On the Feasibility to Engage Heterogeneous Communities in Data Gathering, Sharing and Enrichment By

Total Page:16

File Type:pdf, Size:1020Kb

On the Feasibility to Engage Heterogeneous Communities in Data Gathering, Sharing and Enrichment By Department of Life Sciences and Chemistry On the feasibility to engage heterogeneous communities in data gathering, sharing and enrichment by Julia Schnetzer, MSc. A thesis submitted in partial fulfillment of requirements for the degree of DOCTOR OF PHILOSOPHY in Marine Microbiology Approved Thesis Committee: Prof. Dr. Frank Oliver Glöckner (chair) Max Planck Institute for Marine Microbiology Jacobs University Bremen Prof. Dr. Matthias Ullrich Jacobs University Bremen Dr. Julia A. Busch Carl von Ossietzky University Oldenburg Dr. Renzo Kottmann Max Planck Institute for Marine Microbiology Date of Defense: 08.12.2015 Unlike the original submitted thesis this digital version contains the publisher's version of the articles. Statutory Declaration Statutory Declaration (on Authorship of a Dissertation) I, Julia Schnetzer hereby declare that I have written this PhD thesis independently, unless where clearly stated otherwise. I have used only the sources, the data and the support that I have clearly mentioned. This PhD thesis has not been submitted for conferral of degree elsewhere. I confirm that no rights of third parties will be infringed by the publication of this thesis. Signature Date ...by the mean nature of a world that will not stand still long enough for them to see it clear as a whole. What lured Hemingway to Ketchum? Hunter S. Thompson (1937-2005) Thesis Abstract Marine microbes play critical roles in the well being of the planet Earth and all its inhabitants. Not only do they influence chemical cycles, the marine food chain, but also the whole atmosphere and climate of our planet. However, the field of marine microbiology is still in its infancy and there is much more waiting to be explored. Here, I present a new approach to investigate global marine microbial diversity and function on a single day of the year, the 21st of June 2014/2015: the Ocean Sampling Day (OSD). The collection of a simultaneous, global dataset, required marine researchers, worldwide, to be connected. The aim was not only to create a snap shot of the marine microbial diversity fixed in time, but also to raise awareness amongst the general public of the important role these tiny organisms play in our daily lives. Therefore, professional scientists as well as the non- scientific public were invited to join the corresponding citizen science project, MyOSD. They supported OSD by providing oceanographic measurements and even microbial samples. Data collected by citizen scientists were validated and show that citizen science can contribute valuable data to marine research. A special focus was set on additional environmental measurements such as water temperature. This contextual data is important for the interpretation of microbial diversity in any given sample; however, it is still not common practice in marine microbial research to measure or report contextual data; OSD aims to make scientists more aware of this problem. Extracting contextual data after a dataset or article has been published, is onerous work. Hence, I present two new tools to extract environmental information and geographic locations from scientific literature. The text mining tool, ENVIRONMENTS, automatically annotates scientific text with terms from the Environmental Ontology (EnvO). The PubMap application utilizes the power of the crowd to enable the creation of a manually curated database of georeferenced scientific publications. Overall, this thesis shows that enabling collaboration within the scientific community as well as the non-scientific public, leads to achievements not only in gathering of new datasets, but also in enhancing present and historic scientific literature. Table of Contents Chapter 1 Introduction ............................................................................................................... 4 1.1 Marine Microbes: The Grey Eminences of the Ocean ......................................................... 4 1.2 Uncovering the Secrets of Marine Microbes ....................................................................... 5 1.3 Context is Everything ............................................................................................................ 9 1.4 Exploring the Microbial Ocean ........................................................................................... 10 1.5 Microbes Gaining Importance in Citizen Science ............................................................... 11 1.6 Working Together to Refurbish Scientific Data .................................................................. 13 1.7 Research aims ..................................................................................................................... 16 Chapter 2 Results and Discussion ............................................................................................. 17 2.1 Overview............................................................................................................................. 17 2.2 The Ocean Sampling Day Consortium ................................................................................ 21 2.3 Between Ignorance and Concern - Interdisciplinary Approaches to Raising Awareness on Marine Environments ............................................................................................................... 27 2.4 MyOSD 2014: Evaluating Oceanographic Measurements Contributed by Citizen Scientists in Support of Ocean Sampling Day .......................................................... 36 2.5 Understanding Marine Microbes, the Driving Engines of the Ocean ................................ 38 2.6 MyOSD 2015: Marine Microbiology Meets Citizen Science............................................... 56 2.7 ENVIRONMENTS and EOL: Identification of Environment Ontology Terms in Text and the Annotation of the Encyclopedia of Life .................................................................................... 74 2.8 PubMap: A Crowdsourcing Application for Georeferenced Annotation of Scientific Publications .............................................................................................................................. 77 Chapter 3 Summary and Conclusion ........................................................................................ 94 3.1 The Ocean Sampling Day: Bringing Marine Researchers Closer Together ........................ 94 3.2 MyOSD: Engaging the Public in Marine Microbiology ....................................................... 96 3.3 Refurbishing Data for the Scientific Community .............................................................. 100 Chapter 4 Outlook .................................................................................................................. 102 Additional Scientific Publications ........................................................................................... 102 Appendix ................................................................................................................................. 105 Acknowledgements ............................................................................................................... 154 Bibliography ............................................................................................................................ 156 2 Table of Figures Figure 1: The development of sequencing technologies over the past 30 years. ..................... 7 Figure 2:Growth of DNA sequencing capacity ........................................................................... 7 Figure 3: Google trends search on citizen science.. ................................................................. 12 3 1.1 Marine Microbes: The Grey Eminences of the Ocean Chapter 1 Introduction 1.1 Marine Microbes: The Grey Eminences of the Ocean The ocean, which covers 70% of earth's surface, represents the largest habitat for living organisms. These organisms are mainly marine microbes which include not only prokaryotes such as bacteria and archaea but also viruses and microscopic eukaryotes such as single celled algae, protists or fungi (Fuhrman 2009). As the name microbe already implies they share a common feature, their size is situated in the microscopic scale. For example, the smallest members of the marine microorganism are viruses of the Parvoviridae family with a diameter of only 20 nm (Munn 2011) or the archaeon Thermodiscus which is only 200 nm in diameter (Schulz and Jørgensen 2001). But also in the microbial world some "giants" exist such as the bacteria Thiomargarita namibiens. Its diameter of about 750 µm is making it even visible to the naked eye (Schulz 1999). Independent on their size-range, microbes are very divers and can live in aerobic as well as anaerobic conditions and use various organic but also inorganic chemicals such as hydrogen sulfide as energy sources (Madigan and Brock 2012). Microbes are able to inhabit every known niche and can even be found in extreme environments such as hydrothermal vents in the deep ocean (Jannasch and Mottl 1985) or hyper saline waters such as the Dead Sea (Pundak and Eisenberg 1981). Despite their small size marine microbes account not only for the most abundant entities in the ocean—a total of 1.2 x 1029 microbial cells is estimated in the open ocean alone—but also comprise about 90% of the total marine biomass (Whitman et al. 1998). So, it comes as no surprise that they play major roles in the biochemical cycles of the marine but also the terrestrial ecosystem. In the upper 200 meters of the ocean photosynthetic microbes—phytoplankton—are responsible
Recommended publications
  • Dominio Archaea
    FILOGENIA DE LOS SERES VIVOS: DOMINIO ARCHAEA Nuria Garzón Pinto Facultad de Farmacia Universidad de Sevilla Septiembre de 2017 FILOGENIA DE LOS SERES VIVOS: DOMINIO ARCHAEA TRABAJO FIN DE GRADO Nuria Garzón Pinto Tutores: Antonio Ventosa Ucero y Cristina Sánchez-Porro Álvarez Tipología del trabajo: Revisión bibliográfica Grado en Farmacia. Facultad de Farmacia Departamento de Microbiología y Parasitología (Área de Microbiología) Universidad de Sevilla Sevilla, septiembre de 2017 RESUMEN A lo largo de la historia, la clasificación de los seres vivos ha ido variando en función de las diversas aportaciones científicas que se iban proponiendo, y la historia evolutiva de los organismos ha sido durante mucho tiempo algo que no se lograba conocer con claridad. Actualmente, gracias sobre todo a las ideas aportadas por Carl Woese y colaboradores, se sabe que los seres vivos se clasifican en 3 dominios (Bacteria, Eukarya y Archaea) y se conocen las herramientas que nos permiten realizar estudios filogenéticos, es decir, estudiar el origen de las especies. La herramienta principal, y en base a la cual se ha realizado la clasificación actual es el ARNr 16S. Sin embargo, hoy día sedispone de otros métodos que ayudan o complementan los análisis de la evolución de los seres vivos. En este trabajo se analiza cómo surgió el dominio Archaea, se describen las características y aspectos más importantes de las especies este grupo y se compara con el resto de dominios (Bacteria y Eukarya). Las arqueas han despertado un gran interés científico y han sido investigadas sobre todo por su capacidad para adaptarse y desarrollarse en ambientes extremos.
    [Show full text]
  • Cyanobacterial Evolution During the Precambrian
    International Journal of Astrobiology 15 (3): 187–204 (2016) doi:10.1017/S1473550415000579 © Cambridge University Press 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Cyanobacterial evolution during the Precambrian Bettina E. Schirrmeister1, Patricia Sanchez-Baracaldo2 and David Wacey1,3 1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK e-mail: [email protected] 2School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK 3Centre for Microscopy, Characterisation and Analysis, and ARC Centre of Excellence for Core to Crust Fluid Systems, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia Abstract: Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth’s biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth’s atmosphere and hydrosphere, triggered the evolution of plants –being ancestral to chloroplasts– and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history.
    [Show full text]
  • Thiomargarita Namibiensis Cells by Using Microelectrodes Heide N
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2002, p. 5746–5749 Vol. 68, No. 11 0099-2240/02/$04.00ϩ0 DOI: 10.1128/AEM.68.11.5746–5749.2002 Copyright © 2002, American Society for Microbiology. All Rights Reserved. Uptake Rates of Oxygen and Sulfide Measured with Individual Thiomargarita namibiensis Cells by Using Microelectrodes Heide N. Schulz1,2* and Dirk de Beer1 Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany,1 and Section of Microbiology, University of California, Davis, Davis, California 956162 Received 25 March 2002/Accepted 31 July 2002 Gradients of oxygen and sulfide measured towards individual cells of the large nitrate-storing sulfur bacterium Thiomargarita namibiensis showed that in addition to nitrate oxygen is used for oxidation of sulfide. Stable gradients around the cells were found only if acetate was added to the medium at low concentrations. The sulfur bacterium Thiomargarita namibiensis is a close conclusions about their physiology by observing chemotactic relative of the filamentous sulfur bacteria of the genera Beg- behavior, as has been done successfully with Beggiatoa and giatoa and Thioploca. It was only recently discovered off the Thioploca filaments (5, 10). However, because of the large size Namibian coast in fluid sediments rich in organic matter and of Thiomargarita cells, they develop, around individual cells, sulfide (15). The large, spherical cells of Thiomargarita (diam- measurable gradients of oxygen and sulfide that can be used eter, 100 to 300 ␮m) are held together in a chain by mucus that for calculating uptake rates of oxygen and sulfide. Thus, the surrounds each cell (Fig. 1). Most of the cell volume is taken physiological reactions of individual cells to changes in oxygen up by a central vacuole in which nitrate is stored at concen- and sulfide concentrations can be directly observed by observ- trations of up to 800 mM.
    [Show full text]
  • Chemosynthetic Symbiont with a Drastically Reduced Genome Serves As Primary Energy Storage in the Marine Flatworm Paracatenula
    Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula Oliver Jäcklea, Brandon K. B. Seaha, Målin Tietjena, Nikolaus Leischa, Manuel Liebekea, Manuel Kleinerb,c, Jasmine S. Berga,d, and Harald R. Gruber-Vodickaa,1 aMax Planck Institute for Marine Microbiology, 28359 Bremen, Germany; bDepartment of Geoscience, University of Calgary, AB T2N 1N4, Canada; cDepartment of Plant & Microbial Biology, North Carolina State University, Raleigh, NC 27695; and dInstitut de Minéralogie, Physique des Matériaux et Cosmochimie, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France Edited by Margaret J. McFall-Ngai, University of Hawaii at Manoa, Honolulu, HI, and approved March 1, 2019 (received for review November 7, 2018) Hosts of chemoautotrophic bacteria typically have much higher thrive in both free-living environmental and symbiotic states, it is biomass than their symbionts and consume symbiont cells for difficult to attribute their genomic features to either functions nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria they provide to their host, or traits that are necessary for envi- symbionts in mouthless Paracatenula flatworms comprise up to ronmental survival or to both. half of the biomass of the consortium. Each species of Paracate- The smallest genomes of chemoautotrophic symbionts have nula harbors a specific Ca. Riegeria, and the endosymbionts have been observed for the gammaproteobacterial symbionts of ves- been vertically transmitted for at least 500 million years. Such icomyid clams that are directly transmitted between host genera- prolonged strict vertical transmission leads to streamlining of sym- tions (13, 14). Such strict vertical transmission leads to substantial biont genomes, and the retained physiological capacities reveal and ongoing genome reduction.
    [Show full text]
  • Microbial Ecology of Biofiltration Units Used for the Desulfurization of Biogas
    chemengineering Review Microbial Ecology of Biofiltration Units Used for the Desulfurization of Biogas Sylvie Le Borgne 1,* and Guillermo Baquerizo 2,3 1 Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana- Unidad Cuajimalpa, 05348 Ciudad de México, Mexico 2 Irstea, UR REVERSAAL, F-69626 Villeurbanne CEDEX, France 3 Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico * Correspondence: [email protected]; Tel.: +52–555–146–500 (ext. 3877) Received: 1 May 2019; Accepted: 28 June 2019; Published: 7 August 2019 Abstract: Bacterial communities’ composition, activity and robustness determines the effectiveness of biofiltration units for the desulfurization of biogas. It is therefore important to get a better understanding of the bacterial communities that coexist in biofiltration units under different operational conditions for the removal of H2S, the main reduced sulfur compound to eliminate in biogas. This review presents the main characteristics of sulfur-oxidizing chemotrophic bacteria that are the base of the biological transformation of H2S to innocuous products in biofilters. A survey of the existing biofiltration technologies in relation to H2S elimination is then presented followed by a review of the microbial ecology studies performed to date on biotrickling filter units for the treatment of H2S in biogas under aerobic and anoxic conditions. Keywords: biogas; desulfurization; hydrogen sulfide; sulfur-oxidizing bacteria; biofiltration; biotrickling filters; anoxic biofiltration; autotrophic denitrification; microbial ecology; molecular techniques 1. Introduction Biogas is a promising renewable energy source that could contribute to regional economic growth due to its indigenous local-based production together with reduced greenhouse gas emissions [1].
    [Show full text]
  • A Giant Microbe: Thiomargarita
    A Giant Microbe: Thiomargarita While microorganisms are by definition small, they come in many sizes and shapes. Viruses are the smallest microorganisms, followed by bacteria. Dr. Heide Schulz of the Max Planck Institute for Marine Microbiology recently discovered a giant bacterium in the sea sediment off the coast of Namibia. She found cells of this bacterium as large as ¾ mm in diameter, although most are 0.1-0.3 mm wide. This is about 100 times bigger than the average bacterial cell. She named the organism Thiomargarita namibiensis, which means, "sulfur pearl of Namibia." The sea sediment off the coast of Namibia is rich in nutrients, but is not hospitable to most living organisms. Both the lack of oxygen and the high concentrations of hydrogen sulfide, which is toxic to most animals, make this an extreme environment. Thiomargarita grows by using nitrate from seawater to oxidize the hydrogen sulfide that is produced in the ocean sediment. The sulfide is oxidized first to sulfur granules that are stored inside the cell. The sulfur granules inside the cell look white because they reflect light. Since the cells are held together in a chain by a sheath that surrounds all the cells, they give an impression of a string of tiny pearls; hence, the name that means, "sulfur pearl of Namibia." In order to oxidize sulfide the bacterial cells store nitrate from seawater in a large vacuole that almost completely fills these giant cells. The nitrate in the vacuole is 10,000 times more concentrated than it is in seawater. The storage of nitrate allows these bacteria to further oxidize sulfur to sulfate, a process that provides energy to the cells.
    [Show full text]
  • Novel Observations of Thiobacterium, a Sulfur-Storing Gammaproteobacterium Producing Gelatinous Mats
    The ISME Journal (2010) 4, 1031–1043 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE Novel observations of Thiobacterium, a sulfur-storing Gammaproteobacterium producing gelatinous mats Stefanie Gru¨ nke1,2, Anna Lichtschlag2, Dirk de Beer2, Marcel Kuypers2, Tina Lo¨sekann-Behrens3, Alban Ramette2 and Antje Boetius1,2 1HGF-MPG Joint Research Group for Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; 2Max Planck Institute for Marine Microbiology, Bremen, Germany and 3Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA The genus Thiobacterium includes uncultivated rod-shaped microbes containing several spherical grains of elemental sulfur and forming conspicuous gelatinous mats. Owing to the fragility of mats and cells, their 16S ribosomal RNA genes have not been phylogenetically classified. This study examined the occurrence of Thiobacterium mats in three different sulfidic marine habitats: a submerged whale bone, deep-water seafloor and a submarine cave. All three mats contained massive amounts of Thiobacterium cells and were highly enriched in sulfur. Microsensor measurements and other biogeochemistry data suggest chemoautotrophic growth of Thiobacterium. Sulfide and oxygen microprofiles confirmed the dependence of Thiobacterium on hydrogen sulfide as energy source. Fluorescence in situ hybridization indicated that Thiobacterium spp. belong to the Gammaproteobacteria,
    [Show full text]
  • Genomics of a Dimorphic Candidatus Thiomargarita Nelsonii Reveals Genomic Plasticity
    Originally published as: Flood, B. E., Fliss, P., Jones, D. S., Dick, G. J., Jain, S., Kaster, A.-K., Winkel, M., Mußmann, M., Bailey, J. (2016):Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity. - Frontiers in Microbiology, 7. DOI: http://doi.org/10.3389/fmicb.2016.00603 ORIGINAL RESEARCH published: 03 May 2016 doi: 10.3389/fmicb.2016.00603 Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity Beverly E. Flood 1*, Palmer Fliss 1 †, Daniel S. Jones 1, 2, Gregory J. Dick 3, Sunit Jain 3, Anne-Kristin Kaster 4, Matthias Winkel 5, Marc Mußmann 6 and Jake Bailey 1 1 Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA, 2 Biotechnology Institute, University of Minnesota, St. Paul, MN, USA, 3 Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA, 4 German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ, Braunschweig, Germany, 5 Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany, 6 Max Planck Institute for Marine Microbiology, Bremen, Germany Edited by: The genus Thiomargarita includes the world’s largest bacteria. But as uncultured Andreas Teske, organisms, their physiology, metabolism, and basis for their gigantism are not well University of North Carolina at Chapel understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita Hill, USA nelsonii cell was employed to explore the genetic potential of one of these enigmatic Reviewed by: Craig Lee Moyer, giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Western Washington University, USA Ca.
    [Show full text]
  • Bibliography
    Bibliography Abella, C.A., X.P. Cristina, A. Martinez, I. Pibernat and X. Vila. 1998. on moderate concentrations of acetate: production of single cells. Two new motile phototrophic consortia: "Chlorochromatium lunatum" Appl. Microbiol. Biotechnol. 35: 686-689. and "Pelochromatium selenoides". Arch. Microbiol. 169: 452-459. Ahring, B.K, P. Westermann and RA. Mah. 1991b. Hydrogen inhibition Abella, C.A and LJ. Garcia-Gil. 1992. Microbial ecology of planktonic of acetate metabolism and kinetics of hydrogen consumption by Me­ filamentous phototrophic bacteria in holomictic freshwater lakes. Hy­ thanosarcina thermophila TM-I. Arch. Microbiol. 157: 38-42. drobiologia 243-244: 79-86. Ainsworth, G.C. and P.H.A Sheath. 1962. Microbial Classification: Ap­ Acca, M., M. Bocchetta, E. Ceccarelli, R Creti, KO. Stetter and P. Cam­ pendix I. Symp. Soc. Gen. Microbiol. 12: 456-463. marano. 1994. Updating mass and composition of archaeal and bac­ Alam, M. and D. Oesterhelt. 1984. Morphology, function and isolation terial ribosomes. Archaeal-like features of ribosomes from the deep­ of halobacterial flagella. ]. Mol. Biol. 176: 459-476. branching bacterium Aquifex pyrophilus. Syst. Appl. Microbiol. 16: 629- Albertano, P. and L. Kovacik. 1994. Is the genus LeptolynglYya (Cyano­ 637. phyte) a homogeneous taxon? Arch. Hydrobiol. Suppl. 105: 37-51. Achenbach-Richter, L., R Gupta, KO. Stetter and C.R Woese. 1987. Were Aldrich, H.C., D.B. Beimborn and P. Schönheit. 1987. Creation of arti­ the original eubacteria thermophiles? Syst. Appl. Microbiol. 9: 34- factual internal membranes during fixation of Methanobacterium ther­ 39. moautotrophicum. Can.]. Microbiol. 33: 844-849. Adams, D.G., D. Ashworth and B.
    [Show full text]
  • Department of Microbiology
    SRINIVASAN COLLEGE OF ARTS & SCIENCE (Affiliated to Bharathidasan University, Trichy) PERAMBALUR – 621 212. DEPARTMENT OF MICROBIOLOGY Course : M.Sc Year: I Semester: II Course Material on: MICROBIAL PHYSIOLOGY Sub. Code : P16MB21 Prepared by : Ms. R.KIRUTHIGA, M.Sc., M.Phil., PGDHT ASSISTANT PROFESSOR / MB Month & Year : APRIL – 2020 MICROBIAL PHYSIOLOGY Unit I Cell structure and function Bacterial cell wall - Biosynthesis of peptidoglycan - outer membrane, teichoic acid – Exopolysaccharides; cytoplasmic membrane, pili, fimbriae, S-layer. Transport mechanisms – active, passive, facilitated diffusions – uni, sym, antiports. Electron carriers – artificial electron donors – inhibitors – uncouplers – energy bond – phosphorylation. Unit II Microbial growth Bacterial growth - Phases of growth curve – measurement of growth – calculations of growth rate – generation time – synchronous growth – induction of synchronous growth, synchrony index – factors affecting growth – pH, temperature, substrate and osmotic condition. Survival at extreme environments – starvation – adaptative mechanisms in thermophilic, alkalophilic, osmophilic and psychrophilic. Unit III Microbial pigments and photosynthesis Autotrophs - cyanobacteria - photosynthetic bacteria and green algae – heterotrophs – bacteria, fungi, myxotrophs. Brief account of photosynthetic and accessory pigments – chlorophyll – fluorescence, phosphorescence - bacteriochlorophyll – rhodopsin – carotenoids – phycobiliproteins. Unit IV Carbon assimilation Carbohydrates – anabolism – autotrophy –
    [Show full text]
  • Horizontal Acquisition of a Patchwork Calvin Cycle by Symbiotic and Free-Living Campylobacterota (Formerly Epsilonproteobacteria)
    The ISME Journal (2020) 14:104–122 https://doi.org/10.1038/s41396-019-0508-7 ARTICLE Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria) 1,9 1 1,10 1 1,2 Adrien Assié ● Nikolaus Leisch ● Dimitri V. Meier ● Harald Gruber-Vodicka ● Halina E. Tegetmeyer ● 1 3,4 3,5,6 7 7,11 Anke Meyerdierks ● Manuel Kleiner ● Tjorven Hinzke ● Samantha Joye ● Matthew Saxton ● 1,8 1,10 Nicole Dubilier ● Jillian M. Petersen Received: 7 April 2019 / Revised: 6 August 2019 / Accepted: 15 August 2019 / Published online: 27 September 2019 © The Author(s) 2019. This article is published with open access Abstract Most autotrophs use the Calvin–Benson–Bassham (CBB) cycle for carbon fixation. In contrast, all currently described autotrophs from the Campylobacterota (previously Epsilonproteobacteria) use the reductive tricarboxylic acid cycle (rTCA) instead. We discovered campylobacterotal epibionts (“Candidatus Thiobarba”) of deep-sea mussels that have acquired a complete CBB cycle and may have lost most key genes of the rTCA cycle. Intriguingly, the phylogenies of campylobacterotal CBB cycle genes suggest they were acquired in multiple transfers from Gammaproteobacteria closely 1234567890();,: 1234567890();,: related to sulfur-oxidizing endosymbionts associated with the mussels, as well as from Betaproteobacteria. We hypothesize that “Ca. Thiobarba” switched from the rTCA cycle to a fully functional CBB cycle during its evolution, by acquiring genes from multiple sources, including co-occurring symbionts. We also found key CBB cycle genes in free-living Campylobacterota, suggesting that the CBB cycle may be more widespread in this phylum than previously known. Metatranscriptomics and metaproteomics confirmed high expression of CBB cycle genes in mussel-associated “Ca.
    [Show full text]
  • Thermophiles and Thermozymes
    Thermophiles and Thermozymes Edited by María-Isabel González-Siso Printed Edition of the Special Issue Published in Microorganisms www.mdpi.com/journal/microorganisms Thermophiles and Thermozymes Thermophiles and Thermozymes Special Issue Editor Mar´ıa-Isabel Gonz´alez-Siso MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Mar´ıa-Isabel Gonzalez-Siso´ Universidade da Coruna˜ Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Microorganisms (ISSN 2076-2607) from 2018 to 2019 (available at: https://www.mdpi.com/journal/ microorganisms/special issues/thermophiles) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-816-9 (Pbk) ISBN 978-3-03897-817-6 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Mar´ıa-Isabel Gonz´alez-Siso Editorial for the Special Issue: Thermophiles and Thermozymes Reprinted from: Microorganisms 2019, 7, 62, doi:10.3390/microorganisms7030062 ........
    [Show full text]