Tissue Distributionof Human Y$ T Cells: No

Total Page:16

File Type:pdf, Size:1020Kb

Tissue Distributionof Human Y$ T Cells: No 1012 J Clin Pathol 1991;44:1012-1017 Tissue distribution of human y$ T cells: No evidence for general epithelial tropism J Clin Pathol: first published as 10.1136/jcp.44.12.1012 on 1 December 1991. Downloaded from T M Vroom, G Scholte, F Ossendorp, J Borst Abstract peripheral lymphoid organs."6 More than In man and mice only a small proportion 90% of T cells in the murine epidermis, of T cells in the peripheral lymphoid however, express TCR y6,78 while y6 T cells compartment express the y8T cell recep- have also been reported to constitute a very tor (TCR). In mice, however, yB T cells large proportion of T cells in the epithelia of comprise the predominant population at reproductive organs,9 tongue,9 and intestine.'" particular epithelial sites-in epidermis Strikingly, certain Vy and V6 gene segments and epithelia of intestine, reproductive are expressed predominantly in different organs, and tongue. The distribution of murine tissues. Moreover, the diversity within y5 T cells in normal human tissues was the y6 T cell population differs greatly, depen- investigated, paying particular attention ding on the tissue. The epidermal y6 T cells to epithelial layers. In all lymphatic express V5/J1/Cy1 and VI/D2/J2/CQ encoded organs and in epithelia of a wide variety receptor chains" and can be considered clonal, of non-lymphatic organs, including the likewise the y3 T cell population in repro- respiratory tract, male and female re- ductive organs and tongue that expresses productive organs and tongue, y5 T cells V6/J1/Cy1 and V1/D2/J2/C6 encoded recep- constituted less than 5% of total T cells, tor chains.912 In intestinal epithelium" '3 and with the remainder expressing TCR 4p. in peripheral lymphoid organs'4 a large TCR The only exception was the intestine, yc repertoire exists that mainly depends on where yJ T cells were preferentially junctional diversity, while Vy7 and Vy4 gene situated in the columnar epithelium of segments are used preferentially at these re- the crypts, rather than in the lamina spective sites. Due to their specific localisation propria. in certain murine epithelia, their limited It is concluded, therefore, that human receptor diversity at two of these sites, and y5 T cells do not display a general epi- their potential specificity for the evolutionary thelial tropism and are, in terms of conserved heat shock proteins,"5 it has been relative numbers, no more able than a4 postulated that y6 T cells may have a special- T cells to out ised role in the carry continuous surveil- continuous immunosurveil- http://jcp.bmj.com/ lance of the immune system against in- lance of epithelia.""'8 fection or transformation in epithelia. yv In man TCR y6 bearing cells constitute less T cells may, however, have a specialised than 2% of CD3 positive thymocytes and less function in the epithelium of the intes- than 1-20% of peripheral blood T cells'920 In tinal tract. lymphoid organs y6 T cells constitute less than 5% of the T lymphocytes.202' With res- pect to the epithelial localisation of human y6 on October 1, 2021 by guest. Protected copyright. Two types of T cell antigen receptors (TCRs) T cells one clear difference with the murine are now known, the a, and the yb system is already apparent: in human skin y6 Department of heterodimer, which are expressed at the cell T cells are not the predominant T cell popula- Pathology, Rotterdam surface in association with the CD3 molecular tion, nor in epidermis nor dermis.2022 In intes- Cancer Center, complex.'` Each TCR chain contains a vari- tine the situation seems more comparable be- Rotterdam, The Netherlands able and a constant domain, encoded by dif- tween man and mice, with human yc T cells T M Vroom ferent gene segments V, (D), J and C that localising preferentially in the epithelium Department of combine by rearrangement during T cell dif- rather than in the lamina propria.2'2' Pathology, Slotervaart ferentiation. Although the y and loci We have quantitated y6 and ac, T cells in a Hospital, Amsterdam together contain fewer different of T M Vroom gene segments great variety normal human lymphatic and G Scholte than the a and loci, the potential repertoire non-lymphatic tissues, including the res- Division of of TCR yb is very large as one gene can piratory system, the male and female uro- Immunology, The incorporate more than one D segment,4 genital tract, and the tongue, which had not Netherlands Cancer which, with the addition of nucleotides at the previously been investigated. Special atten- Institute, Amsterdam F Ossendorp junctions, gives rise to a great variety of tion was paid to the various epithelial layers J Borst sequences.' At present, it is not clear what within these tissues to shed light on the pos- Correspondence to: contribution yb T lymphocytes make to the sible function of human yv T cells in epithelial Jannie Borst, Division of immune system. They may complement T surveillance. Immunology, The a# Netherlands Cancer cells in terms of antigenic specificities, func- Institute, Plesmnanan 121, tional capabilities, or sites of action within the 1066 CX Amsterdam, The Netherlands. body. Methods Accepted for publication In mice, yb T cells form a minority of the Normal tissues were obtained from necropsies 12 June 1991 total T cell population in the thymus and or from normal parts of surgical specimens. Tissue distribution ofhuman yv T cells 1013 Samples were derived from adults, unless was stained with haematoxylin and eosin for otherwise indicated. For every type of tissue histological examination. at least two samples from different subjects Monoclonal antibodies used for staining tis- were investigated. The following tissues were sues were: Identi-T #F1 (anti-TCR a)27 from J Clin Pathol: first published as 10.1136/jcp.44.12.1012 on 1 December 1991. Downloaded from examined: (1) lymphatic and haemopoietic T cell Sciences, Cambridge, Massachusetts, organs (a) thymus, fetal (12 weeks pregnancy) used at 2 Mg/ml; anti-TCR yb-l (hybridoma and neonatal, (b) lymph node, neonatal and name 1 F2, anti-TCR yb),'9 used at 2-4 adult, (c) tonsil, infantile, (d) spleen, (e) bone Mg/ml; CLB-T3 (anti-CD3) from Dr R van marrow, (f) liver, fetal (12 weeks pregnancy), Lier, Central Laboratory of the Red Cross neonatal and adult; (2) skin, fetal and adult; Blood Transfusion Service, Amsterdam, The (3) digestive tract (a) tongue, (b) salivary Netherlands, used at 5 pg/ml. Staining with glands, (c) oesophagus, (d) stomach, (e) small anti-TCR monoclonal antibodies was done intestine, (f) large intestine, (g) appendix; (4) according to the alkaline phosphatase-anti- urogenital tract (a) kidney, (b) ureter, (c) alkaline phosphatase method, with other urethra, (d) vagina, (e) uterus and cervix, (f) monoclonal antibodies according to the alka- testis and epididymis; (5) respiratory tract (a) line phosphatase method. Anti-TCR mono- nasal cavity, (b) trachea, (c) lung. clonal antibodies were tested for reactivity on Small tissue blocks were snap-frozen and cytocentrifuge preparations of TCR a,B stored in liquid nitrogen. Sections (8 gm positive and TCR yb positive T cell clones.'9 thick) were cut on a Reichert-Jung 2800 Frigocut Cryostat (Reichert-Jung GmbH, Nussloch, Germany), air dried, and fixed in acetone for 10 minutes. Fixation and all sub- Results sequent washes and incubations were perfor- To determine the proportion ofT lymphocytes med at room temperature. After fixation, sec- that expressed either TCR axf or TCR yb, serial tions were washed three times in phosphate sections were stained with anti-TCR 4a#, anti- buffered saline (PBS), pH 7-2. For the im- CD3, and anti-TCR yb monoclonal antibodies, munoalkaline phosphatase detection method in this order. Only tissue sections that showed sections were incubated with monoclonal no evidence ofinflammation were included, but antibody, diluted in PBS with 1% bovine intestine, lung, and endometrium and vagina serum albumin (BSA) (PBS/BSA), washed always show more or less reactive lesions. three times in PBS and incubated with alka- line phosphatase conjugated rabbit anti- LYMPHATIC AND HAEMOPOIETIC ORGANS mouse immunoglobulin (RaMIg-AP, Dako- In neonatal and fetal thymus less than 5% of patts D314, Glostrup, Denmark), diluted 1 in CD3 positive cells expressed TCR y6. In 20 in PBS with 10% normal human serum. accordance with published data,20 yb T cells For the alkaline -phosphatase-anti-alkaline were found preferentially in the juxta- phosphatase detection method, sections were medullary region of the cortex and in the first incubated with undiluted normal rabbit medulla and rarely present in the outer cortex. serum, followed by incubation with mono- No preferential association of yb T cells with http://jcp.bmj.com/ clonal antibody and then unconjugated rabbit Hassall's corpuscles was found. anti-mouse immunoglobulin (Dako Z259), In lymph nodes, tonsil, and Peyer's patches diluted 1 in 25 in PBS/BSA with 10% normal less than 5% of CD3 positive cells expressed human serum, as second step reagent, fol- TCR yb. In contrast to a,B T cells, yb T cells lowed by washing with PBS and incubation were not found within the lymph follicles. Of with alkaline phosphatase-anti-alkaline phos- the numerous T cells present within the lym- phatase complex (Dako D65 1), diluted 1 in 40 pho-epithelial area of the tonsillar crypts, less on October 1, 2021 by guest. Protected copyright. in PBS/BSA. Subsequently, sections were than 5% expressed TCR yb. washed three times in TRIS-buffered saline, In spleen yb T cells were again less than 5% pH 7-6, and incubated with staining solution of total CD3 positive cells in the periarteriolar for 30 minutes in the dark.
Recommended publications
  • CD27 CD70 Is Downregulated by Interaction With
    CD70 Is Downregulated by Interaction with CD27 Mirela Kuka, Ivana Munitic, Maria Letizia Giardino Torchia and Jonathan D. Ashwell This information is current as of September 25, 2021. J Immunol 2013; 191:2282-2289; Prepublished online 2 August 2013; doi: 10.4049/jimmunol.1300868 http://www.jimmunol.org/content/191/5/2282 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/06/jimmunol.130086 Material 8.DC1 References This article cites 35 articles, 19 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/191/5/2282.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CD70 Is Downregulated by Interaction with CD27 Mirela Kuka,1,2 Ivana Munitic,1,3 Maria Letizia Giardino Torchia, and Jonathan D. Ashwell Engagement of the receptor CD27 by CD70 affects the magnitude and quality of T cell responses in a variety of infection models, and exaggerated signaling via this pathway results in enhanced immune responses and autoimmunity.
    [Show full text]
  • 7432.Full.Pdf
    CD27 Is Acquired by Primed B Cells at the Centroblast Stage and Promotes Germinal Center Formation This information is current as Yanling Xiao, Jenny Hendriks, Petra Langerak, Heinz Jacobs of September 29, 2021. and Jannie Borst J Immunol 2004; 172:7432-7441; ; doi: 10.4049/jimmunol.172.12.7432 http://www.jimmunol.org/content/172/12/7432 Downloaded from References This article cites 43 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/172/12/7432.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CD27 Is Acquired by Primed B Cells at the Centroblast Stage and Promotes Germinal Center Formation1 Yanling Xiao, Jenny Hendriks, Petra Langerak, Heinz Jacobs, and Jannie Borst2 Studies on human B cells have featured CD27 as a marker and mediator of the B cell response.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Contributions of CD27 and relatives to the specific immune response Hendriks, J.A. Publication date 2004 Link to publication Citation for published version (APA): Hendriks, J. A. (2004). Contributions of CD27 and relatives to the specific immune response. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 Chapter 5 CD27 is acquired by primed B cells at the centroblast stage and promotes germinal center formation. Yanling Xiao, Jenny Hendriks, Petra Langerak, Heinz Jacobs and Jannie Borst The Journal of Immunology 2004 172: 7432-7441 67 68 CD27 Is Acquired by Primed B Cells at the Centroblast Stage and Promotes Germinal Center Formation1 Yanling Xiao, Jenny Hendriks, Petra Langerak, Heinz Jacobs, and Jannie Borst2 Studies on human B cells have featured CD27 as a marker and mediator of the B cell response.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Molecular basis of CD4+ T cell help for the cytotoxic T cell response Ahrends, T.J. Publication date 2018 Document Version Other version License Other Link to publication Citation for published version (APA): Ahrends, T. J. (2018). Molecular basis of CD4+ T cell help for the cytotoxic T cell response. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:08 Oct 2021 CURRICULUM VITAE LIST OF PUBLICATIONS & WORD OF THANKS ADDENDUM CURRICULUM VITAE Tomasz Ahrends was born on December 30th, 1988 in Gdańsk (Poland). In 2010 he obtained Bachelor’s degree in Biotechnology at the Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk. Subsequently, he continued his education with a Master’s degree in Biotechnology, which he fnished in 2012.
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/27226 Please be advised that this information was generated on 2021-09-26 and may be subject to change. 1142 G. D. Keizer, J. Borst, C. G. Figdor et al Eur. J. Immunol. 1985.15: 1142-1147 Gerrit D. Keizer0, Jannie Borst°, Biochemical and functional characteristics of the Carl G. Figdor0 , Hergen Spits0 , Frank MiedemaA, Cox TerhorstD human leukocyte membrane antigen family LFA-1, and Jan E. De Vries0 Mo-1 and pl50,95* Division of Immunology, The Netherlands Cancer Institute (Antoni The human leukocyte function-associated (LFA-1) antigen, the monocyte differentia­ van Leeuwenhoek Huis)0 , Amsterdam, tion antigen Mo-1 which is characterized as the C3bi receptor and the glycoprotein Central Laboratory of the Netherlands p i50,95 are characterized biochemically. Immunoprecipitations carried out with 6 Red Cross Blood Transfusion ServiceA, different monoclonal antibodies (mAb) against LFA-1 indicated that four mAb (SPV- Amsterdam and Dana-Farber Cancer Ll, SPV-L5, SPV-L7 and SPV-L11) were directed against the a chain, whereas mAb Institute0, Boston CLB54 and MHM-23 were found to react with the common |3 chain of LFA-1, Mo-1 and p 150,95. LFA-1 and Mo-1 expressed on KG-1 cells or lymphocytes, monocytes and granulocytes from one donor were homogeneous. Interestingly the a chain of pl50,95 showed heterogeneity. The molecular weight of the a chain expressed on monocytes was consistently higher than that of the a chain on granulocytes.
    [Show full text]
  • Radio-Immunotherapy in Cancer
    Radio-immunotherapy in cancer Inge Verbrugge The Netherlands Cancer Institute Radiotherapy • One of three /four main treatment modalities • Used in ~50% of cancer patients • Administered locally: minimizes normal tissue damage Effects of radiotherapy on tumor cell clonogenicity DNA damage 1. (Irreversible) cell cycle arrest senescence 2. Death due to mitotic catastrophe 3. Apoptotic cell death Radiotherapy alone may not be curative RADIOTHERAPY Curing metastasized cancer with systemic therapy • Immunotherapy - Eliciting systemic anti-tumor cytotoxic T cell (CTL) responses (CTL) MHC I Radiotherapy: Clinical systemic (=‘abscopal’) responses Pre-radiotherapy Post-radiotherapy ‘Abscopal Effect’ Ohba K et al., Gut 1998;43:575-577 Radiotherapy may support local and systemic tumor immunity Radiotherapy may support local and systemic tumor immunity Co-stimulation ‘abscopal effect’ Established tumors evade immune responses Bottlenecks 1. Lack of recognizable ‘tumor’ antigens 2. Lack of ‘danger signals’ 3. Lack of T cell infiltration into tumor 4. Inhibition CTL activity by tumor / tumor micro-environment Antibodies modulating T cell responses Ipilimumab Pembrolizumab Nivolumab Mellman I et al., Nature 2011;480:480-489 Antibodies modulating T cell responses Ipilimumab Pembrolizumab Nivolumab Mellman I et al., Nature 2011;480:480-489 Antibody-based immunotherapy: local and systemic effects Co-inhibitory receptor Co-stimulatory receptor Radio-immunotherapy: Combining radiotherapy with immunotherapy Blocking coinhibition α-PD-1, α-CD137 Costimulation Radio-immunotherapy promise: Achieving SYSTEMIC synergism by combining LOCAL radiotherapy with immune-modulation Radio-immunotherapy: opportunities Blocking coinhibition α-PD-1, α-CD137 Costimulation 1. Inducing curative local combined responses 2. Achieving systemic combined effect by promoting relevant immune responses Radio-immunotherapy induces local tumor control α-PD-1 α-PD-1, α-CD137 α-CD137 Achieving systemic combined effects by radio-immunotherapy Blocking coinhibition α-PD-1, α-CD137 Costimulation 2.
    [Show full text]
  • Effector T Cell Pool + CD8 Costimulation to Promote
    CD8+ T Cells Produce the Chemokine CXCL10 in Response to CD27/CD70 Costimulation To Promote Generation of the CD8 + Effector T Cell Pool This information is current as of October 2, 2021. Victor Peperzak, Elise A. M. Veraar, Yanling Xiao, Nikolina Babala, Klaske Thiadens, Marieke Brugmans and Jannie Borst J Immunol 2013; 191:3025-3036; Prepublished online 12 August 2013; Downloaded from doi: 10.4049/jimmunol.1202222 http://www.jimmunol.org/content/191/6/3025 Supplementary http://www.jimmunol.org/content/suppl/2013/08/12/jimmunol.120222 http://www.jimmunol.org/ Material 2.DC1 References This article cites 56 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/191/6/3025.full#ref-list-1 Why The JI? Submit online. by guest on October 2, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CD8+ T Cells Produce the Chemokine CXCL10 in Response to CD27/CD70 Costimulation To Promote Generation of the CD8+ Effector T Cell Pool Victor Peperzak,1 Elise A.
    [Show full text]
  • Pulling the Strings on Anti-Cancer Immunity Issue Date: 2017-02-07
    Cover Page The handle http://hdl.handle.net/1887/45885 holds various files of this Leiden University dissertation. Author: Kersten, K. Title: Pulling the strings on anti-cancer immunity Issue Date: 2017-02-07 Pulling the strings on anti-cancer immunity Kelly Kersten About the cover: Based on the research described in this thesis and inspired by the song ‘Master of Puppets’ by Metallica, I envision cancer as a puppet-master restraining the protective function of the immune system. Part of my PhD work has focused on how tumor cells manipulate the function of immune cells to favor their spread throughout the body. In other words, cancer is pulling the strings on anti-cancer immunity to prevent destruction by the immune system. With the recent advances of combinatorial anti-cancer therapies (including immunomodulatory drugs) we can gain back control over the strings on anti-cancer immunity. Cover design: Kelly Kersten & Tomasz Ahrends Artwork: Tomasz Ahrends Lay-out: Jasper Koning ([email protected]) Printing: Gildeprint, Enschede ISBN: 978-94-6233-496-0 The printing of the thesis was financially supported by the NKI-AVL. ©2016 by Kelly Kersten. All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without prior permission of the author and the publisher holding the copyright of the articles. The research described in this thesis was performed at the Divisions of Molecular Biology and Immunology of the Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, The Netherlands, and was supported by the Dutch Cancer Society (KWF2011-5004) and the European Research Council (InflaMet 615300).
    [Show full text]
  • Tetanus Toxoid Endo-F
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/27226 Please be advised that this information was generated on 2021-09-25 and may be subject to change. 1142 G. D. Keizer, J. Borst, C. G. Figdor et al Eur. J. Immunol. 1985.15: 1142-1147 Gerrit D. Keizer0, Jannie Borst°, Biochemical and functional characteristics of the Carl G. Figdor0 , Hergen Spits0 , Frank MiedemaA, Cox TerhorstD human leukocyte membrane antigen family LFA-1, and Jan E. De Vries0 Mo-1 and pl50,95* Division of Immunology, The Netherlands Cancer Institute (Antoni The human leukocyte function-associated (LFA-1) antigen, the monocyte differentia­ van Leeuwenhoek Huis)0 , Amsterdam, tion antigen Mo-1 which is characterized as the C3bi receptor and the glycoprotein Central Laboratory of the Netherlands p i50,95 are characterized biochemically. Immunoprecipitations carried out with 6 Red Cross Blood Transfusion ServiceA, different monoclonal antibodies (mAb) against LFA-1 indicated that four mAb (SPV- Amsterdam and Dana-Farber Cancer Ll, SPV-L5, SPV-L7 and SPV-L11) were directed against the a chain, whereas mAb Institute0, Boston CLB54 and MHM-23 were found to react with the common |3 chain of LFA-1, Mo-1 and p 150,95. LFA-1 and Mo-1 expressed on KG-1 cells or lymphocytes, monocytes and granulocytes from one donor were homogeneous. Interestingly the a chain of pl50,95 showed heterogeneity. The molecular weight of the a chain expressed on monocytes was consistently higher than that of the a chain on granulocytes.
    [Show full text]
  • Differentiation Antigens of Human Hemopoietic Cells: Patterns of Reactivity of Two Monoclonal Antibodies1
    [CANCER RESEARCH 43, 4812-4815, October 1983] Differentiation Antigens of Human Hemopoietic Cells: Patterns of Reactivity of Two Monoclonal Antibodies1 Silvana Passano,2 Lisabianca Bùttero, Jeffrey Faust, Massimo Trucco, Antonio Palumbo, Luigi Pegoraro, Beverly Lange, Colette Brezin, Jannie Borst, Cox Terhorst, and Giovanni Rovera The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104 [S. P., L. B., J. F., M. T., A. P., G. R.]; The Institute of Internal Medicine, University of Turin, Italy [L. P.]; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 [B. L); and The Dana-Farber Cancer Institute, Boston, Massachusetts 02115 [C. B., J. B., C. T.] ABSTRACT terized the surface antigens recognized by 2 monoclonal anti bodies generated by immunizing mice with AML cells. These Two mouse anti-human monoclonal antibodies (S3.13 and antibodies are reactive with a large number of leukemic cell lines S5.7) raised against cells of acute myelogenous leukemia were and have a complex distribution on hemopoietic cells. found to react with antigens expressed on the surface of subsets of monocytes and lymphocytes. MATERIALS AND METHODS S3.13 precipitates a peptide of M, 29,000, and S5.7 precipi tates a peptide of M, 20,000 present on the surface of all the cell Hemopoietic Tissues. Normal peripheral blood and marrow for these types tested. These two surface antigens were distributed on investigations were obtained from healthy volunteer donors and ap proved by the Committee for the Protection of Human Subjects of The discrete subpopulations of normal hemopoietic cells. The anti Wistar Institute. bodies reacted with all (S5.7) or a subpopulation (S3.13) of Mononuclear cells were separated by FicolhHypaque (D = 1.078) peripheral blood T-lymphocytes, and with a subset of monocytes.
    [Show full text]
  • GPA33: a Marker to Identify Stable Human Regulatory T Cells
    The Journal of Immunology GPA33: A Marker to Identify Stable Human Regulatory T Cells Rianne Opstelten,* Sander de Kivit,†,1 Manon C. Slot,* Maartje van den Biggelaar,‡ Dorota Iwaszkiewicz-Grzes,x Mateusz Gliwin´ski,x Andrew M. Scott,{ Bianca Blom,‖ Piotr Trzonkowski,x Jannie Borst,†,1 Eloy Cuadrado,* and Derk Amsen* FOXP3-expressing regulatory T (Treg) cells safeguard immunological tolerance. Treg cells can be generated during thymic development (called thymic Treg [tTreg] cells) or derived from mature conventional CD4+ T cells that underwent TGF-b– mediated conversion in the periphery (called peripheral Treg [pTreg] cells). Murine studies have shown that tTreg cells exhibit strong lineage fidelity, whereas pTreg cells can revert into conventional CD4+ T cells. Their stronger lineage commitment makes tTreg cells the safest cells to use in adoptive cell therapy, increasingly used to treat autoimmune and inflammatory disorders. Markers to distinguish human tTreg cells from pTreg cells have, however, not been found. Based on combined proteomic and transcriptomic approaches, we report that the Ig superfamily protein GPA33 is expressed on a subset of human Treg cells. GPA33 is acquired late during tTreg cell development but is not expressed on TGF-b–induced Treg cells. GPA33 identifies Treg cells in human blood that lack the ability to produce effector cytokines (IL-2, IFN-g, IL-17), regardless of differentiation stage. GPA33high Treg cells universally express the transcription factor Helios that preferentially marks tTreg cells and can robustly and stably be expanded in vitro even without rapamycin. Expanded GPA33high Treg cells are suppressive, unable to produce proinflammatory cytokines, and exhibit the epigenetic modifications of the FOXP3 gene enhancer CNS2, necessary for indelible expression of this critical transcription factor.
    [Show full text]
  • CD70 As an Actionable Immunotherapeutic Target in Recurrent Glioblastoma
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446670; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Hitting more birds with one stone: CD70 as an actionable immunotherapeutic target in recurrent glioblastoma 1* 2* 1 2 1 2 Seyfrid M , Maich W , Shaikh MV ,Tatari N , Upreti D , Piyasena D , Subapanditha M1, Savage N2, McKenna D1, Kuhlmann L 3, Khoo A3, Salim SK2, Bassey-Archibong B1, Gwynne W1, Chokshi C 2, Brown K4, Murtaza N2, Bakhshinyan D2, Vora P1, Venugopal C1, Moffat J4, Singh SK1,2. *These authors made equal contributions to this paper Departments of 1Surgery, 2Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada 3Princess Margaret’s Hospital, Toronto, Ontario, M5S 3E1, Canada 4Donnelly Centre, Department of Molecular Genetics, University of Toronto, Ontario, Canada RUNNING TITLE CD70 as an immunotherapeutic for recurrent GBM KEYWORDS: Glioblastoma, CD70, Immunotherapy, CAR-T CONFLICTS OF INTEREST: This work was partly funded by Longbow Therapeutics (company no longer in existence) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.02.446670; this version posted June 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]