Doctoral Thesis Graph Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

Doctoral Thesis Graph Algorithms Charles University in Prague Faculty of Mathematics and Physics Doctoral Thesis Graph Algorithms Martin Mares Department of Applied Mathematics Malostransk´en´am.25 Prague, Czech Republic Supervisor: Prof. RNDr. Jaroslav Neˇsetˇril,DrSc. Branch I4: Discrete Models and Algorithms 2008 I hereby declare that I have written this thesis on my own and using exclusively the cites sources. For any work in the thesis that has been co-published with other authors, I have the permission of them all to include this work in my thesis. I authorize the Charles University to lend this document to other institutions and individuals for academic or research purposes. Martin Mareˇs Prague, May 4th, 2008 Preface This thesis tells the story of two well-established problems of algorithmic graph theory: the minimum spanning trees and ranks of permutations. At distance, both problems seem to be simple, boring and already solved, because we have polynomial- time algorithms for them since ages. But when we come closer and seek algorithms that are really efficient, the problems twirl and twist and withstand many a brave attempt at the optimum solution. They also reveal a vast and diverse landscape of a deep and beautiful theory. Still closer, this landscape turns out to be interwoven with the intricate details of various models of computation and even of arithmetics itself. I have tried to cover all known important results on both problems and unite them in a single coherent theory. At many places, I have attempted to contribute my own little stones to this mosaic: several new results, simplifications of existing ones, and last, but not least filling in important details where the original authors have missed some. When compared with the earlier surveys on the minimum spanning trees, most notably Graham and Hell [GH85] and Eisner [Eis97], this work adds many of the recent advances, the dynamic algorithms and also the relationship with computa- tional models. No previous work covering the ranking problems in their entirety is known. The early parts of this thesis also served as a basis for a course on graph algorithms which I was teaching at our faculty during years 2006 and 2007. They are included in the textbook [Mar07] which I have written for this course. My original results The lower bound in Section 1.5. Not published yet. The tree isomorphism algorithm in Section 2.2. Not published yet. Both algorithms for minor-closed graph classes in Section 3.1. Published in [Mar04]. The linear-time verification algorithm in Section 3.4 is a simplification of the algorithm of King [Kin97] and it corrects many omissions in the original paper. Not published yet. The ranking algorithms in Sections 7.1 to 7.3 are results of joint research with Milan Straka. Published in [MS07]. The remaining sections of Chapter 7 contain unpublished original results. Other minor contributions The flattening procedure in Section 2.2. Included in [Mar04]. The unified view of vector computations in Section 2.4. Published in the textbook [Mar07]. The main ideas of this section were also included in the yearbook of the Czech Mathematical Olympiad [HMN+07]. Slight simplifications of the soft heaps and their analysis in Section 4.1. The dynamic MST algorithm for graphs with limited edge weights in Sec- tion 5.4. Acknowledgements First of all, I would like to thank my supervisor, Jaroslav Neˇsetˇril,for intro- ducing me to the world of discrete mathematics and gently guiding my attempts to explore it with his deep insight. I am very grateful to all members of the Department of Applied Mathematics and the Institute for Theoretical Computer Science for the work environment which was friendly and highly inspiring. I cannot forget the par- ticipants of the department’s seminars, who have listened to my talks and provided lots of important feedback. I also send my acknowledgements to the members of the Math department at ETH Z¨urich and of DIMACS at the Rutgers University (especially to J´anosKoml´os)where I spent several pleasant months working on what finally become a part of this thesis. I also thank to my family for supporting me during the plentiful years of my study, to my girlfriend Aniˇcka for lots of patience when I was caught up by my work and hardly speaking at all, to all the polar bears of Kobylisy for their furry presence, and finally to our cats Minuta and Dami´anfor their mastership in hiding my papers, which has frequently forced me to think of new ways of looking at problems when the old ones were impossible to find. Notation I have tried to stick to the usual notation except where it was too inconve- nient. Most symbols are defined at the place where they are used for the first time. A complete index of symbols with pointers to their definitions is then available in Appendix A. This appendix also describes the formalism of multigraphs and of the Ackermann’s function, both of which are not defined consistently in the common literature. To avoid piling up too many symbols at places that speak about a single fixed graph, this graph is always called G, its set of vertices and edges are denoted by V and E respectively, and I also use n for the number of its vertices and m for the number of edges. At places where there could be a danger of confusion, more explicit notation is used instead. So, my gentle reader, let us nestle deep in an ancient wing armchair. The saga of the graph algorithms begins ... Table of contents Preface ....................................................................... 3 Table of contents ............................................................. 5 1. Minimum Spanning Trees ................................................. 7 1.1. The Problem ............................................................ 7 1.2. Basic properties ......................................................... 8 1.3. The Red-Blue meta-algorithm .......................................... 11 1.4. Classical algorithms .................................................... 13 1.5. Contractive algorithms ................................................. 16 1.6. Lifting restrictions ...................................................... 20 2. Fine Details of Computation ............................................. 21 2.1. Models and machines ................................................... 21 2.2. Bucket sorting and unification .......................................... 25 2.3. Data structures on the RAM ........................................... 29 2.4. Bits and vectors ........................................................ 30 2.5. Q-Heaps ............................................................... 35 3. Advanced MST Algorithms ............................................... 43 3.1. Minor-closed graph classes .............................................. 43 3.2. Iterated algorithms ..................................................... 47 3.3. Verification of minimality ............................................... 52 3.4. Verification in linear time ............................................... 56 3.5. A randomized algorithm ................................................ 60 4. Approaching Optimality .................................................. 65 4.1. Soft heaps .............................................................. 65 4.2. Robust contractions .................................................... 75 4.3. Decision trees .......................................................... 79 4.4. An optimal algorithm .................................................. 82 5. Dynamic Spanning Trees ................................................. 87 5.1. Dynamic graph algorithms .............................................. 87 5.2. Eulerian Tour trees ..................................................... 90 5.3. Dynamic connectivity .................................................. 93 5.4. Dynamic spanning forests ............................................... 96 5.5. Almost minimum trees ................................................ 100 6. Applications ............................................................ 105 6.1. Special cases and related problems ..................................... 105 6.2. Practical algorithms ................................................... 107 7. Ranking Combinatorial Structures ...................................... 109 7.1. Ranking and unranking ................................................ 109 7.2. Ranking of permutations .............................................. 109 7.3. Ranking of k-permutations ............................................ 112 7.4. Restricted permutations ............................................... 113 7.5. Hatcheck lady and other derangements ................................ 118 8. Epilogue ................................................................ 121 A. Notation ............................................................... 123 A.1. Symbols .............................................................. 123 A.2. Multigraphs and contractions ......................................... 125 A.3. Ackermann’s function and its inverses ................................. 126 B. Bibliography ........................................................... 129 1. Minimum Spanning Trees 1.1. The Problem The problem of finding a minimum spanning tree of a weighted graph is one of the best studied problems in the area of combinatorial optimization since its birth. Its colorful history (see [GH85] and [Neˇs97]for the full account) begins in 1926 with the pioneering work of Bor˚uvka [Bor26a]1, who studied
Recommended publications
  • Persistent Predecessor Search and Orthogonal Point Location on the Word
    Persistent Predecessor Search and Orthogonal Point Location on the Word RAM∗ Timothy M. Chan† August 17, 2012 Abstract We answer a basic data structuring question (for example, raised by Dietz and Raman [1991]): can van Emde Boas trees be made persistent, without changing their asymptotic query/update time? We present a (partially) persistent data structure that supports predecessor search in a set of integers in 1,...,U under an arbitrary sequence of n insertions and deletions, with O(log log U) { } expected query time and expected amortized update time, and O(n) space. The query bound is optimal in U for linear-space structures and improves previous near-O((log log U)2) methods. The same method solves a fundamental problem from computational geometry: point location in orthogonal planar subdivisions (where edges are vertical or horizontal). We obtain the first static data structure achieving O(log log U) worst-case query time and linear space. This result is again optimal in U for linear-space structures and improves the previous O((log log U)2) method by de Berg, Snoeyink, and van Kreveld [1995]. The same result also holds for higher-dimensional subdivisions that are orthogonal binary space partitions, and for certain nonorthogonal planar subdivisions such as triangulations without small angles. Many geometric applications follow, including improved query times for orthogonal range reporting for dimensions 3 on the RAM. ≥ Our key technique is an interesting new van-Emde-Boas–style recursion that alternates be- tween two strategies, both quite simple. 1 Introduction Van Emde Boas trees [60, 61, 62] are fundamental data structures that support predecessor searches in O(log log U) time on the word RAM with O(n) space, when the n elements of the given set S come from a bounded integer universe 1,...,U (U n).
    [Show full text]
  • X-Fast and Y-Fast Tries
    x-Fast and y-Fast Tries Outline for Today ● Bitwise Tries ● A simple ordered dictionary for integers. ● x-Fast Tries ● Tries + Hashing ● y-Fast Tries ● Tries + Hashing + Subdivision + Balanced Trees + Amortization Recap from Last Time Ordered Dictionaries ● An ordered dictionary is a data structure that maintains a set S of elements drawn from an ordered universe � and supports these operations: ● insert(x), which adds x to S. ● is-empty(), which returns whether S = Ø. ● lookup(x), which returns whether x ∈ S. ● delete(x), which removes x from S. ● max() / min(), which returns the maximum or minimum element of S. ● successor(x), which returns the smallest element of S greater than x, and ● predecessor(x), which returns the largest element of S smaller than x. Integer Ordered Dictionaries ● Suppose that � = [U] = {0, 1, …, U – 1}. ● A van Emde Boas tree is an ordered dictionary for [U] where ● min, max, and is-empty run in time O(1). ● All other operations run in time O(log log U). ● Space usage is Θ(U) if implemented deterministically, and O(n) if implemented using hash tables. ● Question: Is there a simpler data structure meeting these bounds? The Machine Model ● We assume a transdichotomous machine model: ● Memory is composed of words of w bits each. ● Basic arithmetic and bitwise operations on words take time O(1) each. ● w = Ω(log n). A Start: Bitwise Tries Tries Revisited ● Recall: A trie is a simple data 0 1 structure for storing strings. 0 1 0 1 ● Integers can be thought of as strings of bits. 1 0 1 1 0 ● Idea: Store integers in a bitwise trie.
    [Show full text]
  • Lock-Free Concurrent Van Emde Boas Array
    Lock-free concurrent van Emde Boas Array Ziyuan Guo Reiji Suda (Adviser) [email protected] [email protected] The University of Tokyo Graduate School of Information Science and Technology Tokyo, Japan ABSTRACT To unleash the power of modern multi-core processors, concur- Lock-based data structures have some potential issues such as dead- rent data structures are needed in many cases. Comparing to lock- lock, livelock, and priority inversion, and the progress can be de- based data structures, lock-free data structures can avoid some po- layed indefinitely if the thread that is holding locks cannot acquire tential issues such as deadlock, livelock, and priority inversion, and a timeslice from the scheduler. Lock-free data structures, which guarantees the progress [5]. guarantees the progress of some method call, can be used to avoid these problems. This poster introduces the first lock-free concur- 2 OBJECTIVES rent van Emde Boas Array which is a variant of van Emde Boas • Create a lock-free search tree based on van Emde Boas Tree. Tree. It’s linearizable and the benchmark shows significant per- • Get better performance and scalability. formance improvement comparing to other lock-free search trees • Linearizability, i.e., each method call should appear to take when the date set is large and dense enough. effect at some instant between its invocation and response [5]. CCS CONCEPTS • Computing methodologies → Concurrent algorithms. 3 RELATED WORK The base of our data structure is van Emde Boas Tree, whichis KEYWORDS named after P. van Emde Boas, the inventor of this data structure [7].
    [Show full text]
  • Introduction to Algorithms, 3Rd
    Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford Stein Introduction to Algorithms Third Edition The MIT Press Cambridge, Massachusetts London, England c 2009 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. For information about special quantity discounts, please email special [email protected]. This book was set in Times Roman and Mathtime Pro 2 by the authors. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Introduction to algorithms / Thomas H. Cormen ...[etal.].—3rded. p. cm. Includes bibliographical references and index. ISBN 978-0-262-03384-8 (hardcover : alk. paper)—ISBN 978-0-262-53305-8 (pbk. : alk. paper) 1. Computer programming. 2. Computer algorithms. I. Cormen, Thomas H. QA76.6.I5858 2009 005.1—dc22 2009008593 10987654321 Index This index uses the following conventions. Numbers are alphabetized as if spelled out; for example, “2-3-4 tree” is indexed as if it were “two-three-four tree.” When an entry refers to a place other than the main text, the page number is followed by a tag: ex. for exercise, pr. for problem, fig. for figure, and n. for footnote. A tagged page number often indicates the first page of an exercise or problem, which is not necessarily the page on which the reference actually appears. ˛.n/, 574 (set difference), 1159 (golden ratio), 59, 108 pr. jj y (conjugate of the golden ratio), 59 (flow value), 710 .n/ (Euler’s phi function), 943 (length of a string), 986 .n/-approximation algorithm, 1106, 1123 (set cardinality), 1161 o-notation, 50–51, 64 O-notation, 45 fig., 47–48, 64 (Cartesian product), 1162 O0-notation, 62 pr.
    [Show full text]
  • Lock-Free Van Emde Boas Array Lock-Free Van Emde Boas
    Lock-free van Emde Boas Array Ziyuan Guo, Reiji Suda (Adviser) Graduate School of Information Science and Technology, The University of Tokyo Introduction Structure Insert Insert operation will put a descriptor on the first node Results that it should modify to effectively lock the entire path of This poster introduces the first lock-free concurrent van Emde The original plan was to implement a van Emde Boas Tree by the modification. Then help itself to finish the work by We compared the thoughput of our implementation with the Boas Array which is a variant of van Emde Boas Tree (vEB effectively using the cooperate technique as locks. However, execute CAS operations stored in the descriptor. lock-free binary search tree and skip-lists implemented by K. 1 bool insert(x) { tree). It's linearizable and the benchmark shows significant a vEB tree stores maximum and minimum elements on the 2 if (not leaf) { Fraser. performance improvement comparing to other lock-free search root node of each sub-tree, which create a severe scalability 3 do { Benchmark Environment 4 start_over: trees when the date set is large and dense enough. bottleneck. Thus, we choose to not store the maximum and 5 summary_snap = summary; • Intel Xeon E7-8890 v4 @ 2.2GHz Although van Emde Boas tree is not considered to be practical minimum element on each node, and use a fixed degree (64 6 if (summary_snap & (1 << HIGH(x))) 7 if (cluster[HIGH(x)].insert(LOW(x))) • 32GB DDR4 2133MHz before, it still can outperform traditional search trees in many on modern 64bit CPUs) for every node, then use a bit vec- 8 return true; 9 else • qemu-kvm 0.12.1.2-2.506.el6 10.1 situations, and there is no lock-free concurrent implementation tor summary to store whether the corresponding sub-tree is 10 goto start_over; 11 if (needs_help(summary_snap)) { • Kernel 5.1.15-300.fc30.x86 64 yet.
    [Show full text]
  • Memory Optimization
    Memory Optimization Some slides from Christer Ericson Sony Computer Entertainment, Santa Monica Overview ► We have seen how to reorganize matrix computations to improve temporal and spatial locality § Improving spatial locality required knowing the layout of the matrix in memory ► Orthogonal approach § Change the representation of the data structure in memory to improve locality for a given pattern of data accesses from the computation § Less theory exists for this but some nice results are available for trees: van Emde Boas tree layout ► Similar ideas can be used for graph algorithms as well § However there is usually not as much locality in graph algorithms Data cache optimization ► Compressing data ► Prefetching data into cache ► Cache-conscious data structure layout § Tree data structures ► Linearization caching Prefetching ► Software prefetching § Not too early – data may be evicted before use § Not too late – data not fetched in time for use § Greedy ► Instructions § iA-64: lfetch (line prefetch) ► Options: § Intend to write: begins invalidations in other caches § Which level of cache to prefetch into § Compilers and programmers can access through intrinsics Software prefetching // Loop through and process all 4n elements for (int i = 0; i < 4 * n; i++) Process(elem[i]); const int kLookAhead = 4; // Some elements ahead for (int i = 0; i < 4 * n; i += 4) { Prefetch(elem[i + kLookAhead]); Process(elem[i + 0]); Process(elem[i + 1]); Process(elem[i + 2]); Process(elem[i + 3]); } Greedy prefetching void PreorderTraversal(Node *pNode)
    [Show full text]
  • Predecessor Search
    Predecessor Search GONZALO NAVARRO and JAVIEL ROJAS-LEDESMA, Millennium Institute for Foundational Research on Data (IMFD), Department of Computer Science, University of Chile, Santiago, Chile. The predecessor problem is a key component of the fundamental sorting-and-searching core of algorithmic problems. While binary search is the optimal solution in the comparison model, more realistic machine models on integer sets open the door to a rich universe of data structures, algorithms, and lower bounds. In this article we review the evolution of the solutions to the predecessor problem, focusing on the important algorithmic ideas, from the famous data structure of van Emde Boas to the optimal results of Patrascu and Thorup. We also consider lower bounds, variants and special cases, as well as the remaining open questions. CCS Concepts: • Theory of computation → Predecessor queries; Sorting and searching. Additional Key Words and Phrases: Integer data structures, integer sorting, RAM model, cell-probe model ACM Reference Format: Gonzalo Navarro and Javiel Rojas-Ledesma. 2019. Predecessor Search. ACM Comput. Surv. 0, 0, Article 0 ( 2019), 37 pages. https://doi.org/0 1 INTRODUCTION Assume we have a set - of = keys from a universe * with a total order. In the predecessor problem, one is given a query element @ 2 * , and is asked to find the maximum ? 2 - such that ? ≤ @ (the predecessor of @). This is an extension of the more basic membership problem, which only aims to find whether @ 2 -. Both are fundamental algorithmic problems that compose the “sorting and searching” core, which lies at the base of virtually every other area and application in Computer Science (e.g., see [7, 22, 37, 58, 59, 65, 75]).
    [Show full text]
  • Cache-Friendly Search Trees; Or, in Which Everything Beats Std::Set
    Cache-Friendly Search Trees; or, In Which Everything Beats std::set Jeffrey Barratt Brian Zhang jbarratt bhz July 4, 2019 1 Introduction While a lot of work in theoretical computer science has gone into optimizing the runtime and space usage of data structures, such work very often neglects a very important component of modern computers: the cache. In doing so, very often, data structures are developed that achieve theoretically-good runtimes but are slow in practice due to a large number of cache misses. In 1999, Frigo et al. [1999] introduced the notion of a cache-oblivious algorithm: an algorithm that uses the cache to its advantage, regardless of the size or structure of said cache. Since then, various authors have designed cache-oblivious algorithms and data structures for problems from matrix multiplication to array sorting [Demaine, 2002]. We focus in this work on cache-oblivious search trees; i.e. implementing an ordered dictionary in a cache-friendly manner. We will start by presenting an overview of cache-oblivious data structures, especially cache-oblivious search trees. We then give practical results using these cache-oblivious structures on modern-day machinery, comparing them to the standard std::set and other cache-friendly dictionaries such as B-trees. arXiv:1907.01631v1 [cs.DS] 2 Jul 2019 2 The Ideal-Cache Model To discuss caches theoretically, we first need to give a theoretical model that makes use of a cache. The ideal-cache model was first introduced by Frigo et al. [1999]. In this model, a computer's memory is modeled as a two-level hierarchy with a disk and a cache.
    [Show full text]
  • 6.854 Lecture Notes
    6.854 Lecture Notes Thanadol Chomphoochan Fall 2020 This file contains all the raw notes I took when I was taking 6.854 Advanced Algorithms in Fall 2020, taught by Karger. I barely edited anything before compiling it as this file, so there may be factual or typographical errors. Please use this at your own risk. Please email [email protected] if you wish to provide feedback. (Last updated: December 6th, 2020) Contents 1 Fibonacci Heaps5 1.1 Inventing Fibonacci Heap .......................... 5 1.2 Potential function............................... 7 1.3 Analyzing the tree (\Saving Private Ryan")................ 7 1.3.1 Step 1: Analyze mark bits ..................... 8 1.3.2 Step 2: Understanding tree size .................. 8 1.4 Summary of Fibonacci Heap......................... 8 1.5 Fast Minimum Spanning Tree........................ 9 1.6 Persistent Data Structures.......................... 9 2 Persistent Data Structures 11 2.1 Fat node and the copy method ....................... 11 2.2 Path copying ................................. 11 2.3 Lazier path copying by Sarnak & Tarjan.................. 11 2.4 Application: Planar point location ..................... 12 3 Splay Trees 13 3.1 Analysis.................................... 13 4 Multi-level bucketing and van Emde Boas trees 16 4.1 Dial's algorithm for SSSP .......................... 16 4.2 Tries...................................... 16 4.2.1 Denardo & Fox............................ 17 4.2.2 Cherkassky, Goldberg, Silverstein ................. 17 4.3 van Emde Boas Tree (1977) ......................... 18 4.3.1 Insert(x; Q).............................. 18 4.3.2 Delete-min(x; Q)........................... 18 4.3.3 Analyzing the space complexity .................. 19 1 Thanadol Chomphoochan (Fall 2020) 6.854 Lecture Notes 5 Hashing 20 5.1 2-universal hash family by Carter and Wegman.............
    [Show full text]
  • MIT 6.851 Advanced Data Structures Prof
    MIT 6.851 Advanced Data Structures Prof. Erik Demaine Spring '12 Scribe Notes Collection TA: Tom Morgan, Justin Zhang Editing: Justin Zhang Contents 1 1. Temporal data structure 1 4 Scribers: Oscar Moll (2012), Aston Motes (2007), Kevin Wang (2007) 1.1 Overview . 4 1.2 Model and definitions . 4 1.3 Partial persistence . 6 1.4 Full persistence . 9 1.5 Confluent Persistence . 12 1.6 Functional persistence . 13 2 2. Temporal data structure 2 14 Scribers: Erek Speed (2012), Victor Jakubiuk (2012), Aston Motes (2007), Kevin Wang (2007) 2.1 Overview . 14 2.2 Retroactivity . 14 3 3. Geometric data structure 1 24 Scribers: Brian Hamrick (2012), Ben Lerner (2012), Keshav Puranmalka (2012) 3.1 Overview . 24 3.2 Planar Point Location . 24 3.3 Orthogonal range searching . 27 3.4 Fractional Cascading . 33 4 4. Geometric data structure 2 35 2 Scribers: Brandon Tran (2012), Nathan Pinsker (2012), Ishaan Chugh (2012), David Stein (2010), Jacob Steinhardt (2010) 4.1 Overview- Geometry II . 35 4.2 3D Orthogonal Range Search in O(lg n) Query Time . 35 4.3 Kinetic Data Structures . 38 5 5. Dynamic optimality 1 42 Scribers: Brian Basham (2012), Travis Hance (2012), Jayson Lynch (2012) 5.1 Overview . 42 5.2 Binary Search Trees . 42 5.3 Splay Trees . 45 5.4 Geometric View . 46 6 6. Dynamic optimality 2 50 Scribers: Aakanksha Sarda (2012), David Field (2012), Leonardo Urbina (2012), Prasant Gopal (2010), Hui Tang (2007), Mike Ebersol (2005) 6.1 Overview . 50 6.2 Independent Rectangle Bounds . 50 6.3 Lower Bounds .
    [Show full text]
  • Ijita-17-No3.Pdf
    International Journal INFORMATION THEORIES & APPLICATIONS Volume 17 / 2010, Number 3 Editor in chief: Krassimir Markov (Bulgaria) International Editorial Staff Chairman: Victor Gladun (Ukraine) Adil Timofeev (Russia) Koen Vanhoof (Belgium) Aleksey Voloshin (Ukraine) Krassimira Ivanova (Bulgaria) Alexander Eremeev (Russia) Levon Aslanyan (Armenia) Alexander Kleshchev (Russia) Luis F. de Mingo (Spain) Alexander Palagin (Ukraine) Martin P. Mintchev (Canada) Alfredo Milani (Italy) Nikolay Zagoruiko (Russia) Anatoliy Shevchenko (Ukraine) Peter Stanchev (Bulgaria) Arkadij Zakrevskij (Belarus) Plamen Mateev (Bulgaria) Avram Eskenazi (Bulgaria) Rumyana Kirkova (Bulgaria) Boris Fedunov (Russia) Stefan Dodunekov (Bulgaria) Constantine Gaindric (Moldavia) Tatyana Gavrilova (Russia) Eugenia Velikova-Bandova (Bulgaria) Vasil Sgurev (Bulgaria) Frank Brown (USA) Vitaliy Lozovskiy (Ukraine) Galina Rybina (Russia) Vitaliy Velichko (Ukraine) Georgi Gluhchev (Bulgaria) Vladimir Donchenko (Ukraine) Ilia Mitov (Bulgaria) Vladimir Jotsov (Bulgaria) Juan Castellanos (Spain) Vladimir Lovitskii (GB) International Journal “INFORMATION THEORIES & APPLICATIONS” (IJ ITA) is official publisher of the scientific papers of the members of the ITHEA International Scientific Society IJ ITA welcomes scientific papers connected with any information theory or its application. IJ ITA rules for preparing the manuscripts are compulsory. The rules for the papers for IJ ITA as well as the subscription fees are given on www.foibg.com/ijita. Responsibility for papers published in IJ ITA belongs to authors. General Sponsor of IJ ITA is the Consortium FOI Bulgaria (www.foibg.com). International Journal “INFORMATION THEORIES & APPLICATIONS” Vol. 17, Number 3, 2010 Printed in Bulgaria Edited by the Institute of Information Theories and Applications FOI ITHEA, Bulgaria, in collaboration with: V.M.Glushkov Institute of Cybernetics of NAS, Ukraine, Institute of Mathematics and Informatics, BAS, Bulgaria, Universidad Politécnica de Madrid, Spain.
    [Show full text]
  • Topological Algorithms for Geographic and Geometric Graphs
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Topological Algorithms for Geographic and Geometric Graphs Permalink https://escholarship.org/uc/item/52t311vn Author Gupta, Siddharth Publication Date 2018 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Topological Algorithms for Geographic and Geometric Graphs DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Computer Science by Siddharth Gupta Dissertation Committee: Professor David Eppstein, Chair Professor Michael T. Goodrich Professor Sandy Irani 2018 Chapter 2 c 2016 ACM Chapter 3 c 2017 ACM Chapter 4 c 2018 Springer All other materials c 2018 Siddharth Gupta DEDICATION To my parents Govind Gupta and Vimla Gupta, my sister-in-law Shraddha Gupta and especially to my brother and best friend Yatharth Gupta for always having faith in me. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES vii ACKNOWLEDGMENTS viii CURRICULUM VITAE ix ABSTRACT OF THE DISSERTATION xi 1 Introduction 1 1.1 Results . .2 2 A Topological Algorithm for Road Networks Evolution 5 2.1 Introduction . .5 2.1.1 Problem Definition . .6 2.1.2 Prior Related Work . .8 2.1.3 Our Results . 10 2.2 Our Algorithm . 11 2.2.1 Labeling Vertices . 11 2.2.2 Choosing Pairs of Starting Nodes . 13 2.2.3 Flood-based Conformal Matching . 15 2.3 Experiments . 19 2.3.1 Preprocessing the Data . 20 2.3.2 Tuning the Seed-labeling Parameter .
    [Show full text]