Conference Programme Renewableuk 2012 – Gala Dinner Our 34Th Flagship Annual Book Your Conference and Exhibition Table Now!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FEIAR Final 130312X
Report No: 5748A/106563 ENVIRONMENTAL IMPACT ASSESSMENT PROCESS: PROPOSED WIND ENERGY FACILITY NEAR COPPERTON, NORTHERN CAPE DEA REF. NO. 12/12/20/2099 FINAL ENVIRONMENTAL IMPACT ASSESSMENT REPORT March 2012 CONSULTANT PROPONENT Aurecon South Africa (Pty) Ltd Plan 8 Infinite Energy (Pty) Ltd PO Box 494 100 New Church St Cape Town Cape Town 8000 8001 Tel: (021) 527 6027 Tel: (021) 801 7272 Fax : (0 21 ) 527 9500 Fax : (021 ) 422 2621 Email: [email protected] Email : [email protected] Aurecon (2012) No unauthorised reproduction, copy or adaptation, in whole or in part, may be made. Proposed Wind Energy Facility near Copperton, Northern Cape: EIA Report Page i PROJECT DETAILS REFERENCE NO. 12/12/20/2099 PROJECT NO. 106563 TITLE FINAL ENVIRONMENTAL IMPACT ASSESSMENT REPORT AUTHORS & PREPARED BY Louise Corbett of Aurecon South Africa (Pty) Ltd CLIENT Plan 8 Infinite Energy (Pty) Ltd CLIENT REPRESENTATIVE Zuben Jessa REPORT STATUS Final REPORT NUMBER 5748A/106563 REPORT DATE March 2012 Author: ................................................ LOUISE CORBETT (Pr. Sci. Nat.) Practitioner: Environmental &Advisory Services Approved by: ................................................ ANDRIES VAN DER MERWE (Pr.Eng.) Technical Director: Environmental & Advisory Services This report is to be referred to in bibliographies as: AURECON. 2012. Proposed Wind Energy Facility near Copperton, Northern Cape: Final Environmental Impact Assessment Report. Report No. 5748A/106563 Aurecon (2012) No unauthorised reproduction, copy or adaptation, -
Modeling and Simulation of an Hvdc Network for Offshore Wind Farms”
Project Report – Budget TREBALL DE FI DE GRAU “MODELING AND SIMULATION OF AN HVDC NETWORK FOR OFFSHORE WIND FARMS” TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Joan-Bartomeu Pons Perelló Barcelona, 09 de Juny de 2015 Director: Arnau Dòria Cerezo Codirector: Sergio Zlotnik Departament d’Enginyeria Elèctrica (EE – 709) Universitat Politècnica de Catalunya (UPC) Project Report “MODELING AND SIMULATION OF AN HVDC NETWORK FOR OFFSHORE WIND FARMS” TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Joan-Bartomeu Pons Perelló Barcelona, 09 de Juny de 2015 Director: Arnau Dòria Cerezo Codirector: Sergio Zlotnik Departament d’Enginyeria Elèctrica (EE – 709) Universitat Politècnica de Catalunya (UPC) TABLE OF CONTENTS TABLE OF CONTENTS i List of Figures . iii List of Tables . v Abstract . vii Resum . vii Resumen . vii Chapter 1: Introduction 1 1.1 Aim and goals of this project . 1 1.2 Context and motivation . 1 1.2.1 Wind power and offshore wind farms . 2 1.2.2 HVDC transmission . 4 1.3 Project Report outline . 6 Chapter 2: Modeling of an HVDC network 7 2.1 Analytical model . 7 2.1.1 HVDC lines . 7 2.1.2 Voltage Source Converters . 9 2.1.3 General model . 10 2.1.4 Wind energy conversion model . 11 2.1.5 Control scheme: Droop control . 14 2.2 Case Studies . 16 2.2.1 Case Study 1: 4-terminal, 3-line system . 16 2.2.2 Case Study 2: 5-terminal, 6-line system . 17 2.2.3 Case Study 3: North Sea Transnational Grid . -
Summary of Findings Plains Eastern Clean Line
United States Department of Energy Summary of Findings In re Application of Clean Line Energy Partners LLC Pursuant to Section 1222 of the Energy Policy Act of 2005 March 25, 2016 TABLE OF CONTENTS FREQUENTLY USED ACRONYMS ........................................................................................................ iii I. Executive Summary .............................................................................................................................. 1 II. Introduction ........................................................................................................................................... 2 a. Section 1222 of EPAct 2005......................................................................................................... 2 b. The Department’s 2010 Request for Proposals ............................................................................ 3 c. Clean Line’s Application .............................................................................................................. 4 d. Clean Line’s Regulatory Filings ................................................................................................... 5 e. DOE Review of Clean Line’s Application ................................................................................... 7 i. Environmental and Historic Property Review ....................................................................... 7 ii. Section 1222 Review............................................................................................................. -
CES Working Paper 07/00 RENEWABLE ENERGY SOURCES
CES Working Paper 07/00 RENEWABLE ENERGY SOURCES Author: Tim Jackson ISSN: 1464-8083 RENEWABLE ENERGY SOURCES Tim Jackson ISSN: 1464-8083 Published by: Centre for Environmental Strategy, University of Surrey, Guildford (Surrey) GU2 7XH, United Kingdom http://www.surrey.ac.uk/CES Publication date: 2000 © Centre for Environmental Strategy, 2007 The views expressed in this document are those of the authors and not of the Centre for Environmental Strategy. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. This publication and its contents may be reproduced as long as the reference source is cited. ROYAL COMMISSION ON ENVIRONMENTAL POLLUTION STUDY ON ENERGY AND THE ENVIRONMENT Paper prepared as background to the Study Renewable Energy Sources March 1998 Dr Tim Jackson* and Dr Ragnar Löfstedt Centre for Environmental Strategy University of Surrey Guildford Surrey GU2 5XH E-mail: [email protected] The views expressed in the paper are those of the authors and do not necessarily represent the thinking of the Royal Commission. Any queries about the paper should be directed to the author indicated * above. Whilst every reasonable effort has been made to ensure accurate transposition of the written reports onto the website, the Royal Commission cannot be held responsible for any accidental errors which might have been introduced during the transcription. Table of Contents Summary 1 Introduction 2 Renewable Energy Technologies -
Appendix 6.1: List of Cumulative Projects
Appendix 6.1 Long list of cumulative projects considered within the EIA Report GoBe Consultants Ltd. March 2018 List of Cumulative Appendix 6.1 Projects 1 Firth of Forth and Tay Offshore Wind Farms Inch Cape Offshore Wind (as described in the decision notices of Scottish Ministers dated 10th October 2014 and plans referred to therein and as proposed in the Scoping Report submitted to MS-LOT in May 2017) The consented project will consist of up to 110 wind turbines and generating up to 784 MW situated East of the Angus Coast in the outer Forth and Tay. It is being developed by Inch Cape Offshore Windfarm Ltd (ICOL). This project was consented in 2014, but was subject to Judicial Review proceedings (see section 1.4.1.1 of the EIA Report for full details) which resulted in significant delays. Subsequently ICOL requested a Scoping Opinion for a new application comprising of 75 turbines with a generating capacity of 784 MW. Project details can be accessed at: http://www.inchcapewind.com/home Seagreen Alpha and Bravo (as described in the decision notices of Scottish Ministers dated 10th October 2014 and plans referred to therein and as Proposed in the Scoping Report submitted to MS-LOT in May 2017) The consents for this project includes two offshore wind farms, being developed by Seagreen Wind Energy Limited (SWEL), each consisting of up to 75 wind turbines and generating up to 525 MW. This project was consented in 2014, but was subject to Judicial Review proceedings (see section 1.4.1.1 of the EIA Report for full details) which resulted in significant delays. -
Removing Barriers for Deployment Through Policy Development; the UK Case Study
3rd International Conference on Ocean Energy, 6 October, Bilbao Removing barriers for deployment through policy development; the UK case study. 1 O H. Wragg 1 RenewableUK, Greencoat House, Victoria, London, UK E-mail: [email protected] Abstract and carbon emission reduction. In the UK this came firstly from the European Renewable Energy Systems This paper will provide an overview of the directive [1] and secondly through the UK Climate current state of the UK marine energy industry, Change Act [2]. covering installed capacity to date, planed projects The two further key pieces of UK primary and development scenarios up to 2020. Reference legislation that have subsequently be established are the will be made to the development of RenewableUK’s Renewables Obligation [3], which provides the UK’s renewable Energy Database. revenue support mechanisms for renewable energy, and This paper will also outline the major the Marine and Costal Access Bill [4], which will recommendations form RenewableUK’s response to develop a clearly defined system for planning and the UK Marine Energy Action Plan and how this licensing commercial activities within the UK’s could facilitate development. Particular attention renewable energy zone[5]. will be made to: The UK Government has also produced several key • How the secondary legislation arising from the documents within the past year. In 2009 the Marine and Coastal Access Bill will impact the Department of Energy and Climate Change published industry. the Renewable Energy Strategy [6] and the Department • The current status of the UK funding landscape for Business Innovation and Skills launched the Low and possible development pathways. -
The Geopolitics of the Global Energy Transition Lecture Notes in Energy
Lecture Notes in Energy 73 Manfred Hafner Simone Tagliapietra Editors The Geopolitics of the Global Energy Transition Lecture Notes in Energy Volume 73 Lecture Notes in Energy (LNE) is a series that reports on new developments in the study of energy: from science and engineering to the analysis of energy policy. The series’ scope includes but is not limited to, renewable and green energy, nuclear, fossil fuels and carbon capture, energy systems, energy storage and harvesting, batteries and fuel cells, power systems, energy efficiency, energy in buildings, energy policy, as well as energy-related topics in economics, management and transportation. Books published in LNE are original and timely and bridge between advanced textbooks and the forefront of research. Readers of LNE include postgraduate students and non-specialist researchers wishing to gain an accessible introduction to a field of research as well as professionals and researchers with a need for an up-to-date reference book on a well-defined topic. The series publishes single- and multi-authored volumes as well as advanced textbooks. **Indexed in Scopus and EI Compendex** The Springer Energy board welcomes your book proposal. Please get in touch with the series via Anthony Doyle, Executive Editor, Springer ([email protected]) More information about this series at http://www.springer.com/series/8874 Manfred Hafner • Simone Tagliapietra Editors The Geopolitics of the Global Energy Transition Editors Manfred Hafner Simone Tagliapietra Fondazione Eni Enrico Mattei Fondazione Eni Enrico Mattei Milan, Italy Milan, Italy ISSN 2195-1284 ISSN 2195-1292 (electronic) Lecture Notes in Energy ISBN 978-3-030-39065-5 ISBN 978-3-030-39066-2 (eBook) https://doi.org/10.1007/978-3-030-39066-2 © The Editor(s) (if applicable) and The Author(s) 2020. -
White Rock WF EA April 2011 Page 143-210
143 Environmental Assessment 10.2 Communication Impacts 10.2.1 Background Wind turbines have the potential to interfere with television and radio broadcasting, mobile phone reception, microwave links and other radio links such as mobile and CB radio. There are three mechanisms by which wind turbines may cause interference: reflection or scattering, diffraction and near field effects. • Reflection or scattering – occurs when a signal becomes obstructed between the transmitter and a receiver, this could be due to a tower or moving blade component as shown in Figure 10-5. • Diffraction – occurs when a signal is both absorbed and reflected by an object in the signal path. • Near field effects – are caused by electromagnetic fields. This is no longer an issue due to advances in wind turbine technology and compliance with Electromagnetic Emission Standards. A communication impact assessment report was prepared by Epuron. The objectives of this investigation were to identify the potential for impacts from the proposed White Rock Wind Farm on existing telecommunications services in the vicinity of the project, and to identify appropriate mitigation strategies for potential impacts. The full investigation including a glossary of acronyms used in the investigation, maps, footnotes and references is presented in Appendix 6. The following approach was adopted to identify the potential impact of the project on telecommunications: • Identify holders of telecommunications licenses (under the Radiocommunications Act 1992) within a 25km radius of the project, as well as point-to-point links in the vicinity of the project, using information provided on the Australian Communications and Media Authority (ACMA) RADCOM database. • Provide written notification of the project and seek comments from each license holder identified via the ACMA RADCOM database search. -
Windflow Technology: Interim Report 2010
Windflow Technology: Interim Report 2010 Overview – Windflow’s major achievements in the first half of the 09/10 financial year were: • Installing and commissioning the remainder of Stage 3 to take Te Rere Hau (TRH) wind farm to a total of 65 turbines. • Delivering TRH turbines operating availability to above 93% for calendar 2009, and starting 2010 above 95% availability. • Submitting (as part of International Electrotechnical Commission (IEC) Type Certification) the final documents to Lloyds Register in Britain for Class 1A Design Evaluation of the Windflow 500. • Gaining resource consent to develop the 25 turbine Long Gully wind farm in Wellington. Financial Results - Windflow continued to produce a positive gross profit for the half year. Consolidated revenue for the six months was $13.597 million (compared with $11.834 million for the previous comparable six month period). Direct production costs including turbine costs for the same period were $12.694 million (compared with $10.841 million for the previous year) resulting in a gross profit of $0.903 million for the period compared with $0.993 million for the previous year). The result is that Windflow has recorded a half-year loss of $1.628 million (compared with $ 1.082 million last year). Cash held at 31 December 2009 was $2.034 million, a reduction of $9.693 million for the six months. The reduction in cash held is attributable to an anticipated cash outflow during the latter stages of production, the dispute with NZ Windfarms, and some production related timing impacts. Windflow expects to generate a cash surplus from operations over the coming period with a corresponding improvement in its cash position. -
EWEA Offshore Report 2009
Oceans of Opportunity Harnessing Europe’s largest domestic energy resource A report by the European Wind Energy Association Oceans of opportunity Europe’s offshore wind potential is enormous and able to power Europe seven times over. Huge developer interest Over 100 GW of offshore wind projects are already in various stages of planning. If realised, these projects would produce 10% of the EU’s electricity whilst avoiding 200 million tonnes of CO2 emissions each year. Repeating the onshore success EWEA has a target of 40 GW of offshore wind in the EU by 2020, implying an average annual market growth of 28% over the coming 12 years. The EU market for onshore wind grew by an average 32% per year in the 12-year period from 1992-2004 – what the wind energy industry Oceans of Opportunity has achieved on land can be repeated at sea. Building the offshore grid EWEA’s proposed offshore grid builds on the 11 offshore grids currently operating and 21 offshore grids currently being considered by the grid operators in the Baltic and North Seas to give Europe a truly pan-European electricity super highway. Realising the potential Strong political support and action from Europe’s policy-makers will allow a new, multi-billion euro industry to be built. EWEA Results that speak for themselves This new industry will deliver thousands of green collar jobs and a new About EWEA renewable energy economy and establish Europe as world leader in EWEA is the voice of the wind industry, actively promoting the utilisation of offshore wind power technology. -
A Vision for Scotland's Electricity and Gas Networks
A vision for Scotland’s electricity and gas networks DETAIL 2019 - 2030 A vision for scotland’s electricity and gas networks 2 CONTENTS CHAPTER 1: SUPPORTING OUR ENERGY SYSTEM 03 The policy context 04 Supporting wider Scottish Government policies 07 The gas and electricity networks today 09 CHAPTER 2: DEVELOPING THE NETWORK INFRASTRUCTURE 13 Electricity 17 Gas 24 CHAPTER 3: COORDINATING THE TRANSITION 32 Regulation and governance 34 Whole system planning 36 Network funding 38 CHAPTER 4: SCOTLAND LEADING THE WAY – INNOVATION AND SKILLS 39 A vision for scotland’s electricity and gas networks 3 CHAPTER 1: SUPPORTING OUR ENERGY SYSTEM A vision for scotland’s electricity and gas networks 4 SUPPORTING OUR ENERGY SYSTEM Our Vision: By 2030… Scotland’s energy system will have changed dramatically in order to deliver Scotland’s Energy Strategy targets for renewable energy and energy productivity. We will be close to delivering the targets we have set for 2032 for energy efficiency, low carbon heat and transport. Our electricity and gas networks will be fundamental to this progress across Scotland and there will be new ways of designing, operating and regulating them to ensure that they are used efficiently. The policy context The energy transition must also be inclusive – all parts of society should be able to benefit. The Scotland’s Energy Strategy sets out a vision options we identify must make sense no matter for the energy system in Scotland until 2050 – what pathways to decarbonisation might targeting a sustainable and low carbon energy emerge as the best. Improving the efficiency of system that works for all consumers. -
Working at Heights
COMMUNICATION HUB FOR THE WIND ENERGY INDUSTRY SPECIALIST SURVEYING WORKING AT HEIGHTS LAW SPOTLIGHT ON TYNE & TEES APRIL/MAY 2013 | £5.25 INTRODUCTION ‘SPOTLIGHT’ ON THE TYNE & THE TEES CONTINUING OUR SUCCESSFUL REGULAR FEATURES company/organisation micropage held ‘Spotlight On’ featureS WE We can boast no fewer than 9 separate within our website, so that you can learn AGAIN VISIT THE TYNE & TEES features within this edition. Some much more in all sorts of formats. AS ‘an area of excellence are planned and can be found in our IN THE WIND ENERGY INDUSTRY ‘Forthcoming Features’ tab on our These have already become very popular THROUGHOUT EUROPE AND website – we do however react to editorial as it links the printed magazine in a very beyond’ received, which we believe is important interactive way – a great marketing tool to the industry and create new features to for our decision making readership to The area is becoming more and more suit. find out about products and services important to the wind energy industry. immediately following the reading of an As you will see the depth and breadth Therefore please do not hesitate to let us interesting article. Contact the commercial of the companies and organisations know about any subject area which you department to find out how to get one for who have contributed to this feature do feel is important to the continued progress your company. not disappoint. of the industry and we will endeavour to bring it to the fore. The feature boasts the largest page Click to view more info count so far which stretches over 40 WIND ENERGY INDUSTRY SKILLS GAP pages! – initiative update = Click to view video I year ago we reported that there were 4 COLLABORATION AND THE VESSEL main areas to focus on if we are to satisfy CO-OPERATIVE that need and would include a focused Our industry lead article in this edition approach in the following areas.