Saxidomus Giganteus Class: Bivalvia, Heterodonta, Euheterodonta

Total Page:16

File Type:pdf, Size:1020Kb

Saxidomus Giganteus Class: Bivalvia, Heterodonta, Euheterodonta Phylum: Mollusca Class: Bivalvia, Heterodonta, Euheterodonta Saxidomus giganteus Order: Imparidentia, Venerida Beefsteak clam, butter, Family: Veneroidea, Veneridae or Washington clam Taxonomy: Originally described as Veneru- recorded for Saxidomus giganteus (Florey pis gigantea, other synonyms include con- and Cahill 1977). flicts of taxonomic genus-species gender Exterior: agreement, as Saxidomus is feminine Byssus: (article 31.2, ICZN): S. gigantea (e.g., Paul Gills: et al. 1976; Robinson and Breese, 1982; Shell: The shell is oval in shape (Coan and Bendell 2014), as well as Venus maxima. Carlton 1975), and the posterior is truncate (Keen and Coan 1974). Description Interior: The valves are similar in Size: Adults average 10 cm in length (Paul shape. The inner ventral margin is smooth et al. 1976; Kozloff 1993). (Keen and Coan 1974), and the inner surface Color: Shell exterior is whitish, but can also is white and porcelaneous. The muscle scars have patches of blackish discoloration; juve- are dark and subequal in size. The pallial line nile exterior is sometimes tan in color is continuous (but broken by a sinus), not a (Kozloff 1993). The shell interior is also whi- series of scars (Fig. 3). The flesh is often te. reddish, hence one common name, the General Morphology: Bivalve mollusks are beefsteak clam. bilaterally symmetrical with two lateral Exterior: Exterior sculpture is with valves or shells that are hinged dorsally and raised concentric growth lines and grooves, surround a mantle, head, foot and viscera with no radial lines (Fig. 1). The valves are (see Plate 393B, Coan and Valentich-Scott very similar, the shell is thick, heavy, and 2007). ). The Veneroida is a large and di- deep (Fig. 2). The most prominent lines verse bivalve heterodont order that is char- representing periods of slowed growth acterized by well-developed hinge teeth. (Kozloff 1993). The valves gape only slightly There are 22 local families, and members of at posterior end (gape less than 1/4 shell the Veneridae have three cardinal teeth on width) (Kozloff 1993). Individuals can retract each valve (see Fig 302, Kozloff 1993; Plate their siphon, but not feet. The shell 396H, Coan and Valentich-Scott 2007) (Fig. microstructure was described for many 4). veneroid clams by Shimamoto (1986), where Body: Saxidomus species were characterized by a Color: Type I shell composed of both composite Interior: The ligament is completely prismatic and crossed lamellar structure external, ad is seated on a long, massive (Shimamoto 1986). nymph, or chondrophore (Fig. 4). The body Hinge: The hinge is very thick, heavy, tissue is rubbery and is “superb for and is posterior and external. There are three chowder” (Kozloff 1993). Maximal systolic cardinal hinge teeth, flanked by a long lateral pressure was recorded for Tresus capax tooth in each valve (Fig. 4). (see description in this guide) to be 13 cm Eyes: H20, which is higher than 11 cm H20 A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Hiebert, T.C. 2015. Saxidomus giganteus. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. Foot: valves that do not gape. Saxidomus species Siphons: also have an elongate shell, when compared Burrow: Inhabits burrows up to 30 cm deep to I. lamellifera, but they possess anterior lat- (Kozloff 1993). The burrow opening is rec- eral teeth and valves that are separated by a ognizable by a cigar-shaped or deflated fig- narrow gape, posteriorly. Saxidomus nuttalli ure eight-shaped hole that is 1.2–2 cm long and S. giganteus can be differentiated as the (Jacobson 1975). former species has an elongate and thinner shell as well as a narrow escutcheon (not pre- Possible Misidentifications sent in S. giganteus). The shell sculpturing in Veneroida is a large bivalve order, S. giganteus also appears smooth as the characterized by well-developed hinge teeth, commarginal ribs are thin, low and tightly including most heterodonts. The family Ven- spaced, while the opposite is true for S. nut- eridae is characterized by a hinge without talli. Its shell is more elongate, the ribs heavi- lateral teeth, ligament that is entirely exter- er, rougher and more conspicuous (Coan and nal, radial ribs on shell exterior, and three Carlton 1975) and the interior is often marked cardinal teeth on each shell valve. There posteriorly with purple. Saxidomus nuttalli, are 12–16 species reported locally in this the larger, more southern species, is found in family within the genera Nutricola, Saxido- California in the same habitat as S. giganteus, mus, and Leukoma, with two species in but apparently does not extend into Oregon. each, and Gemma gemma), Irusella lamellif- (S. nuttalli is the only Saxidomus in Humboldt era), Tivelatultorum, Venerupis philippinar- Bay, however). Saxidomus nuttalli, referred um, Mercenaria mercenaria, Callithaca ten- to as the “money clam” because of its repre- errima, each with a single species repre- sentation as currency for Californian native sented locally. American tribes (Ricketts and Calvin 1952), Nutricola species are small, with resembles S. giganteus, but is larger shells usually less than 10 mm in length. (ironically, 12.7 compared to 7.6 cm) and has Gemma gemma also has a small shell, but it more prominent growth lines and a shell that is triangular in shape compared to Nutricola is purplish at the siphonal end ((Ricketts and species with elongate or oval shells. Tivela Calvin 1952; Kozloff 1993). Saxidomus nutta- stultorum also has a triangular shell, but in- lli is more common in the southern end of its dividuals are larger than G. gemma and distribution, while S. giganteus is more com- have a smooth shell surface with shiny peri- mon north (Ricketts and Calvin 1952). ostracum. Panopea generosa, the deep- The remaining species have shells burrowing geoduck, is quadrate, and gapes larger than 10 mm in length. Some species widely. Tresus capax, the gaper clam, (family have shell sculpturing that is dominated by Mactridae, see description in this guide), is commarginal ribs with fine radial ridges and also quadrate, fairly smooth with chalky white others have shells that have radial ridges shell exterior. The truncated posterior gapes with inconspicuous, or not predominating, moderately, its ligament is partly internal, the commarginal ribs. Of those in the former cardinal teeth are "A" shaped, and the shell category, I. lamellifera has widely spaced has a dark, eroded partial covering. commarginal lamellae and a shell that is short compared to M. mercenaria and C. Ecological Information tenerrima. The two latter species have elon- Range: Type locality is not specified (see Orr gated shells, no anterior lateral teeth and et al. 2013). Known range includes the A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: https://oimb.uoregon.edu/oregon-estuarine-invertebrates and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Aleutian Islands, Alaska to Monterey, presence of the latter species is negatively California; S. giganteus is rare in the effected by S. nuttallii (Peterson and Andre southern range. 1980). Local Distribution: Locally occurs in bays Abundance: “The most abundant clam of the and estuaries, rarely on open coast or inlets Northwest" (Ricketts and Calvin 1971), with oceanic influence (Packard 1918). Saxidomus giganteus was a commercially Common from Alaska to San Francisco Bay, harvested species in Puget Sound, Washing- California, but rare south of Humboldt bay, ton (Kozloff 1974). Up to 352 individuals/m2 California (Kozloff 1993). were reported from beaches in British Colum- Habitat: Occurs in mud or sand (Coan and bia, Canada (Gillespie and Bourne 2005). In Carlton 1975), gravelly beaches (Puget British Columbia beaches, assessed in 1993, Sound, Washington). “Clam gardens”, cre- S. giganteus density was as high as 376 indi- ated adjacent to intertidal rock walls con- viduals/m2 (Gillispie and Bourne 2004). structed by human populations in the Holo- Life-History Information cene, have four times as many S. giganteus Reproduction: Separate sexes reproduce by and twice as many P. staminea (see de- free-spawning, external fertilization and devel- scription in this guide) individuals as non- opment via a free-swimming larva. Oocytes walled beaches, and transplanted juveniles are 80–90 µm in diameter and surrounded by of the latter species also grow faster (1.7 a jelly layer that is 230 µm in diameter (see times faster) in clam gardens (Groesbeck et Fig. 1, Breese and Phibbs 1970). Spawning al. 2014). from March–June has been reported for the Salinity: Occurs in sites with average yearly Oregon coast (Fraser 1929; Robinson and salinity is 29 (range 24–32, Puget Sound, Breese 1982; Kabat and O’Foighil 1987). Washington Goong and Chew 2001). Gametogenesis occurs in fall months and is Temperature: Individuals prefer temperate- complete by August and September in the cold waters (see Range). Strait of Georgia (Fraser 1929). Like Pro- Tidal Level: Individuals most commonly col- tothaca staminea, spawning in response to lected from just under the sediment surface, dense algal blooms has been reported but also found up to 30 cm deep. (Robinson and Breese 1982). There is con- Associates: Occasionally infested with im- siderable variation in spawning times, even in mature specimens of commensal pea crab neighboring beds with variable water Pinnixa littoralis, but usually free of symbiotic temperatures. Polar body formation occurs or parasitic associates (Ricketts and Calvin 60 minutes post fertilization and cleavage 1971). Co-occurs with other clams, Tapes begins 30 minutes later; trochophore larvae philippinarum and Protothaca staminea as develop after 24 hours, which become bivalve well as the shore crab, Hemigrapsus veliger larvae 24 hours later (18˚C, see Fig.
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • Venerupis Philippinarum)
    INVESTIGATING THE COLLECTIVE EFFECT OF TWO OCEAN ACIDIFICATION ADAPTATION STRATEGIES ON JUVENILE CLAMS (VENERUPIS PHILIPPINARUM) Courtney M. Greiner A Swinomish Indian Tribal Community Contribution SWIN-CR-2017-01 September 2017 La Conner, WA 98257 Investigating the collective effect of two ocean acidification adaptation strategies on juvenile clams (Venerupis philippinarum) Courtney M. Greiner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Marine Affairs University of Washington 2017 Committee: Terrie Klinger Jennifer Ruesink Program Authorized to Offer Degree: School of Marine and Environmental Affairs ©Copyright 2017 Courtney M. Greiner University of Washington Abstract Investigating the collective effect of two ocean acidification adaptation strategies on juvenile clams (Venerupis philippinarum) Courtney M. Greiner Chair of Supervisory Committee: Dr. Terrie Klinger School of Marine and Environmental Affairs Anthropogenic CO2 emissions have altered Earth’s climate system at an unprecedented rate, causing global climate change and ocean acidification. Surface ocean pH has increased by 26% since the industrial era and is predicted to increase another 100% by 2100. Additional stress from abrupt changes in carbonate chemistry in conjunction with other natural and anthropogenic impacts may push populations over critical thresholds. Bivalves are particularly vulnerable to the impacts of acidification during early life-history stages. Two substrate additives, shell hash and macrophytes, have been proposed as potential ocean acidification adaptation strategies for bivalves but there is limited research into their effectiveness. This study uses a split plot design to examine four different combinations of the two substratum treatments on juvenile Venerupis philippinarum settlement, survival, and growth and on local water chemistry at Fidalgo Bay and Skokomish Delta, Washington.
    [Show full text]
  • Os Nomes Galegos Dos Moluscos
    A Chave Os nomes galegos dos moluscos 2017 Citación recomendada / Recommended citation: A Chave (2017): Nomes galegos dos moluscos recomendados pola Chave. http://www.achave.gal/wp-content/uploads/achave_osnomesgalegosdos_moluscos.pdf 1 Notas introdutorias O que contén este documento Neste documento fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas). En total, achéganse nomes galegos para 534 especies de moluscos. A estrutura En primeiro lugar preséntase unha clasificación taxonómica que considera as clases, ordes, superfamilias e familias de moluscos. Aquí apúntase, de maneira xeral, os nomes dos moluscos que hai en cada familia. A seguir vén o corpo do documento, onde se indica, especie por especie, alén do nome científico, os nomes galegos e ingleses de cada molusco (nalgún caso, tamén, o nome xenérico para un grupo deles). Ao final inclúese unha listaxe de referencias bibliográficas que foron utilizadas para a elaboración do presente documento. Nalgunhas desas referencias recolléronse ou propuxéronse nomes galegos para os moluscos, quer xenéricos quer específicos. Outras referencias achegan nomes para os moluscos noutras linguas, que tamén foron tidos en conta. Alén diso, inclúense algunhas fontes básicas a respecto da metodoloxía e dos criterios terminolóxicos empregados. 2 Tratamento terminolóxico De modo moi resumido, traballouse nas seguintes liñas e cos seguintes criterios: En primeiro lugar, aprofundouse no acervo lingüístico galego. A respecto dos nomes dos moluscos, a lingua galega é riquísima e dispomos dunha chea de nomes, tanto específicos (que designan un único animal) como xenéricos (que designan varios animais parecidos).
    [Show full text]
  • Download Download
    Appendix C: An Analysis of Three Shellfish Assemblages from Tsʼishaa, Site DfSi-16 (204T), Benson Island, Pacific Rim National Park Reserve of Canada by Ian D. Sumpter Cultural Resource Services, Western Canada Service Centre, Parks Canada Agency, Victoria, B.C. Introduction column sampling, plus a second shell data collect- ing method, hand-collection/screen sampling, were This report describes and analyzes marine shellfish used to recover seven shellfish data sets for investi- recovered from three archaeological excavation gating the siteʼs invertebrate materials. The analysis units at the Tseshaht village of Tsʼishaa (DfSi-16). reported here focuses on three column assemblages The mollusc materials were collected from two collected by the researcher during the 1999 (Unit different areas investigated in 1999 and 2001. The S14–16/W25–27) and 2001 (Units S56–57/W50– source areas are located within the village proper 52, S62–64/W62–64) excavations only. and on an elevated landform positioned behind the village. The two areas contain stratified cultural Procedures and Methods of Quantification and deposits dating to the late and middle Holocene Identification periods, respectively. With an emphasis on mollusc species identifica- The primary purpose of collecting and examining tion and quantification, this preliminary analysis the Tsʼishaa shellfish remains was to sample, iden- examines discarded shellfood remains that were tify, and quantify the marine invertebrate species collected and processed by the site occupants for each major stratigraphic layer. Sets of quantita- for approximately 5,000 years. The data, when tive information were compiled through out the reviewed together with the recovered vertebrate analysis in order to accomplish these objectives.
    [Show full text]
  • A Review of the Biology and Fisheries of Horse Clams (Tresus Capax and Tresus Nuttallii)
    Fisheries and Oceans Pêches at Océans Canada Canad a Canadian Stock Assessment Secretariat Secrétariat canadien pour l'évaluation des stocks Research Document 98/8 8 Document de recherche 98/8 8 Not to be cited without Ne pas citer sans permission of the authors ' autorisation des auteurs ' A Review of the Biology and Fisheries of Horse Clams (Tresus capax and Tresus nuttallii) R. B . Lauzier, C . M. Hand, A. Campbell and S .Heizerz Fisheries and Oceans Canada Pacific Biological Station, Stock Assessment Division, Nanaimo, B.C. V9R 5K6 2 Fisheries and Oceans Canada South Coast Division, N anaimo, B.C. V9T 1K3 ' This series documents the scientific basis for the ' La présente série documente les bases scientifiques evaluation of fisheries resources in Canada . As des évaluations des ressources halieutiques du such, it addresses the issues of the day in the time Canada. Elle traite des problèmes courants selon les frames required and the documents it contains are échéanciers dictés. Les documents qu'elle contient not intended as definitive statements on the subjects ne doivent pas être considérés comme des énoncés addressed but rather as progress reports on ongoing définitifs sur les sujets traités, mais plutôt comme investigations . des rapports d'étape sur les études en cours . Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé Secretariat. au secrétariat . ISSN 1480-4883 Ottawa, 199 8 Canada* Abstract A review of the biology and distribution of horse clams (Tresus capax and Tresus nuttallii)and a review of the fisheries of horse clams from British Columbia, Washington and Oregon is presented, based on previous surveys, scientific literature, and technical reports .
    [Show full text]
  • Mercenaria Mercenaria ©
    Mercenaria mercenaria © 16mar2001 Copyright 2001 by Richard Fox Lander University Ph. MOLLUSCA, Cl.Bivalvia, sCl.Heterodonta, O.Veneroida, F.Veneridae Introduction Mollusca The phylum Mollusca is the second largest in the animal kingdom and comprises several classes consisting of the Monoplacophora, Polyplacophora, Gastropoda, Bivalvia, Scaphopoda, Aplacophora, and Cephalopoda. The typical mollusc has a shell, muscular foot, head with mouth and sense organs, and a visceral mass containing most of the gut and the heart, gonads, and kidney. Part of the body is enclosed in a mantle formed of a fold of the body wall. The mantle encloses a space known as the mantle cavity which is filled with water or air and in which the respiratory organs, anus, nephridiopore(s) and gonopore(s) are located. The coelom is reduced to small spaces including the pericardial cavity and gonocoel. The well-developed blood vascular system consists of the heart and vessels leading to a spacious hemocoel in which most of the viscera are located. The kidneys are large metanephridia. Molluscs may be either gonochoristic or hermaphroditic. Spiral cleavage produces a characteristic veliger larva in most groups unless it is suppressed in favor of direct development or another larva. Molluscs are well represented in marine, freshwater, and terrestrial habitats. Bivalvia Bivalvia is a large class of molluscs whose shell is divided into right and left portions. There is usually a crystalline style but never a radula. Bivalves are flattened from side to side and the head is reduced and bears no special sense organs. The large mantle cavity is located on the sides and contains the large gills.
    [Show full text]
  • Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
    Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B.
    [Show full text]
  • Description of a New Species of Pinnotheres, and Redescription of P
    New Zealand Journal of Zoology, 1983, Vol. 10; 151-162 151 0301-4223/83/1002--0151$2.50/0 © Crown copyright 1983 Description of a new species of Pinnotheres, and redescription of P. novaezelandiae fBrachyura: Pinnotheridae) RODERIC D. M. PAGE occurs; and indeed, larvae of 2 species of Department of Zoology Pinnotheres have been reported from Wellington University of Auckland Harbour plankton (Wear 1965, Jones 1977). Private Bag, Auckland, New Zealand Morphological differences between zoea larvae hatched from Pinnotheres novaezelandiae obtained from Perna canaliculus and Pinnotheres from Atrina Abstract Pinnotheres novaezelandiae Filhol, a zelandica led Jones (1975, 1978) to suggest that the common associate of the green-lipped mussel, Perna pea crab found in A. zelandica is a different species. canaliculus (Gmelin), is redescribed and a lectotype Jenkins (1979), noting that Pinnotheres novaezelan­ is designated. Pinnotheres schauinslandi Lenz is diae is common in Perna canaliculus, stated that "a considered to be a junior synonym of P. similar species, Pinnotheres sp. is equally common in novaezelandiae. A new species, Pinnotheres Mytilus". atrinicola, is described from the horse mussel, This taxonomic confusion is understandable in Atrina zelandica (Gray). The 2 species are light of the inadequate original description of P. morphologically very similar; differences are most novaezelandiae given by Filhol (1885a, b) and the evident in the hard-stage male. In male hard-stage polymorphic development characteristic of the P. novaezelandiae the first pleopod is stout, blade­ Pinnotheridae. In genus Pinnotheres the planktonic like, slightly curved, and densely setose, whereas in zoea and megalopa larvae are followed by a complex P. atrinicola it is slender, strongly curved, and series of crab instars.
    [Show full text]
  • Diarrhetic Shellfish Toxins and Other Lipophilic Toxins of Human Health Concern in Washington State
    Mar. Drugs 2013, 11, 1-x manuscripts; doi:10.3390/md110x000x OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Diarrhetic Shellfish Toxins and Other Lipophilic Toxins of Human Health Concern in Washington State Vera L. Trainer 1,*, Leslie Moore 1, Brian D. Bill 1, Nicolaus G. Adams 1, Neil Harrington 2, Jerry Borchert 3, Denis A.M. da Silva 1 and Bich-Thuy L. Eberhart 1 1 Marine Biotoxins Program, Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA; E-Mails: [email protected] (L.M.); [email protected] (B.D.B.); [email protected] (N.G.A.); [email protected] (D.A.M.D.S.); [email protected] (B.-T.L.E.) 2 Jamestown S’Klallam Tribe, 1033 Old Blyn Highway, Sequim, WA 98392, USA; E-Mail: [email protected] 3 Office of Shellfish and Water Protection, Washington State Department of Health, 111 Israel Rd SE, Tumwater, WA 98504, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-206-860-6788; Fax: +1-206-860-3335. Received: 13 March 2013; in revised form: 7 April 2013 / Accepted: 23 April 2013 / Published: Abstract: The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health.
    [Show full text]
  • Small Scale Clam Farming in Washington
    S m a l l - S c a l e CLAM Farming For PleaSure and ProFit in WaShington According to one Native American tale, the first humans arrived in the Pacific Northwest by stepping out of a clam shell. Since those ancient times, clams have had central roles in shaping the cultures and economies of the Pacific Northwest. For many shoreline property owners or leaseholders in Washington, clam farming is an enjoyable and sometimes profitable way to remain connected with the rich aquacultural legacy of the state. It is also a good way for them to become more aware of coastal processes such as sedimentation and erosion and to be vigilant for Spartina cordgrass, European green crab and other unintentionally introduced marine organisms. Two clam species — native littleneck clams and Manila clams — are routinely farmed in Washington. This publication introduces shoreline property owners and leaseholders to these two species and describes methods for growing clams for consumption. 1 2 IntroducIng two PoPular clams Three clam species — native littleneck clams (Protothaca staminea), Manila clams (Venerupis japonica) and geoduck clams (Panope abrupta) — are routinely farmed in Washington. Successful cultivation of geoduck clams entails different farming strategies and, as such, is not described in this introductory document. Native littleneck clams have been an important food On Washington beaches, Manila clams thrive in source of Northwest coastal Indian tribes. These clams protected bays and inlets on relatively stable have relatively thick shells that can attain a length of beaches with mixtures of gravel, sand, three inches. They can grow to a harvestable size in mud and shell.
    [Show full text]
  • Mate Locating and Access Behaviour of the Parasitic Pea Crab, Nepinnotheres Novaezelandiae, an Important Parasite of the Mussel Perna Canaliculus
    Parasite 2015, 22,13 Ó O. Trottier and A.G. Jeffs, published by EDP Sciences, 2015 DOI: 10.1051/parasite/2015013 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Mate locating and access behaviour of the parasitic pea crab, Nepinnotheres novaezelandiae, an important parasite of the mussel Perna canaliculus Oliver Trottier*, and Andrew G. Jeffs Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth 0941, New Zealand Received 22 October 2014, Accepted 10 March 2015, Published online 18 March 2015 Abstract – Pea crabs are globally ubiquitous symbionts in the marine environment that cause serious economic impact in the aquaculture production of several major bivalve species. However, little is known about their host- parasite interactions, especially the mating behaviour of these parasites that could prove useful for controlling their infestation in aquaculture. In this study, the mate location behaviour of male New Zealand pea crabs, Nepinnotheres novaezelandiae (Filhol, 1885), was observed when dwelling in its preferred host, the commercially important green-lipped mussel, Perna canaliculus. Given the cryptic behaviour of the male crabs, a novel trapping system was developed to determine whether male crabs would exit their mussel hosts in response to an upstream female crab. The presence of receptive female crabs placed upstream successfully attracted 60% of male crabs from their host over 24 h. Observations of the nocturnal mate-finding behaviour of male crabs were made in darkness using infrared video recordings. Males spent on average 49 min on empty hosts and never left a mussel containing a female conspecific once found, spending 200 min on average to gain entry to the mussel.
    [Show full text]