Trigonometric Functions, Elliptic Functions, Elliptic Modular Forms 1

Total Page:16

File Type:pdf, Size:1020Kb

Trigonometric Functions, Elliptic Functions, Elliptic Modular Forms 1 (September 24, 2013) Trigonometric functions, elliptic functions, elliptic modular forms Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http://www.math.umn.edu/~garrett/m/mfms/notes 2013-14/03 elliptic.pdf] 1. Reconsideration of sin x 2. Construction of singly-periodic functions 3. Arc length of ellipses: elliptic integrals, elliptic functions 4. Construction of doubly-periodic functions 5. Complex tori, elliptic curves, the modular curve 6. Elliptic modular forms 1. Reconsideration of sin x Although we already know quite a bit about trigonometric functions and their role in calculus, their treatment can be redone to emphasize parallels for elliptic integrals and elliptic functions. [1.1] Integral defining arcsin x The length of arc of a piece of a circle is x2 + y2 = 1 is Z x Z x r p d p 2 arc length of circle fragment from 0 to x = 1 + y02 dt = 1 + 1 − t2 dt 0 0 dt x s 1 x r x Z · (−2t)2 Z t2 Z dt = 1 + 2p dt = 1 + dt = p = arcsin x 2 2 2 0 1 − t 0 1 − t 0 1 − t [1.2] Periodicity The periodicity of sin x comes from the multi-valuedness of arcsin x. The multi-valuedness is ascertainable from this integral, since the path from 0 to x can meander through the complex plane, going around the two points ±1 special for the integral. The basic unit of this multi-valuedness is Z dζ = ±2π (counter-clockwise circular path γ enclosing both ±1) p 2 γ 1 − ζ That is, a path integral from 0 to x could go from 0 to x along the real axis, but then add to the path a vertical line segment from x out to a circle of radius 2, traverse the circle an arbitrary number of times, come back along the same segment (thus cancelling the contribution from this segment). 2 − 1 There are two single-valued choices for (1 − z ) 2 on any region complementary to an arc connecting ±1. For example, it is easy to see a Laurent expansion in jzj > 1: − 1 1 3 2 − 1 ±i 1 2 ±i 1 1 (− 2 )(− 2 ) 1 2 i 1=2 3=8 (1 − z ) 2 = · 1 − = · 1 − (− ) + + ::: = ± + + + ::: z z2 z 2 z2 2! z2 z z3 z5 R dz Let γ be a path traversing counterclockwise a circle of radius more than 1 centered at 0. Integrals γ zN are 0 except for N = 1, in which case the integral is 2πi. Thus, Z dz p = ±2π 2 γ 1 − z [1.3] Polynomial relation between sin x and sin0 x Rewriting the integral as Z sin x dt p = x 2 0 1 − t 1 Paul Garrett: Trigonometric functions, elliptic functions, elliptic modular forms (September 24, 2013) and taking a derivative, by the fundamental theorem of calculus, 0 1 sin x · p = 1 1 − sin2 Thus, (sin0 x)2 = 1 − (sin x)2 and the algebraic relation between sin x and its derivative (we know it is cos x) arises: (sin x)2 + (sin0 x)2 = 1 2. Construction of singly-periodic functions A singly-periodic function f on C is a (probably holomorphic or meromorphic) function such that for some ! 6= 0 f(z + !) = f(z) (for all z 2 C) or at least for z away from poles of f. Iterating the condition, for any integer n f(z + n!) = f(z) In other words, f is invariant under translation by the group Z · ! inside C. Feigning ignorance of the trigonometric (and exponential) function, whether as inverse functions to integrals or not, as a warm-up to the construction of doubly-periodic functions we should try to construct some singly-periodic functions. [2.1] Construction and comparison to sin z For simplicity, take ! = 1, and make holomorphic or meromorphic functions f such that f(z + 1) = f(z) (for all z 2 C) That is, we want Z-periodic functions on C, hypothetically closely related to sin 2πz. A fundamental approach to manufacturing such things is averaging, also called periodicization or automorphizing, as follows. For given function ', consider X f(z) = '(z + n) n2Z If this converges nicely it is certainly periodic with period 1, since X X f(z + 1) = '(z + 1 + n) = '(z + n) n2Z n2Z by replacing n by n − 1, using the fact that we have summed over the group Z, justifying rearrangement by absolute convergence. An elementary function making the sum converge, apart from poles, is '(z) = 1=z2, so put X 1 f(z) = (z + n)2 n2Z If we are lucky, this manufactures a function related to the sine function. Indeed, f(z) has double poles at the zeros of sin πz, so a plausible preliminary guess is that f(z) is 1=(sin πz)2. 2 Paul Garrett: Trigonometric functions, elliptic functions, elliptic modular forms (September 24, 2013) To prove equality, perhaps after adjusting details, match poles, subtract, check that the difference goes to 0 as the imaginary part of z at infinity goes to 1, and invoke Liouville. [1] To do this, first determine the Laurent expansion of f(z) near its poles. By periodicity, we'll understand all the poles if we understand the pole at z = 0. This is 1 X 1 1 f(z) = + = + (holomorphic near z = 0) z2 (z + n)2 z2 n6=0 To understand the nature of each pole of 1= sin2 πz, by periodicity it suffices to look near z = 0. Since sin πz = πz + (πz)3=3! + ::: = πz · 1 + (πz)2=3! + ::: the inverse square is [2] 1 1 1 1/π2 = = · 1 − (πz)2=3! + ::: = + holomorphic at 0 sin2 πz πz · 1 + (πz)2=3! + ::: (πz)2 z2 Correcting by π2, the poles of f(z) and π2= sin2 πz cancel: π2 X 1 π2 f(z) − = − = entire 2 (z + n)2 2 sin πz n sin πz As Im(z) becomes large, f(z) goes to zero. For apparently different reasons, also π2 2πi 2 = −! 0 (as jIm(z)j ! 1) sin2 πz eπiz − e−2πiz Thus, by Liouville, X 1 π2 = (z + n)2 sin2 πz n2Z [2.2] Differential equations for singly-periodic functions The construction produced a singly-periodic function P 1=(z + n)2 identifiable in terms of already-familiar items. The analogous discussion for doubly- periodic functions does not produce familiar objects. For practice, we now take another viewpoint that will also succeed with constructed doubly-periodic functions. [1] Liouville's theorem asserts that a bounded entire function is constant. As an immediate corollary, an entire function which is bounded and goes to 0 as the imaginary part of z goes to infinity is 0. Liouville's theorem is a striking instance of rigidity, where to prove two things equal, we need not prove something with infinite precision, but only demonstrate sufficient closeness to be able to infer equality. A trivial case of rigidity is that two integers are equal if they are within distance 1. [2] 2 The first two terms of the multiplicative inverse of a convergent power series 1 + c1z + c2z + ::: are easily 1 2 determined, using 1−r = 1 + r + r + :::: 1 1 2 = 2 1 + c1z + c2z + ::: 1 − (−c1z − c2z − :::) 2 2 2 = 1 + (−c1z − c2z − :::) + (−c1z − c2z − :::) + ::: = 1 − c1z + (higher-order) That is, with leading term 1, the coefficient of z changes simply by flipping sign. 3 Paul Garrett: Trigonometric functions, elliptic functions, elliptic modular forms (September 24, 2013) The aim is to determine a differential equation satisfied by f(z) = P 1=(z + n)2. In terms of Liouville, both f and its derivative X 1 f 0(z) = −2 (z + n)3 go to 0 as Im(z) ! ±∞, so if a polynomial P (f; f 0) in f and f 0 cancels the poles, then P (f; f 0) is necessarily constant, giving a polynomial relation [3] between f 0 and f. By periodicity, it suffices to consider the poles at z = 0, as before. Noting that f(−z) = f(z) assures vanishing of odd-order terms, let 1 −2 f(z) = + a + bz2 + O(z4) so f 0(z) = + 2bz + O(z3) z2 z3 To cancel poles by a polynomial P (f; f 0), the first step is to cancel the worst pole by f 3 −(f 0=−2)2: compute (carefully!?) that 1 2a 1 3a 3a2 + 3b f(z)2 = + + O(1) and f(z)3 = + + + O(1) z4 z2 z6 z4 z2 and f 0(z)2 1 2 1 2b = − bz + O(z3) = − + O(1) −2 z3 z6 z2 Thus, f 0(z)2 3a 3a2 + 5b − f(z)3 = − − + O(1) −2 z4 z2 The 1=z4 term can be eliminated by adjusting by a multiple of f(z)2: f 0(z)2 −3a2 − 5b + 6a2 3a2 − 5b − f(z)3 + 3a · f(z)2 = + O(1) = + O(1) −2 z2 z2 Finally, subtract a multiple of f(z) to eliminate the 1=z2 term: f 0(z)2 − f(z)3 + 3a · f(z)2 − (3a2 − 5b) · f(z) = O(1) −2 In fact, since both f and f 0 go to zero as Im(z) ! ±∞, the O(1) term must be 0. Rearrangement produces a relation anticipating Weierstraß’ analogous relation for constructed doubly-periodic functions: 02 3 2 2 X 1 1 f = 4f − 12af + (12a − 20b)f (with f(z) = = + a + bz2 + :::) (z + n)2 z2 Again, for other reasons, we know f(z) = π2= sin2 πz. [2.2.1] Remark: The existence of the relation made no use of higher Laurent coefficients, and at the same time explicitly demonstrates the dependence of the algebraic relation on the coefficients a; b in 1 2 2 4 f(z) = z2 + a + bz + :::.
Recommended publications
  • Nonintersecting Brownian Motions on the Unit Circle: Noncritical Cases
    The Annals of Probability 2016, Vol. 44, No. 2, 1134–1211 DOI: 10.1214/14-AOP998 c Institute of Mathematical Statistics, 2016 NONINTERSECTING BROWNIAN MOTIONS ON THE UNIT CIRCLE By Karl Liechty and Dong Wang1 DePaul University and National University of Singapore We consider an ensemble of n nonintersecting Brownian particles on the unit circle with diffusion parameter n−1/2, which are condi- tioned to begin at the same point and to return to that point after time T , but otherwise not to intersect. There is a critical value of T which separates the subcritical case, in which it is vanishingly un- likely that the particles wrap around the circle, and the supercritical case, in which particles may wrap around the circle. In this paper, we show that in the subcritical and critical cases the probability that the total winding number is zero is almost surely 1 as n , and →∞ in the supercritical case that the distribution of the total winding number converges to the discrete normal distribution. We also give a streamlined approach to identifying the Pearcey and tacnode pro- cesses in scaling limits. The formula of the tacnode correlation kernel is new and involves a solution to a Lax system for the Painlev´e II equation of size 2 2. The proofs are based on the determinantal × structure of the ensemble, asymptotic results for the related system of discrete Gaussian orthogonal polynomials, and a formulation of the correlation kernel in terms of a double contour integral. 1. Introduction. The probability models of nonintersecting Brownian motions have been studied extensively in last decade; see Tracy and Widom (2004, 2006), Adler and van Moerbeke (2005), Adler, Orantin and van Moer- beke (2010), Delvaux, Kuijlaars and Zhang (2011), Johansson (2013), Ferrari and Vet˝o(2012), Katori and Tanemura (2007) and Schehr et al.
    [Show full text]
  • The Chiral De Rham Complex of Tori and Orbifolds
    The Chiral de Rham Complex of Tori and Orbifolds Dissertation zur Erlangung des Doktorgrades der Fakult¨atf¨urMathematik und Physik der Albert-Ludwigs-Universit¨at Freiburg im Breisgau vorgelegt von Felix Fritz Grimm Juni 2016 Betreuerin: Prof. Dr. Katrin Wendland ii Dekan: Prof. Dr. Gregor Herten Erstgutachterin: Prof. Dr. Katrin Wendland Zweitgutachter: Prof. Dr. Werner Nahm Datum der mundlichen¨ Prufung¨ : 19. Oktober 2016 Contents Introduction 1 1 Conformal Field Theory 4 1.1 Definition . .4 1.2 Toroidal CFT . .8 1.2.1 The free boson compatified on the circle . .8 1.2.2 Toroidal CFT in arbitrary dimension . 12 1.3 Vertex operator algebra . 13 1.3.1 Complex multiplication . 15 2 Superconformal field theory 17 2.1 Definition . 17 2.2 Ising model . 21 2.3 Dirac fermion and bosonization . 23 2.4 Toroidal SCFT . 25 2.5 Elliptic genus . 26 3 Orbifold construction 29 3.1 CFT orbifold construction . 29 3.1.1 Z2-orbifold of toroidal CFT . 32 3.2 SCFT orbifold . 34 3.2.1 Z2-orbifold of toroidal SCFT . 36 3.3 Intersection point of Z2-orbifold and torus models . 38 3.3.1 c = 1...................................... 38 3.3.2 c = 3...................................... 40 4 Chiral de Rham complex 41 4.1 Local chiral de Rham complex on CD ...................... 41 4.2 Chiral de Rham complex sheaf . 44 4.3 Cechˇ cohomology vertex algebra . 49 4.4 Identification with SCFT . 49 4.5 Toric geometry . 50 5 Chiral de Rham complex of tori and orbifold 53 5.1 Dolbeault type resolution . 53 5.2 Torus .
    [Show full text]
  • Analytic Vortex Solutions on Compact Hyperbolic Surfaces
    Analytic vortex solutions on compact hyperbolic surfaces Rafael Maldonado∗ and Nicholas S. Mantony Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA, U.K. August 27, 2018 Abstract We construct, for the first time, Abelian-Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations. 1 Introduction Consider the Abelian-Higgs field theory on a background surface M with metric ds2 = Ω(x; y)(dx2+dy2). At critical coupling the static energy functional satisfies a Bogomolny bound 2 1 Z B Ω 2 E = + jD Φj2 + 1 − jΦj2 dxdy ≥ πN; (1) 2 2Ω i 2 where the topological invariant N (the `vortex number') is the number of zeros of Φ counted with multiplicity [1]. In the notation of [2] we have taken e2 = τ = 1. Equality in (1) is attained when the fields satisfy the Bogomolny vortex equations, which are obtained by completing the square in (1). In complex coordinates z = x + iy these are 2 Dz¯Φ = 0;B = Ω (1 − jΦj ): (2) This set of equations has smooth vortex solutions. As we explain in section 2, analytical results are most readily obtained when M is hyperbolic, having constant negative cur- vature K = −1, a case which is of interest in its own right due to the relation between arXiv:1502.01990v1 [hep-th] 6 Feb 2015 hyperbolic vortices and SO(3)-invariant instantons, [3].
    [Show full text]
  • On Hodge Theory and Derham Cohomology of Variétiés
    On Hodge Theory and DeRham Cohomology of Vari´eti´es Pete L. Clark October 21, 2003 Chapter 1 Some geometry of sheaves 1.1 The exponential sequence on a C-manifold Let X be a complex manifold. An amazing amount of geometry of X is encoded in the long exact cohomology sequence of the exponential sequence of sheaves on X: exp £ 0 ! Z !OX !OX ! 0; where exp takes a holomorphic function f on an open subset U to the invertible holomorphic function exp(f) := e(2¼i)f on U; notice that the kernel is the constant sheaf on Z, and that the exponential map is surjective as a morphism of sheaves because every holomorphic function on a polydisk has a logarithm. Taking sheaf cohomology we get exp £ 1 1 1 £ 2 0 ! Z ! H(X) ! H(X) ! H (X; Z) ! H (X; OX ) ! H (X; OX ) ! H (X; Z); where we have written H(X) for the ring of global holomorphic functions on X. Now let us reap the benefits: I. Because of the exactness at H(X)£, we see that any nowhere vanishing holo- morphic function on any simply connected C-manifold has a logarithm – even in the complex plane, this is a nontrivial result. From now on, assume that X is compact – in particular it homeomorphic to a i finite CW complex, so its Betti numbers bi(X) = dimQ H (X; Q) are finite. This i i also implies [Cartan-Serre] that h (X; F ) = dimC H (X; F ) is finite for all co- herent analytic sheaves on X, i.e.
    [Show full text]
  • AN EXPLORATION of COMPLEX JACOBIAN VARIETIES Contents 1
    AN EXPLORATION OF COMPLEX JACOBIAN VARIETIES MATTHEW WOOLF Abstract. In this paper, I will describe my thought process as I read in [1] about Abelian varieties in general, and the Jacobian variety associated to any compact Riemann surface in particular. I will also describe the way I currently think about the material, and any additional questions I have. I will not include material I personally knew before the beginning of the summer, which included the basics of algebraic and differential topology, real analysis, one complex variable, and some elementary material about complex algebraic curves. Contents 1. Abelian Sums (I) 1 2. Complex Manifolds 2 3. Hodge Theory and the Hodge Decomposition 3 4. Abelian Sums (II) 6 5. Jacobian Varieties 6 6. Line Bundles 8 7. Abelian Varieties 11 8. Intermediate Jacobians 15 9. Curves and their Jacobians 16 References 17 1. Abelian Sums (I) The first thing I read about were Abelian sums, which are sums of the form 3 X Z pi (1.1) (L) = !; i=1 p0 where ! is the meromorphic one-form dx=y, L is a line in P2 (the complex projective 2 3 2 plane), p0 is a fixed point of the cubic curve C = (y = x + ax + bx + c), and p1, p2, and p3 are the three intersections of the line L with C. The fact that C and L intersect in three points counting multiplicity is just Bezout's theorem. Since C is not simply connected, the integrals in the Abelian sum depend on the path, but there's no natural choice of path from p0 to pi, so this function depends on an arbitrary choice of path, and will not necessarily be holomorphic, or even Date: August 22, 2008.
    [Show full text]
  • Abelian Varieties
    Abelian Varieties J.S. Milne Version 2.0 March 16, 2008 These notes are an introduction to the theory of abelian varieties, including the arithmetic of abelian varieties and Faltings’s proof of certain finiteness theorems. The orginal version of the notes was distributed during the teaching of an advanced graduate course. Alas, the notes are still in very rough form. BibTeX information @misc{milneAV, author={Milne, James S.}, title={Abelian Varieties (v2.00)}, year={2008}, note={Available at www.jmilne.org/math/}, pages={166+vi} } v1.10 (July 27, 1998). First version on the web, 110 pages. v2.00 (March 17, 2008). Corrected, revised, and expanded; 172 pages. Available at www.jmilne.org/math/ Please send comments and corrections to me at the address on my web page. The photograph shows the Tasman Glacier, New Zealand. Copyright c 1998, 2008 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Contents Introduction 1 I Abelian Varieties: Geometry 7 1 Definitions; Basic Properties. 7 2 Abelian Varieties over the Complex Numbers. 10 3 Rational Maps Into Abelian Varieties . 15 4 Review of cohomology . 20 5 The Theorem of the Cube. 21 6 Abelian Varieties are Projective . 27 7 Isogenies . 32 8 The Dual Abelian Variety. 34 9 The Dual Exact Sequence. 41 10 Endomorphisms . 42 11 Polarizations and Invertible Sheaves . 53 12 The Etale Cohomology of an Abelian Variety . 54 13 Weil Pairings . 57 14 The Rosati Involution . 61 15 Geometric Finiteness Theorems . 63 16 Families of Abelian Varieties .
    [Show full text]
  • Lecture 9 Riemann Surfaces, Elliptic Functions Laplace Equation
    Lecture 9 Riemann surfaces, elliptic functions Laplace equation Consider a Riemannian metric gµν in two dimensions. In two dimensions it is always possible to choose coordinates (x,y) to diagonalize it as ds2 = Ω(x,y)(dx2 + dy2). We can then combine them into a complex combination z = x+iy to write this as ds2 =Ωdzdz¯. It is actually a K¨ahler metric since the condition ∂[i,gj]k¯ = 0 is trivial if i, j = 1. Thus, an orientable Riemannian manifold in two dimensions is always K¨ahler. In the diagonalized form of the metric, the Laplace operator is of the form, −1 ∆=4Ω ∂z∂¯z¯. Thus, any solution to the Laplace equation ∆φ = 0 can be expressed as a sum of a holomorphic and an anti-holomorphid function. ∆φ = 0 φ = f(z)+ f¯(¯z). → In the following, we assume Ω = 1 so that the metric is ds2 = dzdz¯. It is not difficult to generalize our results for non-constant Ω. Now, we would like to prove the following formula, 1 ∂¯ = πδ(z), z − where δ(z) = δ(x)δ(y). Since 1/z is holomorphic except at z = 0, the left-hand side should vanish except at z = 0. On the other hand, by the Stokes theorem, the integral of the left-hand side on a disk of radius r gives, 1 i dz dxdy ∂¯ = = π. Zx2+y2≤r2 z 2 I|z|=r z − This proves the formula. Thus, the Green function G(z, w) obeying ∆zG(z, w) = 4πδ(z w), − should behave as G(z, w)= log z w 2 = log(z w) log(¯z w¯), − | − | − − − − near z = w.
    [Show full text]
  • 1 Complex Theory of Abelian Varieties
    1 Complex Theory of Abelian Varieties Definition 1.1. Let k be a field. A k-variety is a geometrically integral k-scheme of finite type. An abelian variety X is a proper k-variety endowed with a structure of a k-group scheme. For any point x X(k) we can defined a translation map Tx : X X by 2 ! Tx(y) = x + y. Likewise, if K=k is an extension of fields and x X(K), then 2 we have a translation map Tx : XK XK defined over K. ! Fact 1.2. Any k-group variety G is smooth. Proof. We may assume that k = k. There must be a smooth point g0 G(k), and so there must be a smooth non-empty open subset U G. Since2 G is covered by the G(k)-translations of U, G is smooth. ⊆ We now turn our attention to the analytic theory of abelian varieties by taking k = C. We can view X(C) as a compact, connected Lie group. Therefore, we start off with some basic properties of complex Lie groups. Let X be a Lie group over C, i.e., a complex manifold with a group structure whose multiplication and inversion maps are holomorphic. Let T0(X) denote the tangent space of X at the identity. By adapting the arguments from the C1-case, or combining the C1-case with the Cauchy-Riemann equations we get: Fact 1.3. For each v T0(X), there exists a unique holomorphic map of Lie 2 δ groups φv : C X such that (dφv)0 : C T0(X) satisfies (dφv)0( 0) = v.
    [Show full text]
  • Lectures on the Combinatorial Structure of the Moduli Spaces of Riemann Surfaces
    LECTURES ON THE COMBINATORIAL STRUCTURE OF THE MODULI SPACES OF RIEMANN SURFACES MOTOHICO MULASE Contents 1. Riemann Surfaces and Elliptic Functions 1 1.1. Basic Definitions 1 1.2. Elementary Examples 3 1.3. Weierstrass Elliptic Functions 10 1.4. Elliptic Functions and Elliptic Curves 13 1.5. Degeneration of the Weierstrass Elliptic Function 16 1.6. The Elliptic Modular Function 19 1.7. Compactification of the Moduli of Elliptic Curves 26 References 31 1. Riemann Surfaces and Elliptic Functions 1.1. Basic Definitions. Let us begin with defining Riemann surfaces and their moduli spaces. Definition 1.1 (Riemann surfaces). A Riemann surface is a paracompact Haus- S dorff topological space C with an open covering C = λ Uλ such that for each open set Uλ there is an open domain Vλ of the complex plane C and a homeomorphism (1.1) φλ : Vλ −→ Uλ −1 that satisfies that if Uλ ∩ Uµ 6= ∅, then the gluing map φµ ◦ φλ φ−1 (1.2) −1 φλ µ −1 Vλ ⊃ φλ (Uλ ∩ Uµ) −−−−→ Uλ ∩ Uµ −−−−→ φµ (Uλ ∩ Uµ) ⊂ Vµ is a biholomorphic function. Remark. (1) A topological space X is paracompact if for every open covering S S X = λ Uλ, there is a locally finite open cover X = i Vi such that Vi ⊂ Uλ for some λ. Locally finite means that for every x ∈ X, there are only finitely many Vi’s that contain x. X is said to be Hausdorff if for every pair of distinct points x, y of X, there are open neighborhoods Wx 3 x and Wy 3 y such that Wx ∩ Wy = ∅.
    [Show full text]
  • Elliptic Curve Cryptography and Digital Rights Management
    Lecture 14: Elliptic Curve Cryptography and Digital Rights Management Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) March 9, 2021 5:19pm ©2021 Avinash Kak, Purdue University Goals: • Introduction to elliptic curves • A group structure imposed on the points on an elliptic curve • Geometric and algebraic interpretations of the group operator • Elliptic curves on prime finite fields • Perl and Python implementations for elliptic curves on prime finite fields • Elliptic curves on Galois fields • Elliptic curve cryptography (EC Diffie-Hellman, EC Digital Signature Algorithm) • Security of Elliptic Curve Cryptography • ECC for Digital Rights Management (DRM) CONTENTS Section Title Page 14.1 Why Elliptic Curve Cryptography 3 14.2 The Main Idea of ECC — In a Nutshell 9 14.3 What are Elliptic Curves? 13 14.4 A Group Operator Defined for Points on an Elliptic 18 Curve 14.5 The Characteristic of the Underlying Field and the 25 Singular Elliptic Curves 14.6 An Algebraic Expression for Adding Two Points on 29 an Elliptic Curve 14.7 An Algebraic Expression for Calculating 2P from 33 P 14.8 Elliptic Curves Over Zp for Prime p 36 14.8.1 Perl and Python Implementations of Elliptic 39 Curves Over Finite Fields 14.9 Elliptic Curves Over Galois Fields GF (2n) 52 14.10 Is b =0 a Sufficient Condition for the Elliptic 62 Curve6 y2 + xy = x3 + ax2 + b to Not be Singular 14.11 Elliptic Curves Cryptography — The Basic Idea 65 14.12 Elliptic Curve Diffie-Hellman Secret Key 67 Exchange 14.13 Elliptic Curve Digital Signature Algorithm (ECDSA) 71 14.14 Security of ECC 75 14.15 ECC for Digital Rights Management 77 14.16 Homework Problems 82 2 Computer and Network Security by Avi Kak Lecture 14 Back to TOC 14.1 WHY ELLIPTIC CURVE CRYPTOGRAPHY? • As you saw in Section 12.12 of Lecture 12, the computational overhead of the RSA-based approach to public-key cryptography increases with the size of the keys.
    [Show full text]
  • Applications of Elliptic Functions in Classical and Algebraic Geometry
    APPLICATIONS OF ELLIPTIC FUNCTIONS IN CLASSICAL AND ALGEBRAIC GEOMETRY Jamie Snape Collingwood College, University of Durham Dissertation submitted for the degree of Master of Mathematics at the University of Durham It strikes me that mathematical writing is similar to using a language. To be understood you have to follow some grammatical rules. However, in our case, nobody has taken the trouble of writing down the grammar; we get it as a baby does from parents, by imitation of others. Some mathe- maticians have a good ear; some not... That’s life. JEAN-PIERRE SERRE Jean-Pierre Serre (1926–). Quote taken from Serre (1991). i Contents I Background 1 1 Elliptic Functions 2 1.1 Motivation ............................... 2 1.2 Definition of an elliptic function ................... 2 1.3 Properties of an elliptic function ................... 3 2 Jacobi Elliptic Functions 6 2.1 Motivation ............................... 6 2.2 Definitions of the Jacobi elliptic functions .............. 7 2.3 Properties of the Jacobi elliptic functions ............... 8 2.4 The addition formulæ for the Jacobi elliptic functions . 10 2.5 The constants K and K 0 ........................ 11 2.6 Periodicity of the Jacobi elliptic functions . 11 2.7 Poles and zeroes of the Jacobi elliptic functions . 13 2.8 The theta functions .......................... 13 3 Weierstrass Elliptic Functions 16 3.1 Motivation ............................... 16 3.2 Definition of the Weierstrass elliptic function . 17 3.3 Periodicity and other properties of the Weierstrass elliptic function . 18 3.4 A differential equation satisfied by the Weierstrass elliptic function . 20 3.5 The addition formula for the Weierstrass elliptic function . 21 3.6 The constants e1, e2 and e3 .....................
    [Show full text]
  • An Eloquent Formula for the Perimeter of an Ellipse Semjon Adlaj
    An Eloquent Formula for the Perimeter of an Ellipse Semjon Adlaj he values of complete elliptic integrals Define the arithmetic-geometric mean (which we of the first and the second kind are shall abbreviate as AGM) of two positive numbers expressible via power series represen- x and y as the (common) limit of the (descending) tations of the hypergeometric function sequence xn n∞ 1 and the (ascending) sequence { } = 1 (with corresponding arguments). The yn n∞ 1 with x0 x, y0 y. { } = = = T The convergence of the two indicated sequences complete elliptic integral of the first kind is also known to be eloquently expressible via an is said to be quadratic [7, p. 588]. Indeed, one might arithmetic-geometric mean, whereas (before now) readily infer that (and more) by putting the complete elliptic integral of the second kind xn yn rn : − , n N, has been deprived such an expression (of supreme = xn yn ∈ + power and simplicity). With this paper, the quest and observing that for a concise formula giving rise to an exact it- 2 2 √xn √yn 1 rn 1 rn erative swiftly convergent method permitting the rn 1 − + − − + = √xn √yn = 1 rn 1 rn calculation of the perimeter of an ellipse is over! + + + − 2 2 2 1 1 rn r Instead of an Introduction − − n , r 4 A recent survey [16] of formulae (approximate and = n ≈ exact) for calculating the perimeter of an ellipse where the sign for approximate equality might ≈ is erroneously resuméd: be interpreted here as an asymptotic (as rn tends There is no simple exact formula: to zero) equality.
    [Show full text]