges from southeastern México to northeastern Bolivia and central Brazil. This work presents information about food preference, reproduction, and the ectoparasitological fauna of P. gymnonotus in the state of Ceará. Fieldwork took place over ten consecutive days in the rain and dry seasons, in 2000, 2012, 2013, and 2019, on trails within the Serra das Almas Private Natural Heritage Reserve. A total of 14 P. gymnonotus specimens were caught in the three main phytophysiognomies present in the region.
    [Show full text]
  • Chiroptera: Vespertilionidae: Kerivoulinae) from Thailand
    A Systematic Review of Kerivoula Gray, 1842 (Chiroptera: Vespertilionidae: Kerivoulinae) from Thailand Bounsavane Douangboubpha A Thesis Submitted in Fulfillment of the Requirement for the Degree of Doctor of Philosophy in Biology Prince of Songkla University 2014 Copyright of Prince of Songkla University i A Systematic Review of Kerivoula Gray, 1842 (Chiroptera: Vespertilionidae: Kerivoulinae) from Thailand Bounsavane Douangboubpha A Thesis Submitted in Fulfillment of the Requirement for the Degree of Doctor of Philosophy in Biology Prince of Songkla University 2014 Copyright of Prince of Songkla University ii Thesis Title A Systematic Review of Kerivoula Gray, 1842 (Chiroptera: Vespertilionidae: Kerivoulinae) from Thailand Author Mr. Bounsavane Douangboubpha Major Program Doctor of Philosophy in Biology Major Advisor Examining Committee …………………………………… …………………………………… (Assist. Prof. Dr. Sara Bumrungsri) (Dr. Yodchaiy Chuaynkern) …………………………………… Co-advisor (Assist. Prof. Dr. Sara Bumrungsri) …………………………………… …………………………………… (Dr. Paul J. J. Bates) (Dr. Paul J. J. Bates) …………………………………… …………………………………… (Assoc. Prof. Dr. Chutamas Satasook) (Assist. Prof. Dr. Warapond Wanna) …………………………………… …………………………………… (Assist. Prof. Dr. Warapond Wanna) (Assist. Prof. Dr. Supiyanit Maiphae) The Graduate School, Prince of Songkla University, has approved this thesis as fulfillment of the requirements for the Doctor of Philosophy Degree in Biology. ………………………………… (Assoc. Prof. Dr. Teerapol Srichana) Dean of Graduate School iii This is to certify that the work here submitted is the result of the candidate’s own investigations. Due acknowledgement has been made of any assistance received. …………………………………… (Assist. Prof. Dr. Sara Bumrungsri) Major Advisor …………………………………… (Mr. Bounsavane Douangboubpha) Candidate iv I hereby certify that this work has not already been accepted in substance for any degree, and is not being concurrently submitted in candidature for any degree.
    [Show full text]
  • Genome-Wide Determination of Gene Essentiality by Transposon Insertion Sequencing in Yeast Pichia Pastoris
    www.nature.com/scientificreports OPEN Genome-Wide Determination of Gene Essentiality by Transposon Insertion Sequencing in Yeast Pichia Received: 8 December 2017 Accepted: 19 June 2018 pastoris Published: xx xx xxxx Jinxiang Zhu1, Ruiqing Gong1, Qiaoyun Zhu1, Qiulin He1, Ning Xu1, Yichun Xu1, Menghao Cai1, Xiangshan Zhou1, Yuanxing Zhang1,2 & Mian Zhou1 In many prokaryotes but limited eukaryotic species, the combination of transposon mutagenesis and high-throughput sequencing has greatly accelerated the identifcation of essential genes. Here we successfully applied this technique to the methylotrophic yeast Pichia pastoris and classifed its conditionally essential/non-essential gene sets. Firstly, we showed that two DNA transposons, TcBuster and Sleeping beauty, had high transposition activities in P. pastoris. By merging their insertion libraries and performing Tn-seq, we identifed a total of 202,858 unique insertions under glucose supported growth condition. We then developed a machine learning method to classify the 5,040 annotated genes into putatively essential, putatively non-essential, ambig1 and ambig2 groups, and validated the accuracy of this classifcation model. Besides, Tn-seq was also performed under methanol supported growth condition and methanol specifc essential genes were identifed. The comparison of conditionally essential genes between glucose and methanol supported growth conditions helped to reveal potential novel targets involved in methanol metabolism and signaling. Our fndings suggest that transposon mutagenesis and Tn-seq could be applied in the methylotrophic yeast Pichia pastoris to classify conditionally essential/non-essential gene sets. Our work also shows that determining gene essentiality under diferent culture conditions could help to screen for novel functional components specifcally involved in methanol metabolism.
    [Show full text]
  • Quaternary Bat Diversity in the Dominican Republic
    AMERICAN MUSEUM NOVITATES Number 3779, 20 pp. June 21, 2013 Quaternary Bat Diversity in the Dominican Republic PAÚL M. VELAZCO,1 HANNAH O’NEILL,2 GREGG F. GUNNELL,3 SIOBHÁN B. COOKE,4 RENATO RIMOLI,5 ALFRED L. ROSENBErgER,1, 6 AND NANCY B. SIMMONS1 ABSTRACT The fossil record of bats is extensive in the Caribbean, but few fossils have previously been reported from the Dominican Republic. In this paper, we describe new collections of fossil bats from two flooded caves in the Dominican Republic, and summarize previous finds from the Island of Hispaniola. The new collections were evaluated in the context of extant and fossil faunas of the Greater Antilles to provide information on the evolution of the bat community of Hispaniola. Eleven species were identified within the new collections, including five mormoopids (Mormoops blainvillei, †Mormoops magna, Pteronotus macleayii, P. parnellii, and P. quadridens), five phyllostomids (Brachy- phylla nana, Monophyllus redmani, Phyllonycteris poeyi, Erophylla bombifrons, and Phyllops falcatus), and one natalid (Chilonatalus micropus). All of these species today inhabitant Hispaniola with the exception of †Mormoops magna, an extinct species previously known only from the Quaternary of Cuba, and Pteronotus macleayii, which is currently known only from extant populations in Cuba and Jamaica, although Quaternary fossils have also been recovered in the Bahamas. Differences between the fossil faunas and those known from the island today suggest that dispersal and extirpa- tion events, perhaps linked to climate change or stochastic events such as hurricanes, may have played roles in structuring the modern fauna of Hispaniola. 1 Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History.
    [Show full text]
  • Myzopodidae: Chiroptera) from Western Madagascar
    ARTICLE IN PRESS www.elsevier.de/mambio Original investigation The description of a new species of Myzopoda (Myzopodidae: Chiroptera) from western Madagascar By S.M. Goodman, F. Rakotondraparany and A. Kofoky Field Museum of Natural History, Chicago, USA and WWF, Antananarivo, De´partement de Biologie Animale, Universite´ d’Antananarivo, Antananarivo, Madagasikara Voakajy, Antananarivo, Madagascar Receipt of Ms. 6.2.2006 Acceptance of Ms. 2.8.2006 Abstract A new species of Myzopoda (Myzopodidae), an endemic family to Madagascar that was previously considered to be monospecific, is described. This new species, M. schliemanni, occurs in the dry western forests of the island and is notably different in pelage coloration, external measurements and cranial characters from M. aurita, the previously described species, from the humid eastern forests. Aspects of the biogeography of Myzopoda and its apparent close association with the plant Ravenala madagascariensis (Family Strelitziaceae) are discussed in light of possible speciation mechanisms that gave rise to eastern and western species. r 2006 Deutsche Gesellschaft fu¨r Sa¨ugetierkunde. Published by Elsevier GmbH. All rights reserved. Key words: Myzopoda, Madagascar, new species, biogeography Introduction Recent research on the mammal fauna of speciation molecular studies have been very Madagascar has and continues to reveal informative to resolve questions of species remarkable discoveries. A considerable num- limits (e.g., Olson et al. 2004; Yoder et al. ber of new small mammal and primate 2005). The bat fauna of the island is no species have been described in recent years exception – until a decade ago these animals (Goodman et al. 2003), and numerous remained largely under studied and ongoing other mammals, known to taxonomists, surveys and taxonomic work have revealed await formal description.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • A Checklist of the Mammals of South-East Asia
    A Checklist of the Mammals of South-east Asia A Checklist of the Mammals of South-east Asia PHOLIDOTA Pangolin (Manidae) 1 Sunda Pangolin (Manis javanica) 2 Chinese Pangolin (Manis pentadactyla) INSECTIVORA Gymnures (Erinaceidae) 3 Moonrat (Echinosorex gymnurus) 4 Short-tailed Gymnure (Hylomys suillus) 5 Chinese Gymnure (Hylomys sinensis) 6 Large-eared Gymnure (Hylomys megalotis) Moles (Talpidae) 7 Slender Shrew-mole (Uropsilus gracilis) 8 Kloss's Mole (Euroscaptor klossi) 9 Large Chinese Mole (Euroscaptor grandis) 10 Long-nosed Chinese Mole (Euroscaptor longirostris) 11 Small-toothed Mole (Euroscaptor parvidens) 12 Blyth's Mole (Parascaptor leucura) 13 Long-tailed Mole (Scaptonyx fuscicauda) Shrews (Soricidae) 14 Lesser Stripe-backed Shrew (Sorex bedfordiae) 15 Myanmar Short-tailed Shrew (Blarinella wardi) 16 Indochinese Short-tailed Shrew (Blarinella griselda) 17 Hodgson's Brown-toothed Shrew (Episoriculus caudatus) 18 Bailey's Brown-toothed Shrew (Episoriculus baileyi) 19 Long-taied Brown-toothed Shrew (Episoriculus macrurus) 20 Lowe's Brown-toothed Shrew (Chodsigoa parca) 21 Van Sung's Shrew (Chodsigoa caovansunga) 22 Mole Shrew (Anourosorex squamipes) 23 Himalayan Water Shrew (Chimarrogale himalayica) 24 Styan's Water Shrew (Chimarrogale styani) Page 1 of 17 Database: Gehan de Silva Wijeyeratne, www.jetwingeco.com A Checklist of the Mammals of South-east Asia 25 Malayan Water Shrew (Chimarrogale hantu) 26 Web-footed Water Shrew (Nectogale elegans) 27 House Shrew (Suncus murinus) 28 Pygmy White-toothed Shrew (Suncus etruscus) 29 South-east
    [Show full text]