Costimulatory Signals Are Required for Induction of Transcription Factor Nur77 During Negative Selection of CD4 CD8 Thymocytes

Total Page:16

File Type:pdf, Size:1020Kb

Costimulatory Signals Are Required for Induction of Transcription Factor Nur77 During Negative Selection of CD4 CD8 Thymocytes Proc. Natl. Acad. Sci. USA Vol. 96, pp. 622–627, January 1999 Immunology Costimulatory signals are required for induction of transcription factor Nur77 during negative selection of CD41CD81 thymocytes DERK AMSEN*, CONCHI REVILLA CALVO*†,BARBARA A. OSBORNE‡, AND ADA M. KRUISBEEK*§ *Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; and ‡Department of Veterinary and Animal Sciences, University of Massachusetts, 304 Paige Lab, Amherst, MA 01003 Edited by Philippa Marrack, National Jewish Medical and Research Center, Denver, CO, and approved November 19, 1998 (received for review September 25, 1998) ABSTRACT A major question in end-stage T cell devel- presenting cells (APCs) to induce either positive or negative opment is how T cell receptor(TCR) ligation on immature selection may reflect in part their localization in different CD41CD81 double positive thymocytes is translated into spatial and temporal compartments. In addition, variables such either survival (positive selection) or apoptotic (negative as MHC expression levels and expression of adhesion mole- selection) signals. Because different types of antigen- cules may also contribute to the outcome of the interaction presenting cells (APCs) induce positive or negative selection between DP thymocytes and thymic APCs. Finally, the dif- in the thymus and express different costimulatory molecules, ferential ability of thymic presenting cells to induce positive or involvement of such costimulatory molecules in determining negative selection may reflect cell type-specific expression of cell fate of DP thymocytes is considered here. If TCR- costimulatory molecules. Such molecules may, through en- generated signals are modulated by APCs, this should be gagement of their counter-receptors on DP thymocytes, qual- reflected in the activation of distinct biochemical pathways. itatively influence the signals induced by the TCR, leading to We here demonstrate that costimulatory signals involved in induction of either apoptotic or survival pathways. negative selection also are required for induction of protein In support of a contribution of cell-derived costimulatory expression of Nur77 and its family members. These transcrip- signals, clonal deletion of thymocytes was indeed shown to tion factors are critically involved in negative but not positive occur only if, next to signals through the TCR, additional selection. In contrast, the signals that costimulate negative APC-derived signals are provided (11–14). Whether thymo- selection are not required for induction of several molecular cytes also use the molecular interactions that mature T cells events associated with positive selection. These include acti- exploit to generate costimulatory signals has been controver- vation of the immediate early gene Egr-1, the mitogen- sial. On the one hand, several investigators have reported a activated protein kinase ERK2, and surface expression of the lack of a phenotype with respect to negative selection in CD69 marker. Thus, costimulation for negative selection CD282y2 mice (15–17). On the other hand, apoptosis of selectively provides signals for activation of apoptotic medi- thymocytes induced in suspension can be costimulated by ators. These data provide molecular insights into how TCR- crosslinking the CD28 receptor, either by using antibodies (12, engagement by ligands on different thymic APCs can deter- 18, 19) or by its natural ligands CD80 and CD86 (13, 14, 20). mine cell fate. Moreover, these findings have been corroborated in the intact thymus in fetal thymic organ culture and recently also in The random process that creates T cell receptor (TCR) CD28-deficient mice (13, 21), providing formal support for a diversity generates a large pool of thymocytes, of which only a role for CD28 in clonal deletion in vivo. While acknowledging few will migrate to the periphery. Within the population of that other molecules than CD28 can costimulate deletion (refs. 1 1 thymocytes that has arrived at the CD4 CD8 double positive 11–17; present study), these findings document that CD28– (DP) stage of development, positive and negative selection CD80y86 interactions can serve to provide prototypical co- processes determine which cells are allowed to develop into stimulatory signals for thymocyte deletion. Supportive evi- mature CD4 or CD8 TCRab cells. Both of these selection dence for this notion stems from the observation that thymic processes depend on ligation of the TCR by peptide-loaded medullary expression of CD80 is correlated with preferential MHC molecules present in the thymus but result in diamet- deletion of self-reactive thymocytes in the medulla (22, 23). rically different outcomes—survival and maturation (positive Also, CD86 expression in the medullary region of the thymus selection) or apoptosis (negative selection) (reviewed in ref. 1). is substantially reduced in gp39-deficient mice (24), a pheno- The critical issue in understanding end-stage T cell devel- type correlated with reduced deletion of thymocytes specific opment is how TCR occupancy can be perceived in such for endogenously expressed self-antigens (24). markedly different ways by DP thymocytes. Whether positive Thus far, only two molecular signaling modules have spe- or negative selection is induced appears to depend in part on cifically been linked to either positive or negative selection. the affinityyavidity of the interaction between thymocyte Activation of the mitogen-activated protein kinase (MAPK) TCRs and major histocompatibility complex (MHC)–peptide cascade is required only for positive selection: transgenically complexes on presenting cells in the thymus (2, 3). However, expressed dominant negative mutants of Ras, Raf1, and a different model of thymocyte selection contends that in fact MEK-1 each reduce positive selection (25–27), whereas neg- the type of thymic cell presenting MHC–peptide ligands to ative selection is unaffected by perturbations in the MAPK developing thymocytes dictates the outcome of selection. cascade. By contrast, a specific role in negative selection has Support for this model has been provided by many different experimental systems (4–10) and is difficult to ignore. This This paper was submitted directly (Track II) to the Proceedings office. differential ability of different types of thymic antigen- Abbreviations: EMSA, electrophoretic mobility-shift assay; APC, antigen-presenting cell; DP, double positive; MHC, major histocom- The publication costs of this article were defrayed in part by page charge patibility complex; GST, glutathione S-transferase; TCR, T cell re- ceptor; ECDI, 1-ethyl-3-(39-dimethylaminopropyl) carbodiimide; payment. This article must therefore be hereby marked ‘‘advertisement’’ in MAPK, mitogen-activated protein kinase. accordance with 18 U.S.C. §1734 solely to indicate this fact. †Present address: Centro de Investigaciones Biolo´gicas, Madrid, Spain. PNAS is available online at www.pnas.org. §To whom reprint requests should be addressed. e-mail: [email protected]. 622 Downloaded by guest on September 25, 2021 Immunology: Amsen et al. Proc. Natl. Acad. Sci. USA 96 (1999) 623 been documented for members of the Nur77 family of orphan purified and unfractionated thymocytes and yielded similar steroid receptors. Nur77 is expressed in an immediate early results. fashion in response to apoptotic TCR triggering in thymocytes In Vitro Deletion Assay. Thymocytes were brought into (28, 29), and transgenic expression of Nur77 or its relative single-cell suspension in complete medium. Thymocytes (2– Nor1 in thymocytes leads to massive apoptosis (30). Moreover, 4 3 105) were cultured in 96-well flat-bottom plates overnight mice expressing a transgene that encodes dominant negative with 1 3 105 APCs. After 14–18 hr, cells were harvested and Nur77 lacking its transactivation domain exhibit severely im- prepared for flow cytometry analysis. Fixation of DCEK cells paired ability to induce clonal deletion (31, 32), whereas was carried out as described (47). positive selection proceeds undisturbed. These findings docu- Flow Cytometry. Cells were resuspended in PBS containing ment that transactivation of as-yet-unidentified pro-apoptotic 0.5% BSA and 0.02% sodium azide and incubated with target genes by Nur77 and closely related factors is a prereq- antibodies on ice for 30 min. Incubation with biotin-labeled uisite step in thymocyte clonal deletion but not in positive anti-CD69 (PharMingen) was followed by incubation with selection. The precise identity of these pro-apoptotic target avidin–fluorescein isothiocyanate (FITC) (Sigma). For mea- genes is currently unclear. It has been suggested that Nur77 surement of deletion, thymocytes were (after surface staining m y functions upstream from the CD95 ligand–CD95 interaction. for CD8 expression) exposed to 1 g ml ethidium bromide 3 4 3 5 Thus, the massive apoptosis occurring in thymuses from Nur77 (Sigma) as described (48). Cells (1 10 to 2.5 10 per transgenic mice was reported to be reduced by introduction of sample) were analyzed on a Becton Dickinson FACSCAN by the gld mutation (30). However, these results were recently using LYSIS 2 software. APCs were segregated electronically on contradicted by another study (33) in which such rescue was the basis of forward scatter/side scatter pattern. not detected. As expression of dominant negative Nur77 yields Stimulation of Cells and Separation from APCs. APC lines a much more pronounced block in negative selection (31, 32) were grown
Recommended publications
  • CD27 CD70 Is Downregulated by Interaction With
    CD70 Is Downregulated by Interaction with CD27 Mirela Kuka, Ivana Munitic, Maria Letizia Giardino Torchia and Jonathan D. Ashwell This information is current as of September 25, 2021. J Immunol 2013; 191:2282-2289; Prepublished online 2 August 2013; doi: 10.4049/jimmunol.1300868 http://www.jimmunol.org/content/191/5/2282 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/06/jimmunol.130086 Material 8.DC1 References This article cites 35 articles, 19 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/191/5/2282.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CD70 Is Downregulated by Interaction with CD27 Mirela Kuka,1,2 Ivana Munitic,1,3 Maria Letizia Giardino Torchia, and Jonathan D. Ashwell Engagement of the receptor CD27 by CD70 affects the magnitude and quality of T cell responses in a variety of infection models, and exaggerated signaling via this pathway results in enhanced immune responses and autoimmunity.
    [Show full text]
  • 7432.Full.Pdf
    CD27 Is Acquired by Primed B Cells at the Centroblast Stage and Promotes Germinal Center Formation This information is current as Yanling Xiao, Jenny Hendriks, Petra Langerak, Heinz Jacobs of September 29, 2021. and Jannie Borst J Immunol 2004; 172:7432-7441; ; doi: 10.4049/jimmunol.172.12.7432 http://www.jimmunol.org/content/172/12/7432 Downloaded from References This article cites 43 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/172/12/7432.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CD27 Is Acquired by Primed B Cells at the Centroblast Stage and Promotes Germinal Center Formation1 Yanling Xiao, Jenny Hendriks, Petra Langerak, Heinz Jacobs, and Jannie Borst2 Studies on human B cells have featured CD27 as a marker and mediator of the B cell response.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Contributions of CD27 and relatives to the specific immune response Hendriks, J.A. Publication date 2004 Link to publication Citation for published version (APA): Hendriks, J. A. (2004). Contributions of CD27 and relatives to the specific immune response. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 Chapter 5 CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. Yanling Xiao, Jenny Hendriks, Petra Langerak, Heinz Jacobs and Jannie Borst The Journal of Immunology 2004 172: 7432-7441 67 68 CD27 Is Acquired by Primed B Cells at the Centroblast Stage and Promotes Germinal Center Formation1 Yanling Xiao, Jenny Hendriks, Petra Langerak, Heinz Jacobs, and Jannie Borst2 Studies on human B cells have featured CD27 as a marker and mediator of the B cell response.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Molecular basis of CD4+ T cell help for the cytotoxic T cell response Ahrends, T.J. Publication date 2018 Document Version Other version License Other Link to publication Citation for published version (APA): Ahrends, T. J. (2018). Molecular basis of CD4+ T cell help for the cytotoxic T cell response. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:08 Oct 2021 CURRICULUM VITAE LIST OF PUBLICATIONS & WORD OF THANKS ADDENDUM CURRICULUM VITAE Tomasz Ahrends was born on December 30th, 1988 in Gdańsk (Poland). In 2010 he obtained Bachelor’s degree in Biotechnology at the Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk. Subsequently, he continued his education with a Master’s degree in Biotechnology, which he fnished in 2012.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/27226 Please be advised that this information was generated on 2021-09-26 and may be subject to change. 1142 G. D. Keizer, J. Borst, C. G. Figdor et al Eur. J. Immunol. 1985.15: 1142-1147 Gerrit D. Keizer0, Jannie Borst°, Biochemical and functional characteristics of the Carl G. Figdor0 , Hergen Spits0 , Frank MiedemaA, Cox TerhorstD human leukocyte membrane antigen family LFA-1, and Jan E. De Vries0 Mo-1 and pl50,95* Division of Immunology, The Netherlands Cancer Institute (Antoni The human leukocyte function-associated (LFA-1) antigen, the monocyte differentia­ van Leeuwenhoek Huis)0 , Amsterdam, tion antigen Mo-1 which is characterized as the C3bi receptor and the glycoprotein Central Laboratory of the Netherlands p i50,95 are characterized biochemically. Immunoprecipitations carried out with 6 Red Cross Blood Transfusion ServiceA, different monoclonal antibodies (mAb) against LFA-1 indicated that four mAb (SPV- Amsterdam and Dana-Farber Cancer Ll, SPV-L5, SPV-L7 and SPV-L11) were directed against the a chain, whereas mAb Institute0, Boston CLB54 and MHM-23 were found to react with the common |3 chain of LFA-1, Mo-1 and p 150,95. LFA-1 and Mo-1 expressed on KG-1 cells or lymphocytes, monocytes and granulocytes from one donor were homogeneous. Interestingly the a chain of pl50,95 showed heterogeneity. The molecular weight of the a chain expressed on monocytes was consistently higher than that of the a chain on granulocytes.
    [Show full text]
  • Radio-Immunotherapy in Cancer
    Radio-immunotherapy in cancer Inge Verbrugge The Netherlands Cancer Institute Radiotherapy • One of three /four main treatment modalities • Used in ~50% of cancer patients • Administered locally: minimizes normal tissue damage Effects of radiotherapy on tumor cell clonogenicity DNA damage 1. (Irreversible) cell cycle arrest senescence 2. Death due to mitotic catastrophe 3. Apoptotic cell death Radiotherapy alone may not be curative RADIOTHERAPY Curing metastasized cancer with systemic therapy • Immunotherapy - Eliciting systemic anti-tumor cytotoxic T cell (CTL) responses (CTL) MHC I Radiotherapy: Clinical systemic (=‘abscopal’) responses Pre-radiotherapy Post-radiotherapy ‘Abscopal Effect’ Ohba K et al., Gut 1998;43:575-577 Radiotherapy may support local and systemic tumor immunity Radiotherapy may support local and systemic tumor immunity Co-stimulation ‘abscopal effect’ Established tumors evade immune responses Bottlenecks 1. Lack of recognizable ‘tumor’ antigens 2. Lack of ‘danger signals’ 3. Lack of T cell infiltration into tumor 4. Inhibition CTL activity by tumor / tumor micro-environment Antibodies modulating T cell responses Ipilimumab Pembrolizumab Nivolumab Mellman I et al., Nature 2011;480:480-489 Antibodies modulating T cell responses Ipilimumab Pembrolizumab Nivolumab Mellman I et al., Nature 2011;480:480-489 Antibody-based immunotherapy: local and systemic effects Co-inhibitory receptor Co-stimulatory receptor Radio-immunotherapy: Combining radiotherapy with immunotherapy Blocking coinhibition α-PD-1, α-CD137 Costimulation Radio-immunotherapy promise: Achieving SYSTEMIC synergism by combining LOCAL radiotherapy with immune-modulation Radio-immunotherapy: opportunities Blocking coinhibition α-PD-1, α-CD137 Costimulation 1. Inducing curative local combined responses 2. Achieving systemic combined effect by promoting relevant immune responses Radio-immunotherapy induces local tumor control α-PD-1 α-PD-1, α-CD137 α-CD137 Achieving systemic combined effects by radio-immunotherapy Blocking coinhibition α-PD-1, α-CD137 Costimulation 2.
    [Show full text]
  • Effector T Cell Pool + CD8 Costimulation to Promote
    CD8+ T Cells Produce the Chemokine CXCL10 in Response to CD27/CD70 Costimulation To Promote Generation of the CD8 + Effector T Cell Pool This information is current as of October 2, 2021. Victor Peperzak, Elise A. M. Veraar, Yanling Xiao, Nikolina Babala, Klaske Thiadens, Marieke Brugmans and Jannie Borst J Immunol 2013; 191:3025-3036; Prepublished online 12 August 2013; Downloaded from doi: 10.4049/jimmunol.1202222 http://www.jimmunol.org/content/191/6/3025 Supplementary http://www.jimmunol.org/content/suppl/2013/08/12/jimmunol.120222 http://www.jimmunol.org/ Material 2.DC1 References This article cites 56 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/191/6/3025.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CD8+ T Cells Produce the Chemokine CXCL10 in Response to CD27/CD70 Costimulation To Promote Generation of the CD8+ Effector T Cell Pool Victor Peperzak,1 Elise A.
    [Show full text]
  • Pulling the Strings on Anti-Cancer Immunity Issue Date: 2017-02-07
    Cover Page The handle http://hdl.handle.net/1887/45885 holds various files of this Leiden University dissertation. Author: Kersten, K. Title: Pulling the strings on anti-cancer immunity Issue Date: 2017-02-07 Pulling the strings on anti-cancer immunity Kelly Kersten About the cover: Based on the research described in this thesis and inspired by the song ‘Master of Puppets’ by Metallica, I envision cancer as a puppet-master restraining the protective function of the immune system. Part of my PhD work has focused on how tumor cells manipulate the function of immune cells to favor their spread throughout the body. In other words, cancer is pulling the strings on anti-cancer immunity to prevent destruction by the immune system. With the recent advances of combinatorial anti-cancer therapies (including immunomodulatory drugs) we can gain back control over the strings on anti-cancer immunity. Cover design: Kelly Kersten & Tomasz Ahrends Artwork: Tomasz Ahrends Lay-out: Jasper Koning ([email protected]) Printing: Gildeprint, Enschede ISBN: 978-94-6233-496-0 The printing of the thesis was financially supported by the NKI-AVL. ©2016 by Kelly Kersten. All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without prior permission of the author and the publisher holding the copyright of the articles. The research described in this thesis was performed at the Divisions of Molecular Biology and Immunology of the Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, The Netherlands, and was supported by the Dutch Cancer Society (KWF2011-5004) and the European Research Council (InflaMet 615300).
    [Show full text]
  • Tetanus Toxoid Endo-F
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/27226 Please be advised that this information was generated on 2021-09-25 and may be subject to change. 1142 G. D. Keizer, J. Borst, C. G. Figdor et al Eur. J. Immunol. 1985.15: 1142-1147 Gerrit D. Keizer0, Jannie Borst°, Biochemical and functional characteristics of the Carl G. Figdor0 , Hergen Spits0 , Frank MiedemaA, Cox TerhorstD human leukocyte membrane antigen family LFA-1, and Jan E. De Vries0 Mo-1 and pl50,95* Division of Immunology, The Netherlands Cancer Institute (Antoni The human leukocyte function-associated (LFA-1) antigen, the monocyte differentia­ van Leeuwenhoek Huis)0 , Amsterdam, tion antigen Mo-1 which is characterized as the C3bi receptor and the glycoprotein Central Laboratory of the Netherlands p i50,95 are characterized biochemically. Immunoprecipitations carried out with 6 Red Cross Blood Transfusion ServiceA, different monoclonal antibodies (mAb) against LFA-1 indicated that four mAb (SPV- Amsterdam and Dana-Farber Cancer Ll, SPV-L5, SPV-L7 and SPV-L11) were directed against the a chain, whereas mAb Institute0, Boston CLB54 and MHM-23 were found to react with the common |3 chain of LFA-1, Mo-1 and p 150,95. LFA-1 and Mo-1 expressed on KG-1 cells or lymphocytes, monocytes and granulocytes from one donor were homogeneous. Interestingly the a chain of pl50,95 showed heterogeneity. The molecular weight of the a chain expressed on monocytes was consistently higher than that of the a chain on granulocytes.
    [Show full text]
  • Differentiation Antigens of Human Hemopoietic Cells: Patterns of Reactivity of Two Monoclonal Antibodies1
    [CANCER RESEARCH 43, 4812-4815, October 1983] Differentiation Antigens of Human Hemopoietic Cells: Patterns of Reactivity of Two Monoclonal Antibodies1 Silvana Passano,2 Lisabianca Bùttero, Jeffrey Faust, Massimo Trucco, Antonio Palumbo, Luigi Pegoraro, Beverly Lange, Colette Brezin, Jannie Borst, Cox Terhorst, and Giovanni Rovera The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104 [S. P., L. B., J. F., M. T., A. P., G. R.]; The Institute of Internal Medicine, University of Turin, Italy [L. P.]; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 [B. L); and The Dana-Farber Cancer Institute, Boston, Massachusetts 02115 [C. B., J. B., C. T.] ABSTRACT terized the surface antigens recognized by 2 monoclonal anti bodies generated by immunizing mice with AML cells. These Two mouse anti-human monoclonal antibodies (S3.13 and antibodies are reactive with a large number of leukemic cell lines S5.7) raised against cells of acute myelogenous leukemia were and have a complex distribution on hemopoietic cells. found to react with antigens expressed on the surface of subsets of monocytes and lymphocytes. MATERIALS AND METHODS S3.13 precipitates a peptide of M, 29,000, and S5.7 precipi tates a peptide of M, 20,000 present on the surface of all the cell Hemopoietic Tissues. Normal peripheral blood and marrow for these types tested. These two surface antigens were distributed on investigations were obtained from healthy volunteer donors and ap proved by the Committee for the Protection of Human Subjects of The discrete subpopulations of normal hemopoietic cells. The anti Wistar Institute. bodies reacted with all (S5.7) or a subpopulation (S3.13) of Mononuclear cells were separated by FicolhHypaque (D = 1.078) peripheral blood T-lymphocytes, and with a subset of monocytes.
    [Show full text]
  • GPA33: a Marker to Identify Stable Human Regulatory T Cells
    The Journal of Immunology GPA33: A Marker to Identify Stable Human Regulatory T Cells Rianne Opstelten,* Sander de Kivit,†,1 Manon C. Slot,* Maartje van den Biggelaar,‡ Dorota Iwaszkiewicz-Grzes,x Mateusz Gliwin´ski,x Andrew M. Scott,{ Bianca Blom,‖ Piotr Trzonkowski,x Jannie Borst,†,1 Eloy Cuadrado,* and Derk Amsen* FOXP3-expressing regulatory T (Treg) cells safeguard immunological tolerance. Treg cells can be generated during thymic development (called thymic Treg [tTreg] cells) or derived from mature conventional CD4+ T cells that underwent TGF-b– mediated conversion in the periphery (called peripheral Treg [pTreg] cells). Murine studies have shown that tTreg cells exhibit strong lineage fidelity, whereas pTreg cells can revert into conventional CD4+ T cells. Their stronger lineage commitment makes tTreg cells the safest cells to use in adoptive cell therapy, increasingly used to treat autoimmune and inflammatory disorders. Markers to distinguish human tTreg cells from pTreg cells have, however, not been found. Based on combined proteomic and transcriptomic approaches, we report that the Ig superfamily protein GPA33 is expressed on a subset of human Treg cells. GPA33 is acquired late during tTreg cell development but is not expressed on TGF-b–induced Treg cells. GPA33 identifies Treg cells in human blood that lack the ability to produce effector cytokines (IL-2, IFN-g, IL-17), regardless of differentiation stage. GPA33high Treg cells universally express the transcription factor Helios that preferentially marks tTreg cells and can robustly and stably be expanded in vitro even without rapamycin. Expanded GPA33high Treg cells are suppressive, unable to produce proinflammatory cytokines, and exhibit the epigenetic modifications of the FOXP3 gene enhancer CNS2, necessary for indelible expression of this critical transcription factor.
    [Show full text]
  • CD70 As an Actionable Immunotherapeutic Target in Recurrent Glioblastoma
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446670; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Hitting more birds with one stone: CD70 as an actionable immunotherapeutic target in recurrent glioblastoma 1* 2* 1 2 1 2 Seyfrid M , Maich W , Shaikh MV ,Tatari N , Upreti D , Piyasena D , Subapanditha M1, Savage N2, McKenna D1, Kuhlmann L 3, Khoo A3, Salim SK2, Bassey-Archibong B1, Gwynne W1, Chokshi C 2, Brown K4, Murtaza N2, Bakhshinyan D2, Vora P1, Venugopal C1, Moffat J4, Singh SK1,2. *These authors made equal contributions to this paper Departments of 1Surgery, 2Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada 3Princess Margaret’s Hospital, Toronto, Ontario, M5S 3E1, Canada 4Donnelly Centre, Department of Molecular Genetics, University of Toronto, Ontario, Canada RUNNING TITLE CD70 as an immunotherapeutic for recurrent GBM KEYWORDS: Glioblastoma, CD70, Immunotherapy, CAR-T CONFLICTS OF INTEREST: This work was partly funded by Longbow Therapeutics (company no longer in existence) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446670; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]