Elliptic Functions, Theta Functions and Identities

Total Page:16

File Type:pdf, Size:1020Kb

Elliptic Functions, Theta Functions and Identities View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarBank@NUS Elliptic Functions, Theta Functions and Identities Ng Say Tiong Department of Mathematics National University of Singapore 2004 Elliptic Functions, Theta Functions and Identities Ng Say Tiong A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE. Supervisor: A/P. Chan Heng Huat Department of Mathematics National University of Singapore 2004 Acknowledgements I would like to thank my family members and friends for giving me support in the comple- tion of this thesis. Also I would like to thank all the lecturers that have given me guidance in my courses in NUS. Last but not least, I would like to thank my supervisor, Associate Professor Chan Heng Huat for his patience and guidance throughout the duration of this thesis. Without his support, the completion of this thesis in such a short amount of time would not be possible. ii Statement of Author’s Contributions 1. The proof to Lemma 3.3.2, which is given as an exercise in [16], is given in detail by the author. 2. Together with Associate Professor Chan Heng Huat, and Professor Liu Zhi Guo, the author provides original proofs for the quintuple product identity in Theorem 4.1.1, the septuple product identity in Theorem 4.2.1 and the Winquist identity in Theorem 4.3.1, based on the theories of elliptic functions and the theta functions. 3. The author provides original proof for the theta function identity in Theorem 5.1.1 based on the theories of elliptic functions and the theta functions. iii Contents 1 Introduction 1 2 Elliptic Functions 3 2.1 Definition of elliptic functions . 3 2.2 Properties of elliptic functions . 4 3 The Theta Functions 8 3.1 Definition of the theta functions . 8 3.2 The zeros of the theta functions . 12 3.3 Infinite products expressions for the theta functions . 14 4 The Quintuple, Septuple Product Identities and the Winquist Identity 23 4.1 The quintuple product identity . 24 4.2 The septuple product identity . 30 4.3 The Winquist identity . 35 5 A Theta Function Identity and Its Application 43 5.1 The theta-function identity . 43 5.2 A conjecture on the relation between Dixon’s doubly-periodic functions and the theta functions . 47 iv Chapter 1 Introduction The first function related to theta functions is perhaps the function ∞ Y (1 − xnz)−1, n=1 defined by L. Euler in his studies of the properties of partitions [6]. However, it was C.G.J. Jacobi who defined the more general theta functions in [11], and he developed the theory of theta functions from the theory of elliptic functions. His results were later reprinted in [12]. The theta functions are great tools for solving q-series identities. In latter chapters we will use the theta functions to systematically proved the quintuple product identity [3, p.g 80], the septuple product identity [7] and the Winquist identity [17]. The quintuple product identity has a long history, and is best summarized in [3, p.g 83]. The septuple product identity was first discovered by M.D. Hirschhorn [9] in 1983, and later rediscovered by H.M.Farkas and I.Kra in 1999 [7]. In 1999, D.Foata and G.-N. Han showed a connection between the quintuple product identity and the septuple product identity [8], using the Jacobi triple product identity [2, p.g 91] and the quintuple product identity to prove the septuple product identity. The Winquist identity was discovered by L.Winquist in [17], and was used to derive a double series identity for the product series ∞ Y (1 − xn)10, n=1 1 and a proof for the partition function congruence p (11n + 6) ≡ 0 (mod 11), where p (n) denotes the number of unrestricted partitions of n [1, p.g 1]. Later in 1997, S.-Y. Kang gave a new proof of the Winquist identity based on elementary methods [13]. In [5], A.C.Dixon defined two doubly-periodic functions smu and cmu using the curve x3 + y3 − 3αxy = 1, where α is a parameter of the cubic curve. Dixon showed that these two functions shared many similar properties to the Jacobian elliptic functions snu and cnu [16, p.g 491]. Using a theta function identity proved by Z.-G. Liu in [14], we conjecture possible algebraic expressions for smu and cmu based on the theta functions. 2 Chapter 2 Elliptic Functions We will begin our discussion with elliptic functions. The properties of elliptic functions that are discussed in this chapter will play an important part in our proofs of theorems in latter chapters. 2.1 Definition of elliptic functions Definition 2.1.1 Let ω1, ω2 be any two numbers (real or complex) whose ratio is complex. A function which satisfies the equations f(z + 2ω1) = f(z), f(z + 2ω2) = f(z), for all values of z for which f(z) exists, is called a doubly-periodic function of z, with periods 2ω1, 2ω2. A doubly-periodic function which has no singularities other than poles in the finite part of the complex plane is called an elliptic function. To study elliptic functions, we need the geometrical representation of the complex plane afforded by the Argand diagram [16, p.g 9]. Suppose that in the complex plane, we mark out the points 0, 2ω1, 2ω2, 2ω1 + 2ω2, and generally, all the points whose complex coordi- nates are of the form 2mω1 + 2nω2, where m and n are integers. By joining in succession consecutive points of the set 0, 2ω1, 2ω1 + 2ω2, 2ω2, 0, we will obtain a parallelogram. If 3 there is no point ω inside or on the boundary of this parallelogram (the vertices excepted) such that f(z + ω) = f(z) for all values of z, this parallelogram is called a fundamental period-parallelogram [16, p.g 430] for an elliptic function with periods 2ω1, 2ω2. It is clear that the complex plane can be covered with a network of parallelograms equal to the fundamental period-parallelogram and similarly situated, each of the points 2ω1 + 2ω2 being a vertex of four parallelograms. These parallelograms are called period- parallelograms or meshes [16, p.g 430], and for all values of z, the points z, z + 2ω1, ... z + 2mω1 + 2nω2, ... manifestly occupy corresponding positions in the meshes. Any of such pair of points are said to be congruent to one another [16, p.g 430]. Due to the fundamental periodic properties of elliptic functions, it follows that an elliptic function takes the same value at every one of a set of congruent points, and so its values in any mesh are just a mere repetition of its values in any other mesh. However, for integration purposes, it is not convenient to deal with the actual meshes if they have singularities of the integrand on their boundaries. Because of the periodic prop- erties of elliptic functions, nothing is lost by taking a contour, which is not an actual mesh, but a parallelogram obtained by translating a mesh without rotation in such a way that none of the poles of the integrands considered are on the boundaries of the parallelogram, and all the poles considered are inside the parallelogram. Such a parallelogram is called a cell [16, p.g 430]. Again the values assumed by an elliptic function in a cell are just a mere repetition of its value in any mesh. We will now prove some important facts about elliptic functions. 2.2 Properties of elliptic functions Theorem 2.2.1 i) The number of poles of an elliptic function in any cell is finite. ii) The number of zeros of an elliptic function in any cell is finite. 4 iii) The sum of the residues of an elliptic function, f(z), at its poles in any cell is zero. iv) An elliptic function, f(z), with no pole in a cell is merely a constant. Proof i) Suppose there exists an elliptic function such that its number of poles in a cell is infinite, then the poles would have a limit point in the cell, which is an essential singularity of the function. However this contradicts the definition of an elliptic function. ii) Suppose there exists an elliptic function f(z) such that its number of zeros in a cell 1 1 is infinite, we consider the reciprocal function f(z) . Since f(z) is elliptic, so is f(z) , and it has an infinite number of poles in a cell by the property of f(z). This is a contradiction, by part(i). iii) Let C be a contour formed by edges of a cell, whose corners are t, t+2ω1, t+2ω1 +2ω2 and t + 2ω2, t being an arbitrary complex number. The sum of the residues of f(z) at its poles inside C is 1 Z f(z) dz 2πi C 1 Z t+2ω1 Z t+2ω1+2ω2 Z t+2ω2 Z t = f(z) dz + f(z) dz + f(z) dz + f(z) dz 2πi t t+2ω1 t+2ω1+2ω2 t+2ω2 1 Z t+2ω1 Z t+2ω2 Z t Z t = f(z) dz + f(z + 2ω1) dz + f(z + 2ω2) dz + f(z) dz 2πi t t t+2ω1 t+2ω2 1 Z t+2ω1 1 Z t+2ω2 = {f(z) − f(z + 2ω2)} dz − {f(z) − f(z + 2ω1)} dz 2πi t 2πi t = 0, and the theorem is established. iv) Let f(z) be an elliptic function such that it has no pole in a cell.
Recommended publications
  • Analytic Vortex Solutions on Compact Hyperbolic Surfaces
    Analytic vortex solutions on compact hyperbolic surfaces Rafael Maldonado∗ and Nicholas S. Mantony Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, U.K. August 27, 2018 Abstract We construct, for the first time, Abelian-Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. 1 Introduction Consider the Abelian-Higgs field theory on a background surface M with metric ds2 = Ω(x; y)(dx2+dy2). At critical coupling the static energy functional satisfies a Bogomolny bound 2 1 Z B Ω 2 E = + jD Φj2 + 1 − jΦj2 dxdy ≥ πN; (1) 2 2Ω i 2 where the topological invariant N (the `vortex number') is the number of zeros of Φ counted with multiplicity [1]. In the notation of [2] we have taken e2 = τ = 1. Equality in (1) is attained when the fields satisfy the Bogomolny vortex equations, which are obtained by completing the square in (1). In complex coordinates z = x + iy these are 2 Dz¯Φ = 0;B = Ω (1 − jΦj ): (2) This set of equations has smooth vortex solutions. As we explain in section 2, analytical results are most readily obtained when M is hyperbolic, having constant negative cur- vature K = −1, a case which is of interest in its own right due to the relation between arXiv:1502.01990v1 [hep-th] 6 Feb 2015 hyperbolic vortices and SO(3)-invariant instantons, [3].
    [Show full text]
  • Applications of Elliptic Functions in Classical and Algebraic Geometry
    APPLICATIONS OF ELLIPTIC FUNCTIONS IN CLASSICAL AND ALGEBRAIC GEOMETRY Jamie Snape Collingwood College, University of Durham Dissertation submitted for the degree of Master of Mathematics at the University of Durham It strikes me that mathematical writing is similar to using a language. To be understood you have to follow some grammatical rules. However, in our case, nobody has taken the trouble of writing down the grammar; we get it as a baby does from parents, by imitation of others. Some mathe- maticians have a good ear; some not... That’s life. JEAN-PIERRE SERRE Jean-Pierre Serre (1926–). Quote taken from Serre (1991). i Contents I Background 1 1 Elliptic Functions 2 1.1 Motivation ............................... 2 1.2 Definition of an elliptic function ................... 2 1.3 Properties of an elliptic function ................... 3 2 Jacobi Elliptic Functions 6 2.1 Motivation ............................... 6 2.2 Definitions of the Jacobi elliptic functions .............. 7 2.3 Properties of the Jacobi elliptic functions ............... 8 2.4 The addition formulæ for the Jacobi elliptic functions . 10 2.5 The constants K and K 0 ........................ 11 2.6 Periodicity of the Jacobi elliptic functions . 11 2.7 Poles and zeroes of the Jacobi elliptic functions . 13 2.8 The theta functions .......................... 13 3 Weierstrass Elliptic Functions 16 3.1 Motivation ............................... 16 3.2 Definition of the Weierstrass elliptic function . 17 3.3 Periodicity and other properties of the Weierstrass elliptic function . 18 3.4 A differential equation satisfied by the Weierstrass elliptic function . 20 3.5 The addition formula for the Weierstrass elliptic function . 21 3.6 The constants e1, e2 and e3 .....................
    [Show full text]
  • V. Analytic Continuation and Riemann Sur- Faces
    MTH6111 Complex Analysis 2009-10 Lecture Notes c Shaun Bullett 2009 V. Analytic Continuation and Riemann Sur- faces This section will introduce various ideas that are important for more advanced work in complex analysis. 1. Continuation along paths A holomorphic function f defined on some open disc containing z0, has a Taylor series ∞ (n) X f (z0) (z − z )n n! 0 n=0 We can use this series to define f at any points inside the disc D(z0, r0) of convergence of the series where f has not already been defined. Now choosing a new point z1 near the edge of D(z0, r0) we can repeat the same procedure for the Taylor series ∞ (n) X f (z1) (z − z )n n! 1 n=0 and this will enable us to define f in a new disc D(z1, r1), overlapping the first disc. This process is known as analytic continuation of f. An analytic function is one that can be written as the sum of a power series: note that we can only carry out the continuation process because of Taylor’s Theorem, which says that a holomorphic function is an analytic function. The most interesting examples of this process occur when f is one branch of a multi-valued function, and we follow the analytic continuation of this branch along some path, or even round a loop back to where we started. This is best illustrated with an example. √ Let f(z) = z. Around the point z = 1, one branch of this function can be defined by the power series: (1/2) (1/2)(−1/2) (1/2)(−1/2)(−3/2) (1 + (z − 1))1/2 = 1 + (z − 1) + (z − 1)2 + (z − 1)3 + ..
    [Show full text]
  • 13. Trigonometric Functions, Elliptic Functions 1. Reconsideration of Sinx
    (February 24, 2021) 13. Trigonometric functions, elliptic functions Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http:=/www.math.umn.edu/egarrett/m/complex/notes 2020-21/13 elliptic.pdf] 1. Reconsideration of sin x 2. Construction of singly-periodic functions 3. Arc length of ellipses: elliptic integrals, elliptic functions 4. Construction of doubly-periodic functions 5. Fields of elliptic functions 1. Reconsideration of sin x Although we already know quite a bit about trigonometric functions and their role in calculus, their treatment can be redone to emphasize parallels for elliptic integrals and elliptic functions. [1.1] Integral defining arcsin x The length of arc of a piece of a circle is x2 + y2 = 1 is Z x Z x r p d p 2 arc length of circle fragment from 0 to x = 1 + y02 dt = 1 + 1 − t2 dt 0 0 dt x s 1 x r x Z · (−2t)2 Z t2 Z dt = 1 + 2p dt = 1 + dt = p = arcsin x 2 2 2 0 1 − t 0 1 − t 0 1 − t [1.2] Periodicity The periodicity of sin x comes from the multi-valuedness of arcsin x. The multi-valuedness is ascertainable from this integral, since the path from 0 to x can meander through the complex plane, going around the two points ±1 special for the integral. The basic unit of this multi-valuedness is Z dζ = ±2π (counter-clockwise circular path γ enclosing both ±1) p 2 γ 1 − ζ That is, a path integral from 0 to x could go from 0 to x along the real axis, but then add to the path a vertical line segment from x out to a circle of radius 2, traverse the circle an arbitrary number of times, come back along the same segment (thus cancelling the contribution from this segment).
    [Show full text]
  • 1. Basic Properties of Elliptic Function Let Ω1,Ω2 Be Two Complex Numbers
    1. Basic Properties of Elliptic Function Let !1;!2 be two complex numbers such that the ratio !2=!1 is not purely real. Without loss of generality, we may assume Im τ > 0; where τ = !2=!1: A function f on C is called a doubly periodic function with periods !1;!2 if f(z + !1) = f(z); f(z + !2) = f(z): A doubly periodic function is called an elliptic function if it is meromorphic. Let P be the parallelogram P = fx!1 + y!2 : 0 ≤ x < 1; 0 ≤ y < 1g: We call P a fundamental period-parallelogram for f: The set Λ = fm!1 + n!2 : m; n 2 Zg is called the period lattice for f: Remark. The set Λ is a free abelian group generate by f!1;!2g: Two complex numbers z1; z2 are said to be congruent modulo Λ if z1 − z2 2 Λ: The congruence of z1; z2 is expressed by the notation z1 ≡ z2 mod Λ: Notice that any two points in P are not congruent. In general, a fundamental parallelogram for Λ is a parallelogram P in C such that distinct points of P are not congruent and [ C = (! + P ): !2Λ A cell P for an elliptic function f is a fundamental parallelogram such that f has no zeros and no poles on @P: Theorem 1.1. An elliptic function without poles is a constant. Proof. An elliptic function f with poles is a bounded entire function. By Liouville's theorem, f must be a constant. Proposition 1.1. The number of zeros / poles of an elliptic function in any cell is finite.
    [Show full text]
  • Elliptic Functions: Introduction Course
    Elliptic functions: Introduction course Vladimir G. TKACHEV Department of Mathematics, Royal Institute of Technology Lindstedtsv¨agen 25, 10044 Stockholm, Sweden email: [email protected] URL: http://www.math.kth.se/˜tkatchev Contents Chapter 1. Elliptic integrals and Jacobi’s theta functions 5 1.1. Elliptic integrals and the AGM: real case 5 1.2. Lemniscates and elastic curves 11 1.3. Euler’s addition theorem 18 1.4. Theta functions: preliminaries 24 Chapter 2. General theory of doubly periodic functions 31 2.1. Preliminaries 31 2.2. Periods of analytic functions 33 2.3. Existence of doubly periodic functions 36 2.4. Liouville’s theorems 38 2.5. The Weierstrass function ℘(z) 43 2.6. Modular forms 51 Bibliography 61 3 CHAPTER 1 Elliptic integrals and Jacobi’s theta functions 1.1. Elliptic integrals and the AGM: real case 1.1.1. Arclength of ellipses. Consider an ellipse with major and minor arcs 2a and 2b and eccentricity e := (a2 b2)/a2 [0, 1), e.g., − ∈ x2 y2 + = 1. a2 b2 What is the arclength `(a; b) of the ellipse, as a function of a and b? There are two easy observations to be made: (1) `(ra; rb) = r`(a; b), because rescaling by a factor r increases the arclength by the same factor; (2) `(a; a) = 2πa, because we know the circumference of a circle. Of course, π is transcendental so it is debatable how well we understand it! 1 0.5 ±2 ±1 0 1 2 ±0.5 ±1 2 y2 Figure 1. Ellipse x + 4 = 1 The total arclength is four times the length of the piece in the first quadrant, where we have the relations 2 xb 1 y = b 1 (x/a) , y0(x)= .
    [Show full text]
  • Supersymmetric Phases of 4D N = 4 SYM at Large N
    Prepared for submission to JHEP Supersymmetric phases of 4d N = 4 SYM at large N Alejandro Cabo-Bizet and Sameer Murthy Department of Mathematics, King's College London, The Strand, London WC2R 2LS, U.K. E-mail: alejandro.cabo [email protected], [email protected] Abstract: We find a family of complex saddle-points at large N of the matrix model for the superconformal index of SU(N) N = 4 super Yang-Mills theory on S3 × S1 with one chemical potential τ. The saddle-point configurations are labelled by points (m; n) on the lattice Λτ = Zτ + Z with gcd(m; n) = 1. The eigenvalues at a given saddle are uniformly distributed along a string winding (m; n) times along the (A; B) cycles of the torus C=Λτ . The action of the matrix model extended to the torus is closely related to the Bloch-Wigner elliptic dilogarithm, and the related Bloch formula allows us to calculate the action at the saddle-points in terms of real-analytic Eisenstein series. The actions of (0; 1) and (1; 0) agree with that of pure AdS5 and the supersymmetric AdS5 black hole, respectively. The black hole saddle dominates the canonical ensemble when τ is close to the origin, and there are new saddles that dominate when τ approaches rational points. The extension of the action in terms of modular forms leads to a simple treatment of the Cardy-like limit τ ! 0. arXiv:1909.09597v3 [hep-th] 4 Jan 2021 Contents 1 Introduction1 2 Complex saddle-points of N = 4 SYM6 2.1 Saddle-point configurations for periodic potentials6 2.2 The index of N = 4 SYM8 3 Extension of the action to the
    [Show full text]
  • Construction of Doubly Periodic Solutions Via the Poincare
    Mathematics and Computers in Simulation 57 (2001) 239–252 Construction of doubly periodic solutions via the Poincare–Lindstedt method in the case of massless ϕ4 theory Oleg Khrustalev a,∗, Sergey Vernov b a Department of Physics, Institute for Theoretical Problems of Microphysics of Moscow State University, Moscow State University, Vorobievy Gory, Moscow 119899, Russia b Institute of Nuclear Physics, Moscow State University, Vorobievy Gory, Moscow 119899, Russia Abstract Doubly periodic (periodic both in time and in space) solutions for the Lagrange–Euler equation of the (1 + 1)-dimensional scalar ϕ4 theory are studied. Provided that the nonlinear term is small, the Poincare–Lindstedt asymptotic method can be used to find asymptotic solutions in the standing wave form. The principal resonance problem, which arises for zero mass, is solved if the leading-order term is taken in the form of Jacobi elliptic function. To obtain this leading-order term the system REDUCE is used. © 2001 IMACS. Published by Elsevier Science B.V. All rights reserved. Keywords: φ4 Theory; Periodic solutions; Standing waves; Poincaré uniform expansion 1. Introduction 1.1. Periodic solutions of nonlinear equations At present time periodic solutions of the nonlinear wave equation: ∂2ϕ(x,t) ∂2ϕ(x,t) − − g(ϕ) = 0, (1) ∂x2 ∂t2 where g(ϕ) denotes a continuous function on R such that g(0) = 0, are studied intensively. Coron [1] has proved that T -periodic (in time) solutions of the following problem: ∂2ϕ(x,t) ∂2ϕ(x,t) − − g(ϕ) = 0,x,t∈ R,g(0) = 0, ∂x2 ∂t2 (2) lim|x|→∞ ϕ(x,t) = 0,x,t∈ R, ϕ(x,t + T)= ϕ(x,t), x,t,T ∈ R, ∗ Corresponding author.
    [Show full text]
  • Addition Theorems. / the Theory of Sound in Organ Pipes
    ADDITION THEOREMS A Minor Thesis John Henry Binney The Rice Institute February 1923 The difference of two arcs of an allipse that do not over¬ lap may be expressed through the difference of two lengths on a straight line; in other words, this difference may be expressed in an algebraic manner. This is the geometrical significance of a theorem due to the Italian mathematician Fagnano. It was also well known through the works of Fagnano, Jacob Bernoulli and others that the expression for sin (x+y), sin ( x - y), etc., provided a means of adding or subtract¬ ing the arcs of circles, and that between the limits of two-integrals that express lengths of arc of a lemniscaté an algebraic relation exists, such that the arc of a lemniscate, although a transcendent of higher or¬ der, may be doubled or halved just as the arc -of a circle by means of geometric construction. It was natural to inquire if the ellipse, hyperbola, etc., did not have similar properties. It was by investigating such properties that Euler made the remarkable discovery of the addition. theorem of ellip tic integral^. Euler showed that if where R( $ ) is a rational integral function of the fourth degree in f , there exists among x, y, a an algebraic relation which is the addition theorem of the arcs of an ellipse and is the solution of the differential * Nov. Comm. Petrop., VI, pp. 58-84. 2 equation .Al— A _ ü fm fm However, a more direct proof of this theorem was later given by Lagrange in a manner which caused great admiration on the part of Euler**.
    [Show full text]
  • Lecture 24 Elliptic Functions
    Yury Ustinovskiy Complex Variables MATH-GA.2451-001 Fall 2019 Lecture 24 Elliptic functions Let !1;!2 be two complex numbers such that !1 and !2 are linearly independent over R. Definition 1. Meromorphic function f (z) is said to be doubly periodic if for any z C 2 f (z + !1) = f (z + !2) = f (z): Let τ := ! =! . Clearly τ C is not purely real. Moreover, changing ! to ! , if necessary, we can assume that 1 2 2 1 − 1 (τ) > 0. Considering function F(z) := f (!1z) instead of f , we will get a doubly-periodic function withe periods 1= and τ. Hence, from now on we assume that periods of f are 1 and τ, so that f (z + n + mτ) = f (z); for all n;m Z: 2 We say that 1 and τ generate lattice Λ := n + mτ n;m Z : f j 2 g and call two points z;w C equivalent modulo Λ if z w Λ. 2 − 2 Let Π be the parallelogram generated by vectors 1 and τ: =τ < This is fundamental parallelogram, i.e. any point z C is equivalent to a unique point in Π (you have to include only one vertex and two adjacent sides into Π for it to2 work). Therefore any doubly periodic function f (z) is uniquely determined by its behavior on Π. Remark 2. The same will be true for any translate of Π: a parallelogram of the form Π + h, h C. 2 The following theorem sates that there is no interesting holomorphic doubly periodic functions.
    [Show full text]
  • Course 214 Elliptic Functions Second Semester 2008
    Course 214 Elliptic Functions Second Semester 2008 David R. Wilkins Copyright c David R. Wilkins 1989–2008 Contents 9 Elliptic Functions 87 9.1 Lattices in the Complex Plane . 87 9.2 Basic Properties of Elliptic Functions . 91 9.3 Summation over Lattices . 95 9.4 The Elliptic Functions of Weierstrass . 97 9.5 Square Roots of Meromorphic Functions . 101 9.6 Construction of Jacobi’s Elliptic Functions . 103 i 9 Elliptic Functions 9.1 Lattices in the Complex Plane Definition A subset Λ of the complex plane C is said to be an additive subgroup of C if 0 ∈ Λ, w1 + w2 ∈ Λ and −w1 ∈ Λ for all w1, w2 ∈ Λ. An additive subgroup Λ of the complex plane is said to be a lattice if there exists some positive real number δ such that Λ ∩ {z ∈ C : |z| < δ} = {0}. Definition The zero lattice {0} is of dimension zero. A lattice in the com- plex plane is said to be one-dimensional if it is non-zero, but is contained in some line that passes through zero. A lattice in the complex plane, is said to be two-dimensional if it is not contained in any line that passes through zero. The following proposition classifies all lattices in the complex plane. Proposition 9.1 The dimension of every lattice in the complex plane is zero, one or two. The only zero-dimensional lattice is the zero lattice {0}. A one-dimensional lattice is of the form {nw1 : n ∈ Z}, where w1 is some non-zero element of the lattice.
    [Show full text]
  • Four Lectures on Weierstrass Elliptic Function and Applications in Classical and Quantum Mechanics
    Four Lectures on Weierstrass Elliptic Function and Applications in Classical and Quantum Mechanics Georgios Pastras1 1NCSR \Demokritos", Institute of Nuclear and Particle Physics 15310 Aghia Paraskevi, Attiki, Greece [email protected] Abstract In these four lectures, aiming at senior undergraduate and junior graduate Physics and Mathematics students, basic elements of the theory of elliptic functions are pre- sented. Simple applications in classical mechanics are discussed, including a point particle in a cubic, sinusoidal or hyperbolic potential, as well as simple applications in quantum mechanics, namely the n = 1 Lam´epotential. These lectures were given at the School of Applied Mathematics and Physical Sciences of the National Technical University of Athens in May 2017. arXiv:1706.07371v2 [math-ph] 6 Sep 2017 1 Contents Lecture 1: Weierstrass Elliptic Function 3 1.1 Prologue . .3 1.2 Elliptic Functions . .3 1.3 The Weierstrass Elliptic Function . 10 Lecture 2: Weierstrass Quasi-periodic Functions 17 2.1 Quasi-periodic Weierstrass Functions . 17 2.2 Expression of any Elliptic Function in Terms of Weierstrass Functions 20 2.3 Addition Theorems . 23 Lecture 3: Applications in Classical Mechanics 28 3.1 Real Solutions of Weierstrass Equation in the Real Domain . 28 3.2 Point Particle in a Cubic Potential . 32 3.3 The Simple Pendulum . 36 3.4 Point Particle in Hyperbolic Potential . 40 Lecture 4: Applications in Quantum Mechanics 48 4.1 The n = 1 Lam´ePotential . 48 4.2 The Bounded n = 1 Lam´ePotential . 54 4.3 Epilogue . 56 A The Half-Periods for Real Moduli 59 B Problem Solutions 64 2 Lecture 1: Weierstrass Elliptic Function 1.1 Prologue In the present lectures, basic elements of the theory of elliptic functions are presented and simple applications in classical and quantum mechanics are discussed.
    [Show full text]