Elliptic Functions: Introduction Course

Total Page:16

File Type:pdf, Size:1020Kb

Elliptic Functions: Introduction Course Elliptic functions: Introduction course Vladimir G. TKACHEV Department of Mathematics, Royal Institute of Technology Lindstedtsv¨agen 25, 10044 Stockholm, Sweden email: [email protected] URL: http://www.math.kth.se/˜tkatchev Contents Chapter 1. Elliptic integrals and Jacobi’s theta functions 5 1.1. Elliptic integrals and the AGM: real case 5 1.2. Lemniscates and elastic curves 11 1.3. Euler’s addition theorem 18 1.4. Theta functions: preliminaries 24 Chapter 2. General theory of doubly periodic functions 31 2.1. Preliminaries 31 2.2. Periods of analytic functions 33 2.3. Existence of doubly periodic functions 36 2.4. Liouville’s theorems 38 2.5. The Weierstrass function ℘(z) 43 2.6. Modular forms 51 Bibliography 61 3 CHAPTER 1 Elliptic integrals and Jacobi’s theta functions 1.1. Elliptic integrals and the AGM: real case 1.1.1. Arclength of ellipses. Consider an ellipse with major and minor arcs 2a and 2b and eccentricity e := (a2 b2)/a2 [0, 1), e.g., − ∈ x2 y2 + = 1. a2 b2 What is the arclength `(a; b) of the ellipse, as a function of a and b? There are two easy observations to be made: (1) `(ra; rb) = r`(a; b), because rescaling by a factor r increases the arclength by the same factor; (2) `(a; a) = 2πa, because we know the circumference of a circle. Of course, π is transcendental so it is debatable how well we understand it! 1 0.5 ±2 ±1 0 1 2 ±0.5 ±1 2 y2 Figure 1. Ellipse x + 4 = 1 The total arclength is four times the length of the piece in the first quadrant, where we have the relations 2 xb 1 y = b 1 (x/a) , y0(x)= . − − a2 1 (x/a)2 p − 5 p Thus we obtain a 2 `(a, b) = 4 1+ y0 (x) dx = Z0 substitutingp z = x/a 1 1 ez2 = 4a − dx = 1 z2 Z0 r − 1 1 ez2 = 4a − dx. 2 2 0 (1 ez )(1 z ) Z − − This is an example of an elliptic integral ofp the second kind. 1.1.2. The simple pendulum. How do we compute the period of motion of a simple pendulum? Suppose the length of the pendulum is L and the gravitational constant is g. Let θ be the angle of the displacement of the pendulum from the vertical. The motion of the pendulum is governed by a differential equation g θ00(t)= sin θ(t). −L In basic calculus and physics classes, this is traditionally linearized to g θ00(t)= θ(t), θ 0, −L ≈ so that the solutions take the form g θ(t)= A cos ωt + B sin ωt, ω = . L r We obtain simple harmonic motion with frequency ω and period 2π/ω. We shall consider the nonlinear equation, using a series of substitutions. First, note that our equation integrates to 1 2 2 θ0 ω cos θ = const 2 − Assume that the pendulum has a maximal displacement of angle θ = α; then θ0(α) = 0 so we have 1 2 2 θ0 = ω (cos θ cos α), 2 − and thus, θ0 = ω 2(cos θ cos α). ± − We take positive square root before the maximalp displacement is achieved. Integrating again, we obtain θ dφ 1 θ dφ ωt = = . 0 2(cos φ cos α) 2 0 2 α 2 φ Z Z sin sin − 2 − 2 Substituting p q φ θ sin 2 sin 2 2 α z = α , ρ = α , e = sin [0, 1), sin 2 sin 2 2 ∈ 6 we obtain ρ dz ωt = . 2 2 0 (1 z )(1 ez ) Z − − At maximal displacement θ = α we have ρ = 1, so the first time where maximal displacement p occurs is given by T 1 1 dz = , 2 2 4 ω 0 (1 z )(1 ez ) Z − − where T is the period of the oscillation (whichp is four times the time needed to achieve the maximal displacement). These are examples of elliptic integrals of the first kind. Finally, we should point out that actually computing the function θ(t) involves inverting the function ρ dz ρ . 2 2 → 0 (1 z )(1 ez ) Z − − 1.1.3. The arithmetic-geometricp mean iteration. The arithmetic-geometric mean of two numbers a and b is defined to be the common limit of the two sequences a ∞ and { n}n=0 b ∞ determined by the algorithm { n}n=0 a0 = a, b0 = b a + b (1.1) a = n n , b = a b , n = 0, 1, 2 ..., n+1 2 n+1 n n where bn + 1 is always the positive square rootp of anbn. Note that a1 and b1 are the respective arithmetic and geometric means of a and b, a2 and b2 the corresponding means of a1 and b1, etc. Thus the limit M(a, b) := lim an = lim bn (1.2) n n →∞ →∞ really does deserve to be called the arithmetic-geometric mean (AGM) of a and b. This algorithm first appeared in papers of Euler and Lagrange (sometime before 1785), but it was Gauss who really discovered (in the 1790s at the age of 14) the amazing depth of this subject. Unfortunately, Gauss published little on the AGM during his lifetime. 1 Theorem 1.1. Let a and b be positive real numbers. Then the limits in (1.2) do exist and coincide. Proof. We will assume that a b> 0, and we let an n∞=0 and bn n∞=0 be as in (1.1). The usual inequality between arithmetic≥ and geometric{ means,} { } a + b n n a b 2 ≥ n n p 1By May 30th, 1799, Gauss had observed, purely computationally, that 1 1 2 dt and 4 M(1, √2) π 0 √1 t Z − agreed to at least eleven (!) decimal places. He commented in his diary that this result ”will surely open up a whole new field of analysis” — a claim vindicated by the subsequent directions of nineteenth-century mathematics. The inverse of the above (indefinite) integral is the lemniscate sine, a function Gauss studied in some detail. He had recognized it as a doubly periodc function by the year 1800 and hence had anticipated one of the most important developments of Abel and Jacobi: the inverse of algebraic integrals. 7 Figure 2. GAUSS Carl Friedrich (1777-1855) immediately implies that a b for all n 0. Actually, much more is true: we have n ≥ n ≥ a a . a a . b b . b b (1.3) 1 ≥ 2 ≥ ≥ n ≥ n+1 ≥ ≥ n+1 ≥ n ≥ ≥ 1 ≥ 0 and n 0 a b 2− (a b). (1.4) ≤ n − n ≤ − To prove (1.3), note that a b and a b imply n ≥ n n+1 ≥ n+1 a + b a n n = a b = a b b , n ≥ 2 n+1 ≥ n+1 n n ≥ n and (1.3) follows. From b b we obtain p n+1 ≥ n 1 a b a b = 2− (a b ), n+1 − n+1 ≤ n+1 − n n − n and (1.4) follows by induction. From (1.3) we see immediately that limn an and limn bn exist, and (1.4) implies that the limits are equal. →∞ →∞ Thus, we can use (1.2) to define the arithmetic-geometric mean M(a, b) of a and b. Below we list the simple properties of the AGM. Fact 1: M(a,a)= a; Fact 2: M(a, b)= M(b, a); Fact 3: M(a, 0) = 0; Fact 4: M(a, b)= M(a1, b1)= M(a2, b2)= . .; Fact 5: M(λa, λb)= λM(a, b); a+b √ Fact 6: M(a, b)= M 2 , ab . In particular, the latter relation leads us to 1+ x M(1, x)= M , √x , 2 which shows that the AGM f(x) := M(1, x) is a solution to the following functional equation 1+ x 2√x f(x)= f . 2 1+ x Our next result shows that the AGM is not as simple as indicated by what we have done so far. We now get our first glimpse of the depth of this subject. 8 Theorem 1.2 (Gauss, 1799). Let a and b are positive reals. Then 1 2 π/2 dφ = M(a, b) π 2 2 2 2 Z0 a cos φ + b sin φ Proof 1. As before, we assume that a pb > 0. Let I(a, b) denote the above integral, and set µ = M(a, b). Thus we need to prove≥ π I(a, b)= . 2µ The key step is to show that I(a, b)= I(a1, b1). (1.5) Let us introduce a new variable φ0 such that 2a sin φ sin φ = 0 . (1.6) a + b +(a b) sin2 φ − 0 π π Note that 0 φ0 corresponds to 0 φ . To see this we consider the function ≤ ≤ 2 ≤ ≤ 2 2at f(t) := . a + b +(a b)t2 − Then (a + b (a b)t2) 2ab f 0(t) = 2a − − > 0 (a + b +(a b)t2)2 ≥ (a + b +(a b)t2)2 − − which means that f(t) increasing in [0, 1]. On the other hand, f(0) = 0, f(1) = 1, which yields our claim. Now, we note that dφ dφ = 0 . (1.7) 2 2 2 2 2 2 2 2 a cos φ + b sin φ a1 cos φ0 + b1 sin φ0 Indeed, one can find fromp (1.6) p 2 cos φ a2 cos2 φ + b2 sin2 φ cos φ = 0 1 0 1 0 (1.8) a + b +(a b) sin2 φ p − 0 and it follows (by straightforward manipulations) that 2 a + b (a b) sin φ0 a2 cos2 φ + b2 sin2 φ = a − − .
Recommended publications
  • 13 Elliptic Function
    13 Elliptic Function Recall that a function g : C → Cˆ is an elliptic function if it is meromorphic and there exists a lattice L = {mω1 + nω2 | m, n ∈ Z} such that g(z + ω)= g(z) for all z ∈ C and all ω ∈ L where ω1,ω2 are complex numbers that are R-linearly independent. We have shown that an elliptic function cannot be holomorphic, the number of its poles are finite and the sum of their residues is zero. Lemma 13.1 A non-constant elliptic function f always has the same number of zeros mod- ulo its associated lattice L as it does poles, counting multiplicites of zeros and orders of poles. Proof: Consider the function f ′/f, which is also an elliptic function with associated lattice L. We will evaluate the sum of the residues of this function in two different ways as above. Then this sum is zero, and by the argument principle from complex analysis 31, it is precisely the number of zeros of f counting multiplicities minus the number of poles of f counting orders. Corollary 13.2 A non-constant elliptic function f always takes on every value in Cˆ the same number of times modulo L, counting multiplicities. Proof: Given a complex value b, consider the function f −b. This function is also an elliptic function, and one with the same poles as f. By Theorem above, it therefore has the same number of zeros as f. Thus, f must take on the value b as many times as it does 0.
    [Show full text]
  • Nonintersecting Brownian Motions on the Unit Circle: Noncritical Cases
    The Annals of Probability 2016, Vol. 44, No. 2, 1134–1211 DOI: 10.1214/14-AOP998 c Institute of Mathematical Statistics, 2016 NONINTERSECTING BROWNIAN MOTIONS ON THE UNIT CIRCLE By Karl Liechty and Dong Wang1 DePaul University and National University of Singapore We consider an ensemble of n nonintersecting Brownian particles on the unit circle with diffusion parameter n−1/2, which are condi- tioned to begin at the same point and to return to that point after time T , but otherwise not to intersect. There is a critical value of T which separates the subcritical case, in which it is vanishingly un- likely that the particles wrap around the circle, and the supercritical case, in which particles may wrap around the circle. In this paper, we show that in the subcritical and critical cases the probability that the total winding number is zero is almost surely 1 as n , and →∞ in the supercritical case that the distribution of the total winding number converges to the discrete normal distribution. We also give a streamlined approach to identifying the Pearcey and tacnode pro- cesses in scaling limits. The formula of the tacnode correlation kernel is new and involves a solution to a Lax system for the Painlev´e II equation of size 2 2. The proofs are based on the determinantal × structure of the ensemble, asymptotic results for the related system of discrete Gaussian orthogonal polynomials, and a formulation of the correlation kernel in terms of a double contour integral. 1. Introduction. The probability models of nonintersecting Brownian motions have been studied extensively in last decade; see Tracy and Widom (2004, 2006), Adler and van Moerbeke (2005), Adler, Orantin and van Moer- beke (2010), Delvaux, Kuijlaars and Zhang (2011), Johansson (2013), Ferrari and Vet˝o(2012), Katori and Tanemura (2007) and Schehr et al.
    [Show full text]
  • Halloweierstrass
    Happy Hallo WEIERSTRASS Did you know that Weierestrass was born on Halloween? Neither did we… Dmitriy Bilyk will be speaking on Lacunary Fourier series: from Weierstrass to our days Monday, Oct 31 at 12:15pm in Vin 313 followed by Mesa Pizza in the first floor lounge Brought to you by the UMN AMS Student Chapter and born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstrass 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 sent to University of Bonn to prepare for a government position { dropped out.
    [Show full text]
  • Lectures on Modular Forms. Fall 1997/98
    Lectures on Modular Forms. Fall 1997/98 Igor V. Dolgachev October 26, 2017 ii Contents 1 Binary Quadratic Forms1 2 Complex Tori 13 3 Theta Functions 25 4 Theta Constants 43 5 Transformations of Theta Functions 53 6 Modular Forms 63 7 The Algebra of Modular Forms 83 8 The Modular Curve 97 9 Absolute Invariant and Cross-Ratio 115 10 The Modular Equation 121 11 Hecke Operators 133 12 Dirichlet Series 147 13 The Shimura-Tanyama-Weil Conjecture 159 iii iv CONTENTS Lecture 1 Binary Quadratic Forms 1.1 The theory of modular form originates from the work of Carl Friedrich Gauss of 1831 in which he gave a geometrical interpretation of some basic no- tions of number theory. Let us start with choosing two non-proportional vectors v = (v1; v2) and w = 2 (w1; w2) in R The set of vectors 2 Λ = Zv + Zw := fm1v + m2w 2 R j m1; m2 2 Zg forms a lattice in R2, i.e., a free subgroup of rank 2 of the additive group of the vector space R2. We picture it as follows: • • • • • • •Gv • ••• •• • w • • • • • • • • Figure 1.1: Lattice in R2 1 2 LECTURE 1. BINARY QUADRATIC FORMS Let v v B(v; w) = 1 2 w1 w2 and v · v v · w G(v; w) = = B(v; w) · tB(v; w): v · w w · w be the Gram matrix of (v; w). The area A(v; w) of the parallelogram formed by the vectors v and w is given by the formula v · v v · w A(v; w)2 = det G(v; w) = (det B(v; w))2 = det : v · w w · w Let x = mv + nw 2 Λ.
    [Show full text]
  • On Fractal Properties of Weierstrass-Type Functions
    Proceedings of the International Geometry Center Vol. 12, no. 2 (2019) pp. 43–61 On fractal properties of Weierstrass-type functions Claire David Abstract. In the sequel, starting from the classical Weierstrass function + 8 n n defined, for any real number x, by (x) = λ cos (2 π Nb x), where λ W n=0 ÿ and Nb are two real numbers such that 0 λ 1, Nb N and λ Nb 1, we highlight intrinsic properties of curious mapsă ă which happenP to constituteą a new class of iterated function system. Those properties are all the more interesting, in so far as they can be directly linked to the computation of the box dimension of the curve, and to the proof of the non-differentiabilty of Weierstrass type functions. Анотація. Метою даної роботи є узагальнення попередніх результатів автора про класичну функцію Вейерштрасса та її графік. Його можна отримати як границю послідовності префракталів, тобто графів, отри- маних за допомогою ітераційної системи функцій, які, як правило, не є стискаючими відображеннями. Натомість вони мають в деякому сенсі еквівалентну властивість до стискаючих відображень, оскільки на ко- жному етапі ітераційного процесу, який дає змогу отримати префра- ктали, вони зменшують двовимірні міри Лебега заданої послідовності прямокутників, що покривають криву. Такі системи функцій відіграють певну роль на першому кроці процесу побудови підкови Смейла. Вони можуть бути використані для доведення недиференційованості функції Вейєрштрасса та обчислення box-розмірності її графіка, а також для по- будови більш широких класів неперервних, але ніде не диференційовних функцій. Останнє питання ми вивчатимемо в подальших роботах. 2010 Mathematics Subject Classification: 37F20, 28A80, 05C63 Keywords: Weierstrass function; non-differentiability; iterative function systems DOI: http://dx.doi.org/10.15673/tmgc.v12i2.1485 43 44 Cl.
    [Show full text]
  • Continuous Nowhere Differentiable Functions
    2003:320 CIV MASTER’S THESIS Continuous Nowhere Differentiable Functions JOHAN THIM MASTER OF SCIENCE PROGRAMME Department of Mathematics 2003:320 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 03/320 - - SE Continuous Nowhere Differentiable Functions Johan Thim December 2003 Master Thesis Supervisor: Lech Maligranda Department of Mathematics Abstract In the early nineteenth century, most mathematicians believed that a contin- uous function has derivative at a significant set of points. A. M. Amp`ereeven tried to give a theoretical justification for this (within the limitations of the definitions of his time) in his paper from 1806. In a presentation before the Berlin Academy on July 18, 1872 Karl Weierstrass shocked the mathematical community by proving this conjecture to be false. He presented a function which was continuous everywhere but differentiable nowhere. The function in question was defined by ∞ X W (x) = ak cos(bkπx), k=0 where a is a real number with 0 < a < 1, b is an odd integer and ab > 1+3π/2. This example was first published by du Bois-Reymond in 1875. Weierstrass also mentioned Riemann, who apparently had used a similar construction (which was unpublished) in his own lectures as early as 1861. However, neither Weierstrass’ nor Riemann’s function was the first such construction. The earliest known example is due to Czech mathematician Bernard Bolzano, who in the years around 1830 (published in 1922 after being discovered a few years earlier) exhibited a continuous function which was nowhere differen- tiable. Around 1860, the Swiss mathematician Charles Cell´erieralso discov- ered (independently) an example which unfortunately wasn’t published until 1890 (posthumously).
    [Show full text]
  • Abelian Solutions of the Soliton Equations and Riemann–Schottky Problems
    Russian Math. Surveys 63:6 1011–1022 c 2008 RAS(DoM) and LMS Uspekhi Mat. Nauk 63:6 19–30 DOI 10.1070/RM2008v063n06ABEH004576 Abelian solutions of the soliton equations and Riemann–Schottky problems I. M. Krichever Abstract. The present article is an exposition of the author’s talk at the conference dedicated to the 70th birthday of S. P. Novikov. The talk con- tained the proof of Welters’ conjecture which proposes a solution of the clas- sical Riemann–Schottky problem of characterizing the Jacobians of smooth algebraic curves in terms of the existence of a trisecant of the associated Kummer variety, and a solution of another classical problem of algebraic geometry, that of characterizing the Prym varieties of unramified covers. Contents 1. Introduction 1011 2. Welters’ trisecant conjecture 1014 3. The problem of characterization of Prym varieties 1017 4. Abelian solutions of the soliton equations 1018 Bibliography 1020 1. Introduction The famous Novikov conjecture which asserts that the Jacobians of smooth alge- braic curves are precisely those indecomposable principally polarized Abelian vari- eties whose theta-functions provide explicit solutions of the Kadomtsev–Petviashvili (KP) equation, fundamentally changed the relations between the classical algebraic geometry of Riemann surfaces and the theory of soliton equations. It turns out that the finite-gap, or algebro-geometric, theory of integration of non-linear equa- tions developed in the mid-1970s can provide a powerful tool for approaching the fundamental problems of the geometry of Abelian varieties. The basic tool of the general construction proposed by the author [1], [2]which g+k 1 establishes a correspondence between algebro-geometric data Γ,Pα,zα,S − (Γ) and solutions of some soliton equation, is the notion of Baker–Akhiezer{ function.} Here Γis a smooth algebraic curve of genus g with marked points Pα, in whose g+k 1 neighborhoods we fix local coordinates zα, and S − (Γ) is a symmetric prod- uct of the curve.
    [Show full text]
  • Analytic Vortex Solutions on Compact Hyperbolic Surfaces
    Analytic vortex solutions on compact hyperbolic surfaces Rafael Maldonado∗ and Nicholas S. Mantony Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, U.K. August 27, 2018 Abstract We construct, for the first time, Abelian-Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. 1 Introduction Consider the Abelian-Higgs field theory on a background surface M with metric ds2 = Ω(x; y)(dx2+dy2). At critical coupling the static energy functional satisfies a Bogomolny bound 2 1 Z B Ω 2 E = + jD Φj2 + 1 − jΦj2 dxdy ≥ πN; (1) 2 2Ω i 2 where the topological invariant N (the `vortex number') is the number of zeros of Φ counted with multiplicity [1]. In the notation of [2] we have taken e2 = τ = 1. Equality in (1) is attained when the fields satisfy the Bogomolny vortex equations, which are obtained by completing the square in (1). In complex coordinates z = x + iy these are 2 Dz¯Φ = 0;B = Ω (1 − jΦj ): (2) This set of equations has smooth vortex solutions. As we explain in section 2, analytical results are most readily obtained when M is hyperbolic, having constant negative cur- vature K = −1, a case which is of interest in its own right due to the relation between arXiv:1502.01990v1 [hep-th] 6 Feb 2015 hyperbolic vortices and SO(3)-invariant instantons, [3].
    [Show full text]
  • Mirror Symmetry of Abelian Variety and Multi Theta Functions
    1 Mirror symmetry of Abelian variety and Multi Theta functions by Kenji FUKAYA (深谷賢治) Department of Mathematics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto Japan Table of contents § 0 Introduction. § 1 Moduli spaces of Lagrangian submanifolds and construction of a mirror torus. § 2 Construction of a sheaf from an affine Lagrangian submanifold. § 3 Sheaf cohomology and Floer cohomology 1 (Construction of a homomorphism). § 4 Isogeny. § 5 Sheaf cohomology and Floer cohomology 2 (Proof of isomorphism). § 6 Extension and Floer cohomology 1 (0 th cohomology). § 7 Moduli space of holomorphic vector bundles on a mirror torus. § 8 Nontransversal or disconnected Lagrangian submanifolds. ∞ § 9 Multi Theta series 1 (Definition and A formulae.) § 10 Multi Theta series 2 (Calculation of the coefficients.) § 11 Extension and Floer cohomology 2 (Higher cohomology). § 12 Resolution and Lagrangian surgery. 2 § 0 Introduction In this paper, we study mirror symmetry of complex and symplectic tori as an example of homological mirror symmetry conjecture of Kontsevich [24], [25] between symplectic and complex manifolds. We discussed mirror symmetry of tori in [12] emphasizing its “noncom- mutative” generalization. In this paper, we concentrate on the case of a commutative (usual) torus. Our result is a generalization of one by Polishchuk and Zaslow [42], [41], who studied the case of elliptic curve. The main results of this paper establish a dictionary of mirror symmetry between symplectic geometry and complex geometry in the case of tori of arbitrary dimension. We wrote this dictionary in the introduction of [12]. We present the argument in a way so that it suggests a possibility of its generalization.
    [Show full text]
  • ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi)
    Math 213a (Fall 2021) Yum-Tong Siu 1 ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi) Significance of Elliptic Functions. Elliptic functions and their associated theta functions are a new class of special functions which play an impor- tant role in explicit solutions of real world problems. Elliptic functions as meromorphic functions on compact Riemann surfaces of genus 1 and their associated theta functions as holomorphic sections of holomorphic line bun- dles on compact Riemann surfaces pave the way for the development of the theory of Riemann surfaces and higher-dimensional abelian varieties. Two Approaches to Elliptic Function Theory. One approach (which we call the approach of Abel and Jacobi) follows the historic development with motivation from real-world problems and techniques developed for solving the difficulties encountered. One starts with the inverse of an elliptic func- tion defined by an indefinite integral whose integrand is the reciprocal of the square root of a quartic polynomial. An obstacle is to show that the inverse function of the indefinite integral is a global meromorphic function on C with two R-linearly independent primitive periods. The resulting dou- bly periodic meromorphic functions are known as Jacobian elliptic functions, though Abel was actually the first mathematician who succeeded in inverting such an indefinite integral. Nowadays, with the use of the notion of a Rie- mann surface, the inversion can be handled by using the fundamental group of the Riemann surface constructed to make the square root of the quartic polynomial single-valued. The great advantage of this approach is that there is vast literature for the properties of the Jacobain elliptic functions and of their associated Jacobian theta functions.
    [Show full text]
  • Theta Function Review G = 1 Case
    The genus 1 case - review Theta Function Review g = 1 case We recall the main de¯nitions of theta functions in the 1-dim'l case: De¯nition 0 Let· ¿ 2¸C such that Im¿ > 0: For "; " real numbers and z 2 C then: " £ (z;¿) = "0 n ¡ ¢ ¡ ¢ ¡ ¢ ³ ´o P 1 " " ² t ²0 l²Z2 exp2¼i 2 l + 2 ¿ l + 2 + l + 2 z + 2 The series· is uniformly¸ and absolutely convergent on compact subsets " C £ H: are called Theta characteristics "0 The genus 1 case - review Theta Function Properties Review for g = 1 case the following properties of theta functions can be obtained by manipulation of the series : · ¸ · ¸ " + 2m " 1. £ (z;¿) = exp¼i f"eg £ (z;¿) and e; m 2 Z "0 + 2e "0 · ¸ · ¸ " " 2. £ (z;¿) = £ (¡z;¿) ¡"0 "0 · ¸ " 3. £ (z + n + m¿; ¿) = "0 n o · ¸ t t 0 " exp 2¼i n "¡m " ¡ mz ¡ m2¿ £ (z;¿) 2 "0 The genus 1 case - review Remarks on the properties of Theta functions g=1 1. Property number 3 describes the transformation properties of theta functions under an element of the lattice L¿ generated by f1;¿g. 2. The same property implies that that the zeros of theta functions are well de¯ned on the torus given· ¸ by C=L¿ : In fact there is only a " unique such 0 for each £ (z;¿): "0 · ¸ · ¸ "i γj 3. Let 0 ; i = 1:::k and 0 ; j = 1:::l and "i γj 2 3 Q "i k θ4 5(z;¿) ³P ´ ³P ´ i=1 "0 k 0 l 0 2 i 3 "i + " ¿ ¡ γj + γ ¿ 2 L¿ Then i=1 i j=1 j Q l 4 γj 5 j=1 θ 0 (z;¿) γj is a meromorphic function on the elliptic curve de¯ned by C=L¿ : The genus 1 case - review Analytic vs.
    [Show full text]
  • Lecture 9 Riemann Surfaces, Elliptic Functions Laplace Equation
    Lecture 9 Riemann surfaces, elliptic functions Laplace equation Consider a Riemannian metric gµν in two dimensions. In two dimensions it is always possible to choose coordinates (x,y) to diagonalize it as ds2 = Ω(x,y)(dx2 + dy2). We can then combine them into a complex combination z = x+iy to write this as ds2 =Ωdzdz¯. It is actually a K¨ahler metric since the condition ∂[i,gj]k¯ = 0 is trivial if i, j = 1. Thus, an orientable Riemannian manifold in two dimensions is always K¨ahler. In the diagonalized form of the metric, the Laplace operator is of the form, −1 ∆=4Ω ∂z∂¯z¯. Thus, any solution to the Laplace equation ∆φ = 0 can be expressed as a sum of a holomorphic and an anti-holomorphid function. ∆φ = 0 φ = f(z)+ f¯(¯z). → In the following, we assume Ω = 1 so that the metric is ds2 = dzdz¯. It is not difficult to generalize our results for non-constant Ω. Now, we would like to prove the following formula, 1 ∂¯ = πδ(z), z − where δ(z) = δ(x)δ(y). Since 1/z is holomorphic except at z = 0, the left-hand side should vanish except at z = 0. On the other hand, by the Stokes theorem, the integral of the left-hand side on a disk of radius r gives, 1 i dz dxdy ∂¯ = = π. Zx2+y2≤r2 z 2 I|z|=r z − This proves the formula. Thus, the Green function G(z, w) obeying ∆zG(z, w) = 4πδ(z w), − should behave as G(z, w)= log z w 2 = log(z w) log(¯z w¯), − | − | − − − − near z = w.
    [Show full text]