Dynamic Concurrent Van Emde Boas Array

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Concurrent Van Emde Boas Array Dynamic concurrent insert(), remove() and find(), also the method succes- van Emde Boas array sor(), which allows users to determine the first greater element from the specified one. It has very good theo- retical and practical properties, as confirmed by tests Konrad Kułakowski and analyses carried out. Unfortunately, one of the shortcomings of that solution is the need to allocate AGH University of Science and Technology, all the required memory at the very beginning, as in al. Mickiewicza 30, Kraków, Poland, the case of a regular array. Another limitation of that [email protected] structure is the implementation of successor(), which in the case of massive interference with remove() op- erating in different threads might be delayed or failed Abstract. The growing popularity of due to the search repetition. These deficiencies led shared-memory multiprocessor machines the author to propose a new dynamic concurrent van has caused significant changes in the design Emde Boas (dcvEB) array, which, on the one hand, of concurrent software. In this approach, retains the good properties of its antecedent, and on the concurrently running threads commu- the other hand is deprived of its shortcomings. Hence, nicate and synchronize with each other the new structure presented in this article allocates through data structures in shared memory. and deallocates memory dynamically, depending on Hence, the efficiency of these structures is the amount of data stored in it. In addition, a new essential for the performance of concurrent applications. The need to find new concur- strategy for the successor() and predecessor() meth- rent data structures prompted the author ods has been adopted. The new structure, rather than some time ago to propose the cvEB array repeating the successor or predecessor search, contin- modeled on the van Emde Boas Tree struc- ues searching until an appropriate element is found ture as a dynamic set alternative. or the absence of such an element is decided. The as- This paper describes an improved version sumed strategy is more robust and less susceptible to of that structure - the dcvEB array (Dy- interference. It also seems to be more intuitive and namic Concurrent van Emde Boas Array). justifiable in the context of user expectation. One of the improvements involves memory The article consists of several sections, where, ex- usage optimization. This enhancement re- cept for introductory ones (Sec. 1 - 3), the dcvEB ar- quired the design of a tree which grows ray (Subsection 4.2) and its implementation (Subsec- and shrinks at both: the top (root) and the bottom (leaves) level. Another enhance- tion 4.3) are discussed. Next, the mechanisms of con- ment concerns the successor (and predeces- current expanding and shrinking are explained (Sub- sor) search strategy. The tests performed section 5.1). Other enhancements, such as dynamic seem to confirm the high performance of memory allocation and the new search strategy, are the dcvEB array. They are especially visi- explained (Subsections: 5.2 and 5.3). Then, the suc- ble when the range of keys is significantly cessor search running time and the structure correct- larger than the number of elements in the ness are discussed (Section 5). The experimental re- collection. sults are examined in Section 6. The comments and discussion (Section 7) and a brief summary (Section 1 Introduction 8) close the article. arXiv:1509.06948v1 [cs.DS] 23 Sep 2015 The rapid rise in the popularity of multi-core shared- 2 Background memory processor systems makes concurrent pro- grams increasingly common and desirable. Following A dynamic set is one of the basic data structures in the growing market for concurrent software, an in- computer science. Usually, it is assumed that a dy- creasing demand for the use of concurrent data struc- namic set supports the following operations: insert(), tures can be observed. Such a situation makes the delete(), search(), minimum(), maximum(), succes- search for new concurrent data structures particu- sor() and predecessor() [5, p. 230]. The first two of larly important. One of the attempts to find such a them are included in the category of modifying oper- structure is the work [15] in which the author pro- ations, while others are queries, which do not modify posed the early version of the concurrent van Emde the structure. Due to increasing demands for data Boas (cvEB) array. The structure presented here is format, different structures support dynamic set op- an example of concurrent dynamic set implementa- erations to varying degrees. In particular, good dy- tion providing, in addition to the standard methods namic set operation performance is provided by bal- anced search trees. For instance, all the dynamic set unusable if the stored objects cannot be represented operations can be handled by RB-Trees [1] in a se- as unique integers. quential running time O(lg α), whilst van Emde Boas The key to the efficiency of the vEB tree operations trees [25] need barely O(lg lg α) time to complete any is the uneven number of subtrees on different levels of the mentioned operations [5]. Unfortunately, tran- of the vEB tree. Thus, the root node has α1=2 of sub- sition from the sequential to the concurrent objects trees, whereas each next level of the vEB tree shrinks is not easy [24]. Hence, many concurrent dynamic set the number of children in the nodes by the square implementations (e.g. [6,13]) do not support all the root. Assuming that an operation over the vEB tree dynamic set operations and instead focus on dictio- performs O(1) work at each level of the hierarchy, nary operations. the running time of a method is O(h), where h is the The early works on the concurrent balanced search height of the vEB tree. Reducing the number of sub- trees with dictionary operations began to emerge in trees can not be carried out indefinitely. Thus, at the the 70s [23,2]. In the subsequent years, the topic was last but one level of the tree, the nodes have at most h−1 studied in [7,16,19]. The studies, initially focusing two single-element subtrees, i.e. α1=2 = 2. Hence, on lock strategy [2] and lock coupling [19,17], be- we obtain ln α = 2h−1, and finally h = ln ln α + 1. gan to deal with the relaxed (delayed) re-balancing Thus, the asymptotic running time of an exemplary [21,9] and the non-blocking synchronization schemes operation is O(ln ln α + 1) = O(ln ln α). [3,6,4,13]. To be able to traverse each level of a tree in O(1) Skip List, proposed by Pugh [22], is an alternative the vEB tree methods use the arrays of references to to balanced search trees. It provides several linked the subtrees. For this reason the root node Troot needs 1=2 lists arranged in a hierarchy, so that the single list to store Troot:arr - α -element array of subtrees, corresponds to the set of nodes at the same depth their children T , T:arr - α1=4-element arrays of their in a search tree. The structure avoids additional re- subtrees, and so on. With this construction, every balancing due to the randomized fashion of the in- method can calculate in which subtree the given key sertion algorithm. SkipList is suitable for both the can be found. For example, in the case of the root sequential and concurrent applications. Very efficient node, the key x is expected to be in x/α1=2 subtree SkipList implementation [10], based on Fraser [8], is etc. part of a standard Java API 5. The Java SkipList To achieve O(1) level traversing time, the more implementation as one of the few (the second is a complex methods like successor() and predecessor() SnapTree Map by Bronson [3]) supports all the dy- need further information about the subtrees. Thus, namic set operations including successor() and pre- with every node T the next three variables are as- decessor(). signed: T:max, T:min and T:summary, where T:max, T:min denote correspondingly the maximal and the minimal value of a key in the subtree rooted in T . 3 van Emde Boas tree The summary is an auxiliary search structure. Intu- itively speaking, the search() method traverses down The tree structure proposed by van Emde Boas [25] the vEB tree along a well-defined path from the root is not a typical search tree. It supports all the to the given key. The successor() must deviate from dynamic set operations, such as insert(), delete(), this path to the right (predecessor() to the left). The search(), minimum(), maximum(), successor() and decision whether to go down into the subtree accord- predecessor() [5, p. 230] in O(ln ln α). This tremen- ing to the predetermined path or go to the right at the dous speed involves the requirement that the keys same level is taken on the basis of the value T:max. must be unique integers in the range 0 to α − 1. Thus, if T is a subtree in which, according to the Thus, from a practical point of view, the van Emde path calculation, the key x should be stored, then Boas (vEB) tree is something between an array and the successor() goes down into T only if x < T:max, a search tree. Assuming that the number of stored i.e. when the maximal key in T is greater than x. elements is essentially smaller than α, the vEB tree If x ≥ T:max the successor() method needs to move is better than the array as regards the speed of suc- horizontally to the right in search of the first non- cessor(), predecessor(), minimum() and maximum().
Recommended publications
  • Persistent Predecessor Search and Orthogonal Point Location on the Word
    Persistent Predecessor Search and Orthogonal Point Location on the Word RAM∗ Timothy M. Chan† August 17, 2012 Abstract We answer a basic data structuring question (for example, raised by Dietz and Raman [1991]): can van Emde Boas trees be made persistent, without changing their asymptotic query/update time? We present a (partially) persistent data structure that supports predecessor search in a set of integers in 1,...,U under an arbitrary sequence of n insertions and deletions, with O(log log U) { } expected query time and expected amortized update time, and O(n) space. The query bound is optimal in U for linear-space structures and improves previous near-O((log log U)2) methods. The same method solves a fundamental problem from computational geometry: point location in orthogonal planar subdivisions (where edges are vertical or horizontal). We obtain the first static data structure achieving O(log log U) worst-case query time and linear space. This result is again optimal in U for linear-space structures and improves the previous O((log log U)2) method by de Berg, Snoeyink, and van Kreveld [1995]. The same result also holds for higher-dimensional subdivisions that are orthogonal binary space partitions, and for certain nonorthogonal planar subdivisions such as triangulations without small angles. Many geometric applications follow, including improved query times for orthogonal range reporting for dimensions 3 on the RAM. ≥ Our key technique is an interesting new van-Emde-Boas–style recursion that alternates be- tween two strategies, both quite simple. 1 Introduction Van Emde Boas trees [60, 61, 62] are fundamental data structures that support predecessor searches in O(log log U) time on the word RAM with O(n) space, when the n elements of the given set S come from a bounded integer universe 1,...,U (U n).
    [Show full text]
  • X-Fast and Y-Fast Tries
    x-Fast and y-Fast Tries Outline for Today ● Bitwise Tries ● A simple ordered dictionary for integers. ● x-Fast Tries ● Tries + Hashing ● y-Fast Tries ● Tries + Hashing + Subdivision + Balanced Trees + Amortization Recap from Last Time Ordered Dictionaries ● An ordered dictionary is a data structure that maintains a set S of elements drawn from an ordered universe � and supports these operations: ● insert(x), which adds x to S. ● is-empty(), which returns whether S = Ø. ● lookup(x), which returns whether x ∈ S. ● delete(x), which removes x from S. ● max() / min(), which returns the maximum or minimum element of S. ● successor(x), which returns the smallest element of S greater than x, and ● predecessor(x), which returns the largest element of S smaller than x. Integer Ordered Dictionaries ● Suppose that � = [U] = {0, 1, …, U – 1}. ● A van Emde Boas tree is an ordered dictionary for [U] where ● min, max, and is-empty run in time O(1). ● All other operations run in time O(log log U). ● Space usage is Θ(U) if implemented deterministically, and O(n) if implemented using hash tables. ● Question: Is there a simpler data structure meeting these bounds? The Machine Model ● We assume a transdichotomous machine model: ● Memory is composed of words of w bits each. ● Basic arithmetic and bitwise operations on words take time O(1) each. ● w = Ω(log n). A Start: Bitwise Tries Tries Revisited ● Recall: A trie is a simple data 0 1 structure for storing strings. 0 1 0 1 ● Integers can be thought of as strings of bits. 1 0 1 1 0 ● Idea: Store integers in a bitwise trie.
    [Show full text]
  • Lock-Free Concurrent Van Emde Boas Array
    Lock-free concurrent van Emde Boas Array Ziyuan Guo Reiji Suda (Adviser) [email protected] [email protected] The University of Tokyo Graduate School of Information Science and Technology Tokyo, Japan ABSTRACT To unleash the power of modern multi-core processors, concur- Lock-based data structures have some potential issues such as dead- rent data structures are needed in many cases. Comparing to lock- lock, livelock, and priority inversion, and the progress can be de- based data structures, lock-free data structures can avoid some po- layed indefinitely if the thread that is holding locks cannot acquire tential issues such as deadlock, livelock, and priority inversion, and a timeslice from the scheduler. Lock-free data structures, which guarantees the progress [5]. guarantees the progress of some method call, can be used to avoid these problems. This poster introduces the first lock-free concur- 2 OBJECTIVES rent van Emde Boas Array which is a variant of van Emde Boas • Create a lock-free search tree based on van Emde Boas Tree. Tree. It’s linearizable and the benchmark shows significant per- • Get better performance and scalability. formance improvement comparing to other lock-free search trees • Linearizability, i.e., each method call should appear to take when the date set is large and dense enough. effect at some instant between its invocation and response [5]. CCS CONCEPTS • Computing methodologies → Concurrent algorithms. 3 RELATED WORK The base of our data structure is van Emde Boas Tree, whichis KEYWORDS named after P. van Emde Boas, the inventor of this data structure [7].
    [Show full text]
  • Introduction to Algorithms, 3Rd
    Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Introduction to Algorithms Third Edition The MIT Press Cambridge, Massachusetts London, England c 2009 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email special [email protected]. This book was set in Times Roman and Mathtime Pro 2 by the authors. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Introduction to algorithms / Thomas H. Cormen ...[etal.].—3rded. p. cm. Includes bibliographical references and index. ISBN 978-0-262-03384-8 (hardcover : alk. paper)—ISBN 978-0-262-53305-8 (pbk. : alk. paper) 1. Computer programming. 2. Computer algorithms. I. Cormen, Thomas H. QA76.6.I5858 2009 005.1—dc22 2009008593 10987654321 Index This index uses the following conventions. Numbers are alphabetized as if spelled out; for example, “2-3-4 tree” is indexed as if it were “two-three-four tree.” When an entry refers to a place other than the main text, the page number is followed by a tag: ex. for exercise, pr. for problem, fig. for figure, and n. for footnote. A tagged page number often indicates the first page of an exercise or problem, which is not necessarily the page on which the reference actually appears. ˛.n/, 574 (set difference), 1159 (golden ratio), 59, 108 pr. jj y (conjugate of the golden ratio), 59 (flow value), 710 .n/ (Euler’s phi function), 943 (length of a string), 986 .n/-approximation algorithm, 1106, 1123 (set cardinality), 1161 o-notation, 50–51, 64 O-notation, 45 fig., 47–48, 64 (Cartesian product), 1162 O0-notation, 62 pr.
    [Show full text]
  • Lock-Free Van Emde Boas Array Lock-Free Van Emde Boas
    Lock-free van Emde Boas Array Ziyuan Guo, Reiji Suda (Adviser) Graduate School of Information Science and Technology, The University of Tokyo Introduction Structure Insert Insert operation will put a descriptor on the first node Results that it should modify to effectively lock the entire path of This poster introduces the first lock-free concurrent van Emde The original plan was to implement a van Emde Boas Tree by the modification. Then help itself to finish the work by We compared the thoughput of our implementation with the Boas Array which is a variant of van Emde Boas Tree (vEB effectively using the cooperate technique as locks. However, execute CAS operations stored in the descriptor. lock-free binary search tree and skip-lists implemented by K. 1 bool insert(x) { tree). It's linearizable and the benchmark shows significant a vEB tree stores maximum and minimum elements on the 2 if (not leaf) { Fraser. performance improvement comparing to other lock-free search root node of each sub-tree, which create a severe scalability 3 do { Benchmark Environment 4 start_over: trees when the date set is large and dense enough. bottleneck. Thus, we choose to not store the maximum and 5 summary_snap = summary; • Intel Xeon E7-8890 v4 @ 2.2GHz Although van Emde Boas tree is not considered to be practical minimum element on each node, and use a fixed degree (64 6 if (summary_snap & (1 << HIGH(x))) 7 if (cluster[HIGH(x)].insert(LOW(x))) • 32GB DDR4 2133MHz before, it still can outperform traditional search trees in many on modern 64bit CPUs) for every node, then use a bit vec- 8 return true; 9 else • qemu-kvm 0.12.1.2-2.506.el6 10.1 situations, and there is no lock-free concurrent implementation tor summary to store whether the corresponding sub-tree is 10 goto start_over; 11 if (needs_help(summary_snap)) { • Kernel 5.1.15-300.fc30.x86 64 yet.
    [Show full text]
  • Memory Optimization
    Memory Optimization Some slides from Christer Ericson Sony Computer Entertainment, Santa Monica Overview ► We have seen how to reorganize matrix computations to improve temporal and spatial locality § Improving spatial locality required knowing the layout of the matrix in memory ► Orthogonal approach § Change the representation of the data structure in memory to improve locality for a given pattern of data accesses from the computation § Less theory exists for this but some nice results are available for trees: van Emde Boas tree layout ► Similar ideas can be used for graph algorithms as well § However there is usually not as much locality in graph algorithms Data cache optimization ► Compressing data ► Prefetching data into cache ► Cache-conscious data structure layout § Tree data structures ► Linearization caching Prefetching ► Software prefetching § Not too early – data may be evicted before use § Not too late – data not fetched in time for use § Greedy ► Instructions § iA-64: lfetch (line prefetch) ► Options: § Intend to write: begins invalidations in other caches § Which level of cache to prefetch into § Compilers and programmers can access through intrinsics Software prefetching // Loop through and process all 4n elements for (int i = 0; i < 4 * n; i++) Process(elem[i]); const int kLookAhead = 4; // Some elements ahead for (int i = 0; i < 4 * n; i += 4) { Prefetch(elem[i + kLookAhead]); Process(elem[i + 0]); Process(elem[i + 1]); Process(elem[i + 2]); Process(elem[i + 3]); } Greedy prefetching void PreorderTraversal(Node *pNode)
    [Show full text]
  • Predecessor Search
    Predecessor Search GONZALO NAVARRO and JAVIEL ROJAS-LEDESMA, Millennium Institute for Foundational Research on Data (IMFD), Department of Computer Science, University of Chile, Santiago, Chile. The predecessor problem is a key component of the fundamental sorting-and-searching core of algorithmic problems. While binary search is the optimal solution in the comparison model, more realistic machine models on integer sets open the door to a rich universe of data structures, algorithms, and lower bounds. In this article we review the evolution of the solutions to the predecessor problem, focusing on the important algorithmic ideas, from the famous data structure of van Emde Boas to the optimal results of Patrascu and Thorup. We also consider lower bounds, variants and special cases, as well as the remaining open questions. CCS Concepts: • Theory of computation → Predecessor queries; Sorting and searching. Additional Key Words and Phrases: Integer data structures, integer sorting, RAM model, cell-probe model ACM Reference Format: Gonzalo Navarro and Javiel Rojas-Ledesma. 2019. Predecessor Search. ACM Comput. Surv. 0, 0, Article 0 ( 2019), 37 pages. https://doi.org/0 1 INTRODUCTION Assume we have a set - of = keys from a universe * with a total order. In the predecessor problem, one is given a query element @ 2 * , and is asked to find the maximum ? 2 - such that ? ≤ @ (the predecessor of @). This is an extension of the more basic membership problem, which only aims to find whether @ 2 -. Both are fundamental algorithmic problems that compose the “sorting and searching” core, which lies at the base of virtually every other area and application in Computer Science (e.g., see [7, 22, 37, 58, 59, 65, 75]).
    [Show full text]
  • Cache-Friendly Search Trees; Or, in Which Everything Beats Std::Set
    Cache-Friendly Search Trees; or, In Which Everything Beats std::set Jeffrey Barratt Brian Zhang jbarratt bhz July 4, 2019 1 Introduction While a lot of work in theoretical computer science has gone into optimizing the runtime and space usage of data structures, such work very often neglects a very important component of modern computers: the cache. In doing so, very often, data structures are developed that achieve theoretically-good runtimes but are slow in practice due to a large number of cache misses. In 1999, Frigo et al. [1999] introduced the notion of a cache-oblivious algorithm: an algorithm that uses the cache to its advantage, regardless of the size or structure of said cache. Since then, various authors have designed cache-oblivious algorithms and data structures for problems from matrix multiplication to array sorting [Demaine, 2002]. We focus in this work on cache-oblivious search trees; i.e. implementing an ordered dictionary in a cache-friendly manner. We will start by presenting an overview of cache-oblivious data structures, especially cache-oblivious search trees. We then give practical results using these cache-oblivious structures on modern-day machinery, comparing them to the standard std::set and other cache-friendly dictionaries such as B-trees. arXiv:1907.01631v1 [cs.DS] 2 Jul 2019 2 The Ideal-Cache Model To discuss caches theoretically, we first need to give a theoretical model that makes use of a cache. The ideal-cache model was first introduced by Frigo et al. [1999]. In this model, a computer's memory is modeled as a two-level hierarchy with a disk and a cache.
    [Show full text]
  • 6.854 Lecture Notes
    6.854 Lecture Notes Thanadol Chomphoochan Fall 2020 This file contains all the raw notes I took when I was taking 6.854 Advanced Algorithms in Fall 2020, taught by Karger. I barely edited anything before compiling it as this file, so there may be factual or typographical errors. Please use this at your own risk. Please email [email protected] if you wish to provide feedback. (Last updated: December 6th, 2020) Contents 1 Fibonacci Heaps5 1.1 Inventing Fibonacci Heap .......................... 5 1.2 Potential function............................... 7 1.3 Analyzing the tree (\Saving Private Ryan")................ 7 1.3.1 Step 1: Analyze mark bits ..................... 8 1.3.2 Step 2: Understanding tree size .................. 8 1.4 Summary of Fibonacci Heap......................... 8 1.5 Fast Minimum Spanning Tree........................ 9 1.6 Persistent Data Structures.......................... 9 2 Persistent Data Structures 11 2.1 Fat node and the copy method ....................... 11 2.2 Path copying ................................. 11 2.3 Lazier path copying by Sarnak & Tarjan.................. 11 2.4 Application: Planar point location ..................... 12 3 Splay Trees 13 3.1 Analysis.................................... 13 4 Multi-level bucketing and van Emde Boas trees 16 4.1 Dial's algorithm for SSSP .......................... 16 4.2 Tries...................................... 16 4.2.1 Denardo & Fox............................ 17 4.2.2 Cherkassky, Goldberg, Silverstein ................. 17 4.3 van Emde Boas Tree (1977) ......................... 18 4.3.1 Insert(x; Q).............................. 18 4.3.2 Delete-min(x; Q)........................... 18 4.3.3 Analyzing the space complexity .................. 19 1 Thanadol Chomphoochan (Fall 2020) 6.854 Lecture Notes 5 Hashing 20 5.1 2-universal hash family by Carter and Wegman.............
    [Show full text]
  • MIT 6.851 Advanced Data Structures Prof
    MIT 6.851 Advanced Data Structures Prof. Erik Demaine Spring '12 Scribe Notes Collection TA: Tom Morgan, Justin Zhang Editing: Justin Zhang Contents 1 1. Temporal data structure 1 4 Scribers: Oscar Moll (2012), Aston Motes (2007), Kevin Wang (2007) 1.1 Overview . 4 1.2 Model and definitions . 4 1.3 Partial persistence . 6 1.4 Full persistence . 9 1.5 Confluent Persistence . 12 1.6 Functional persistence . 13 2 2. Temporal data structure 2 14 Scribers: Erek Speed (2012), Victor Jakubiuk (2012), Aston Motes (2007), Kevin Wang (2007) 2.1 Overview . 14 2.2 Retroactivity . 14 3 3. Geometric data structure 1 24 Scribers: Brian Hamrick (2012), Ben Lerner (2012), Keshav Puranmalka (2012) 3.1 Overview . 24 3.2 Planar Point Location . 24 3.3 Orthogonal range searching . 27 3.4 Fractional Cascading . 33 4 4. Geometric data structure 2 35 2 Scribers: Brandon Tran (2012), Nathan Pinsker (2012), Ishaan Chugh (2012), David Stein (2010), Jacob Steinhardt (2010) 4.1 Overview- Geometry II . 35 4.2 3D Orthogonal Range Search in O(lg n) Query Time . 35 4.3 Kinetic Data Structures . 38 5 5. Dynamic optimality 1 42 Scribers: Brian Basham (2012), Travis Hance (2012), Jayson Lynch (2012) 5.1 Overview . 42 5.2 Binary Search Trees . 42 5.3 Splay Trees . 45 5.4 Geometric View . 46 6 6. Dynamic optimality 2 50 Scribers: Aakanksha Sarda (2012), David Field (2012), Leonardo Urbina (2012), Prasant Gopal (2010), Hui Tang (2007), Mike Ebersol (2005) 6.1 Overview . 50 6.2 Independent Rectangle Bounds . 50 6.3 Lower Bounds .
    [Show full text]
  • Ijita-17-No3.Pdf
    International Journal INFORMATION THEORIES & APPLICATIONS Volume 17 / 2010, Number 3 Editor in chief: Krassimir Markov (Bulgaria) International Editorial Staff Chairman: Victor Gladun (Ukraine) Adil Timofeev (Russia) Koen Vanhoof (Belgium) Aleksey Voloshin (Ukraine) Krassimira Ivanova (Bulgaria) Alexander Eremeev (Russia) Levon Aslanyan (Armenia) Alexander Kleshchev (Russia) Luis F. de Mingo (Spain) Alexander Palagin (Ukraine) Martin P. Mintchev (Canada) Alfredo Milani (Italy) Nikolay Zagoruiko (Russia) Anatoliy Shevchenko (Ukraine) Peter Stanchev (Bulgaria) Arkadij Zakrevskij (Belarus) Plamen Mateev (Bulgaria) Avram Eskenazi (Bulgaria) Rumyana Kirkova (Bulgaria) Boris Fedunov (Russia) Stefan Dodunekov (Bulgaria) Constantine Gaindric (Moldavia) Tatyana Gavrilova (Russia) Eugenia Velikova-Bandova (Bulgaria) Vasil Sgurev (Bulgaria) Frank Brown (USA) Vitaliy Lozovskiy (Ukraine) Galina Rybina (Russia) Vitaliy Velichko (Ukraine) Georgi Gluhchev (Bulgaria) Vladimir Donchenko (Ukraine) Ilia Mitov (Bulgaria) Vladimir Jotsov (Bulgaria) Juan Castellanos (Spain) Vladimir Lovitskii (GB) International Journal “INFORMATION THEORIES & APPLICATIONS” (IJ ITA) is official publisher of the scientific papers of the members of the ITHEA International Scientific Society IJ ITA welcomes scientific papers connected with any information theory or its application. IJ ITA rules for preparing the manuscripts are compulsory. The rules for the papers for IJ ITA as well as the subscription fees are given on www.foibg.com/ijita. Responsibility for papers published in IJ ITA belongs to authors. General Sponsor of IJ ITA is the Consortium FOI Bulgaria (www.foibg.com). International Journal “INFORMATION THEORIES & APPLICATIONS” Vol. 17, Number 3, 2010 Printed in Bulgaria Edited by the Institute of Information Theories and Applications FOI ITHEA, Bulgaria, in collaboration with: V.M.Glushkov Institute of Cybernetics of NAS, Ukraine, Institute of Mathematics and Informatics, BAS, Bulgaria, Universidad Politécnica de Madrid, Spain.
    [Show full text]
  • Topological Algorithms for Geographic and Geometric Graphs
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Topological Algorithms for Geographic and Geometric Graphs Permalink https://escholarship.org/uc/item/52t311vn Author Gupta, Siddharth Publication Date 2018 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Topological Algorithms for Geographic and Geometric Graphs DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Siddharth Gupta Dissertation Committee: Professor David Eppstein, Chair Professor Michael T. Goodrich Professor Sandy Irani 2018 Chapter 2 c 2016 ACM Chapter 3 c 2017 ACM Chapter 4 c 2018 Springer All other materials c 2018 Siddharth Gupta DEDICATION To my parents Govind Gupta and Vimla Gupta, my sister-in-law Shraddha Gupta and especially to my brother and best friend Yatharth Gupta for always having faith in me. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES vii ACKNOWLEDGMENTS viii CURRICULUM VITAE ix ABSTRACT OF THE DISSERTATION xi 1 Introduction 1 1.1 Results . .2 2 A Topological Algorithm for Road Networks Evolution 5 2.1 Introduction . .5 2.1.1 Problem Definition . .6 2.1.2 Prior Related Work . .8 2.1.3 Our Results . 10 2.2 Our Algorithm . 11 2.2.1 Labeling Vertices . 11 2.2.2 Choosing Pairs of Starting Nodes . 13 2.2.3 Flood-based Conformal Matching . 15 2.3 Experiments . 19 2.3.1 Preprocessing the Data . 20 2.3.2 Tuning the Seed-labeling Parameter .
    [Show full text]