Geology of the Methow Valley Okanogan County, Washington Frontispiece

Total Page:16

File Type:pdf, Size:1020Kb

Geology of the Methow Valley Okanogan County, Washington Frontispiece STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES BERT L. COLE, Commissioner of Public Lands DON LEE FRASER, Supervisor DIVISION OF GEOLOGY AND EARTH RESOURCES VAUGHN E. LIVINGSTON JR., State Geologist BULLETIN N0.68 GEOLOGY OF THE METHOW VALLEY OKANOGAN COUNTY, WASHINGTON By JULIAN D. BARKSDALE ' 1975 .. - WASHINGTON STATE LIBRARY 111~1111111111 Ill llll!l llll l!I Ill Ill 111111~~ AbOOOO 135493 GEOLOGY OF THE METHOW VALLEY OKANOGAN COUNTY, WASHINGTON FRONTISPIECE Methow Valley looking southeast from lower slopes of Last Chance Point. Goat Wall in the middle dis­ tance left is the result of glacial erosion of Midnight Peak Formation andesitic rocks. II STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES BERT L. COLE, Commissioner of Public lands DON LEE FRASER , Supervisor DIVISION OF GEOLOGY AND EARTH RESOURCES VAUGHN E. LIVINGSTON, JR., State Geologist BULLETIN N0.68 GEOLOGY OF THE METHOW VALLEY OKANOGAN COUNTY, WASHINGTON By JULIAN D. BARKSDALE 1975 \ For sale by Department of Natural Resources, Olympia, Washington Price $ 2.00 The publishing of this report on the Methow Valley was made possible by the generous financial contributions of the EXXON COMPANY Minerals Department, PLACER AMEX INCORPORATED, and QUINTANA MINERALS CORPORATION and THE U.S. GEOLOGICAL SURVEY IV FOREWORD Dr. Julian Barksdale, the author of this report, is the dean of the Methow River Valley geology. Berky, as he is known to his friends and colleagues, began his ~ork in the rugged Methow country in 1939 as a new Ph. D, recently hired by the University of Washington. During a field trip into the upper Methow late in 1938 with Dr. A. C . Waters and Professor and Mrs . Adolph Knopf, Mrs. Knopf advised Marajane, Berky's talented wife, that she should do everything possible to discourage Berky from undertaking such an enormous project. Nevertheless, Berky took on the project and for years, with Mara jane's continua I support, spent many summers in the Methow working out complex structure and stratigraphy. During those years he had some interesting experi­ ences, not the least of which was working as a cook for a pock-horse outfit to get transportation into the remote back country. He worked out of tent camps for weeks at a time, and sometimes suffered physically to accomplish his work. Dr. Barksdale has been subjected to occasional criticism for not publishing his work. I was one of the critics until Berky took me through the area on a 2-day field trip in the summer of 1974. After seeing firsthand the size of the project and the remoteness of some of the area, I came away with a different point of view. The logistics problems that he overcame were stagger­ ing in their magnitude, and the complexities of the geology would have discouraged most geologists. Dr . Barksdale has done o remarkable job in deciphering the geologic framework of the Methow area, and we ore fortunate to be able to make the information contained herein available to the geologic community. All of the geologists in the future who work in the Methow will be standing on Dr. Barksdale's shoulders. Vaughn E. Livingston, Jr. State Geologist March, 1975 V CONTENTS Foreword • • . • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • . • . • • . • • • • • • . • . • • • • • • • • • • • • • • • • • • • • v Introduction • • • • • • . • • . • • • . • • . • • • • . • . • • . • . • • . • • . • • • • • . • . • • • • . • • • • • • • • • • . • • • • . 1 Location and geography •• • •••••••• ••. .•••••. •....... • •••..•••...•...••.•• ••• • .. Previous work . • • . • . • • • • • • • . • • . • . • . • . • . • • • • . • . • • • • • . • . • . • • . • • • • . • . 2 Present work and acknowledgments • • • . • . • • • • • • • • • • • • • . • • . • • . • • . • • . • • . • • • • • • • • • • 3 Geology..... • • . • • • . • • • • . • • • • . • . • • . • • . • . • • • . • • • • • • . • • . • . • • • • . • . • • • . • • 4 Metamorphic rocks . • . • • . • • • • • • • • • . • • . • • • • • • • • • • . • • • • • • • • • . • • . • • • • • . • • • • • . • . 4 Chelan botholithic complex • • . • . • • . • • • • • • • • • • . • . • . • • • . • • . • . • . • • . • • . • • . 4 Okanogan botholithic complex • • . • • . • • • • • • • • • . • . • • • • . • • • . • • . • . • • • • • • 6 Leecher Metamorphics... ..... .... .. ....... ............ .......... 7 Methow Gneiss • • . • . • • • • . • • . • • . • • • • • . • • . • • • • • • • • • . • • . • • • • • • • • • • . • • 8 lntrusi ve rocks • . • • . • • • • • • • . • • . • • • • . • • • . • . • • • • • • • • • . • . • • • • • . • • . • . • • • • • 9 Summit Creek pluton .•••• . ...•....•• .• •.•.••. ••••.•. .••.. •• ••.••••• . • , 9 Pasayten stock-dike . • • • . • • . • • . • • . • • • • • • • • • • • • • • • • • • • • • • . • • • . • • • • • . • 10 Button Creek stock . • • • • • • . • • . • . • • • • • • • • • • • . • . • . • . • • • • • • • • • • • • • • • • • • 11 Oval Peak botholith............................ ............... ........ 12 Carlton stocks • • . • • • • • • • • • • • . • • . • . • • • • • • • . • • • . • . • • • • . • . • . • • • • • • . 13 Fawn Peak stock • • • . • . • • . • • • • . • . • • • • • . • • • . • • • • . • • • • • • . • • • • • • • . • • • • • • • 13 Alder Creek stock • • • • • • • . • • • . • . • • • • • • • • . • . • • • • • • • • • • . • . • • • • . • • • • • . • 14 Black Peak botholith • • • • • • • • • • • . • . • • . • • • • • • • • • • . • . • • • . • • • • • • • • • • • • • • • 15 Noname stock . 17 Cooper Mountain botholith........... ................................ .. 17 Midnight stock . • • • • • • . • • . • • • • • • • . • • • • • • • • • • • . • • . • • . • • . • • • • • • • • • • • • • • • • 18 Texas Creek stock • • • • • • • • • • • . • • • • • • • • • • • • • • . • . • • • • • • • • • • • • • • • • • 18 Frazer Creek complex • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • . • • • • • • • • • . • • . • • • • 19 Monument Peak stock • • • • • • • . • • • • • . • • • • • • • . • • • • • • • • • • • . • • • • • . • • . • • • • 20 Golden Horn bothol ith • • • • • • • . • • • • • • • • . • • . • • . • • • • • • . • • • . • . • • • • • . • . • • • • 21 Surface accumulated rocks ••• •• •• ••• •••••••• ••. , • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • 22 Newby Group, Undifferentiated • • • • • • • • • • . • • • • • • . • • • • • • • • . • • • • • • • • • • • • • . • 22 Twisp Formation • . • • • • • • • • • • • • • • • • • • • • • • • • . • • . • . • • • • • • . • • • • • • • • . • • . • • • • 22 Buck Mountain Formation • • • • • • • • • • • • • • • . • • • • . • • • • • • • • • • • • • • • • • • • • • . • • • • 24 Age and correlation • • • . • . • . • . • • • . • • • • • • • • • • • • • • • • . • . • • • • • • • • 25 Goat Creek Formation • • • • • • • • • • . • . • • • • • • • • • • . • • . • • • • • • • • • . • • • • • • • 27 Age and correlation • • • . • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • 29 VII Geo logy-Continued Surface occumu lated rocks-Continued Panther Creek Fonnotion .• • •••.•.•••.••••••••••• . ••.•... .• • . • . •• . .. .. • 29 Age and correlation .• . •.• . •.. •.•••••••• •••.•• . ••.••••..••.••.••. 31 Harts Pass Formation ••••••••••• •.. •. .•.• •••.•• ..•..••.• . •. • .• • .. •••• 32 Age and correlation •...•.••..••.••••• , ••••••••.• •••••.•.•• . ••• : •. 35 Virginian Ridge Formation • , ••.••....•.• •. ••.•.. ..•.•.. •. .• .•• . ••. •. .•• . 37 Age and correlation •••••.•... .•. • .• • •• . .. ••..••.. .. • .••.• . .... 41 Winthrop Sandstone .•• • •.•.. ••••.•.• ••••••••.••.• . .•... .•.••.•. • ••••••. 42 Age and correlation .......•••••••.••••......•.•• •.••••• ....•••••. 44 Midnight Peak Formation ••••• , • • . •.•••• . ...•• . .••••. ••..• . • . • .• . .•• . 45 Ventura Member ..... ...•.......•.................•........•..• . 45 Ventura Member in the Midnight Peak syncline ••.• • •• . •.•• •••• 48 Ventura Member in the Goat Peak syncline .••.••••••••••••••• 48 Volcanic (upper) Member ..••.• •••• • ••••.•••.•••••.••••••••••••.•• 49 Volcanic (upper) Member in the Midnight Peak syncline . • .• • . • . 49 Volcanic (upper) Member in the Goat Peak syncline •.. •..•• • •• 49 Age and correlation •••.•.••• • ••.•..•. ••..••.•.•..••..• . ..••••. •• 50 Pipestone Canyon Formation ••••• . .. .••.•.. •• •. •• . .•... ..•. •. •••••• • . 51 Age and corre lotion •••.• . • • . • ... ..•..... •. • .• . .. .... .• • • . .• 51 G lociotion ••••• . • . • .••• . •.••••••••.....•.••.••• .• . • ••• •. •. .•...... .••.•..•. 53 Structure •• . ••••••••.•••••••• • ••.• •••• ..•• , , ••••.•..• · · · • · · · · • · • • · · • · · • • • · • · · · 56 Methow-Posoyten groben •••••••...•.••••. •• ...••. ••. ..••.•..•.....••. ••. 56 Bounding structures ••• . •••••••..••••.•• . .•.••.••.••••.•••••..•. •• 56 Structures within the graben .•.•. • . • •..••.••••. • •••. •.••••••.•• • •• 60 Folding •••••••.••••••••.••..•• • •. ••••••••••.•••• . ••••••• 60 Faulting •• • ••• . •••••.••.•••••.•••.• . ••. • . •..• . • , .• , ••• • • • 62 Geologic history • . ••...••••••••••••••...••••••..•••••.••.•• . .• . , . ••.. •.. , ••• 65 References cited •••••••••.••••• . •• • ••• ••••.•• •.• .. • •. • • ••••• • • • · · • · · · • · • · · · • • • • · · • • • · 69 VIII ILLUSTRATIONS Methow Va lley looking southeast from slope of Last Chance Point • • • . • • • • . • • • • • • • . • Frontispiece Plate 1. Geologic map of Methow Valley area, Washington ••••••••• . ....•.•.. In pocket Page Figure 1. Map showing location of area considered in this report . • • . • • • • . • . • • • . • 1 2. Methow Gneiss.
Recommended publications
  • The Washington Climate Change Impacts Assessment
    The Washington Climate Change Impacts Assessment Evaluating Washington’s Future in a Changing Climate ........................................................................................................ A report by The Climate Impacts Group University of Washington Climate Science June 2009 in the Public Interest Recommended citation: Climate Impacts Group, 2009. The Washington Climate Change Impacts Assessment, M. McGuire Elsner, J. Littell, and L Whitely Binder (eds). Center for Science in the Earth System, Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, Seattle, Washington. Available at: http://www.cses.washington.edu/db/pdf/wacciareport681.pdf Front cover satellite image credit: http://visibleearth.nasa.gov/view_rec.php?vev1id=4786 NASA - National Aeronautics and Space Administration Visible Earth: A catalog of NASA images and animations of our home planet Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE The Pacific Northwest is cloud-free in this SeaWiFS image. Multihued phytoplankton blooms are visible off of Washington's Olympic coast. Also visible in this image are: Fraser River outflow, snowcapped peaks of Mt. Olympus, Mt. Rainier, Mt. Adams, Mt. Hood, Mt. Jefferson, the Three Sisters, the North Cascades, and the Columbia and Snake River watersheds. Metadata * Sensor OrbView-2/SeaWiFS * Visualization Date 2000-09-26 * The Visible Earth is part of the EOS Project Science Office located at NASA Goddard Space Flight Center. Small images credits: Wheat: © 2009 www.photos.com Coast; Seattle skyline: © J. Martin Grassley McNary Dam: courtesy Bonneville Power Administration Salmon: courtesy University of Washington News and Information Forest: courtesy Climate Impacts Group, University of Washington Report design: Beth Tully, Edit-Design Center, University of Washington The Washington Climate Change Impacts Assessment Evaluating Washington’s Future in a Changing Climate ........................................................................................
    [Show full text]
  • Southward-Directed Subduction of the Farallon–Aluk Spreading Ridge and Its Impact on Subduction Mechanics and Andean Arc Magmatism: Insights From
    feart-08-00121 May 7, 2020 Time: 11:30 # 1 ORIGINAL RESEARCH published: 08 May 2020 doi: 10.3389/feart.2020.00121 Southward-Directed Subduction of the Farallon–Aluk Spreading Ridge and Its Impact on Subduction Mechanics and Andean Arc Magmatism: Insights From Edited by: Marina Manea, Geochemical and Seismic National Autonomous University of Mexico, Mexico Tomographic Data Reviewed by: 1,2 1,2 1,2 1,2 Luca Ferrari, Sofía B. Iannelli *, Lucía Fernández Paz , Vanesa D. Litvak , Guido Gianni , Geosciences Center, National Lucas M. Fennell1,2, Javiera González3, Friedrich Lucassen4, Simone Kasemann4, Autonomous University of Mexico, Verónica Oliveros3 and Andrés Folguera1,2 Mexico 1 2 Jiashun Hu, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Buenos Aires, Argentina, Instituto de Estudios 3 California Institute of Technology, Andinos ‘Don Pablo Groeber’, CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina, Departamento 4 United States de Ciencias de la Tierra, Universidad de Concepción, Concepción, Chile, MARUM - Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany *Correspondence: Sofía B. Iannelli sofi[email protected] Since the initial proposal of the past existence of a southward-directed mid-ocean ridge–subduction interaction in the Andes during Late Cretaceous–Paleogene times, Specialty section: This article was submitted to several studies have been devoted to uncover the tectonomagmatic evidence of this Structural Geology and Tectonics, process. The collision of a spreading ridge against a subduction margin provokes a section of the journal important tectonomagmatic changes, including, between them, variations in arc-related Frontiers in Earth Science magmatic activity and in the plate-margin stress regime.
    [Show full text]
  • And Ordovician (Sardic) Felsic Magmatic Events in South-Western Europe: Underplating of Hot Mafic Magmas Linked to the Opening of the Rheic Ocean
    Solid Earth, 11, 2377–2409, 2020 https://doi.org/10.5194/se-11-2377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean J. Javier Álvaro1, Teresa Sánchez-García2, Claudia Puddu3, Josep Maria Casas4, Alejandro Díez-Montes5, Montserrat Liesa6, and Giacomo Oggiano7 1Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain 2Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain 3Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain 4Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 5Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain 6Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 7Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy Correspondence: J. Javier Álvaro ([email protected]) Received: 1 April 2020 – Discussion started: 20 April 2020 Revised: 14 October 2020 – Accepted: 19 October 2020 – Published: 11 December 2020 Abstract. A geochemical comparison of early Palaeo- neither metamorphism nor penetrative deformation; on the zoic felsic magmatic episodes throughout the south- contrary, their unconformities are associated with foliation- western European margin of Gondwana is made and in- free open folds subsequently affected by the Variscan defor- cludes (i) Furongian–Early Ordovician (Toledanian) activ- mation.
    [Show full text]
  • Masterarbeit
    MASTERARBEIT Titel der Masterarbeit Late Cretaceous Volcaniclastic Rocks in the Pontides (NW Turkey) verfasst von Katharina Böhm BSc angestrebter akademischer Grad Master of Science (M.Sc.) Wien, 2015 Studienkennzahl lt. Studienblatt: A 066 815 Studienrichtung lt. Studienblatt: Erdwissenschaften Betreuerin / Betreuer: Ao. Univ.-Prof. Dr. Michael Wagreich Declaration ”I hereby declare that this master’s thesis was authored by myself independently, without use of other sources than indicated. I have explicitly cited all material which has been quoted either literally or by content from the used sources. Further this work was neither submitted in Austria nor abroad for any degree or examination.” Contents Declaration2 1. Introduction8 1.1. Project.................................. 9 1.1.1. Goals............................... 9 1.2. Geographical setting.......................... 10 1.3. Geological setting............................ 12 1.3.1. The Pontides........................... 14 1.3.2. The Pontides in the Cretaceous................ 18 1.3.3. Correlation with relative ages.................. 24 2. Nomenclature 28 3. Methods 29 3.1. ICP-ES and ICP-MS........................... 29 3.2. PXRD.................................. 29 3.3. Heavy mineral extraction........................ 30 4. Results 31 4.1. Mineralogy................................ 31 4.1.1. Powder X-Ray diffraction.................... 31 4.1.2. Thin sections.......................... 33 4.1.3. Mineral Extraction: Dating of minerals............. 34 4.2. Geochemistry.............................. 36 5. Interpretation of the geochemical results 37 5.1. Mobility of elements........................... 37 5.2. Alteration of minerals.......................... 39 5.3. Determining the rock type........................ 41 3 5.4. Discriminating volcanic series..................... 48 5.5. Revealing the tectonic setting...................... 52 5.6. Plotting geochemical element patterns................. 60 5.7. Summary of the geochemical classification.............. 62 6.
    [Show full text]
  • THE KELOWNA COURIER MONDAY, DECKMBEH I D R
    T h e K e l o w n a C o u r ie r '1 *r«IlW-W SMWBI'- .• VOI.L’MK M Kflowna, Hritisli ( 'oininhia. Moiu!a\‘, l)t‘(a'inlM.T 2.:?iid, 1917 NUMIU-.R 29 vt<«. '^ S tr S.. • • • • a< T h ^ ^ i i a n l H oT y [■ \A W ./ n V CA ,1 A: '' '4 -,"V, H' fe£ir;N I® N '■ -0 , , t j V l i i i :,i ! v'V <o V) . Those are the hallowed words of Jesus . And for generation upon generation men have immortalized them . in the pious hush of the church pews . where they kneel and pray at Christmastide . in the imperishable Yuletide carols when they sing “Silent Night . Holy Night” . ,. in the individual good deeds which they do in the name of Him and the brotherhood of man . So, this time of the year, we ask all oUr friends to join with us . praying with aH*our hearts and might . for a V* ' , ' peaceful, strife-free world . where man’s eternal spirit is free and joyous . because it is dedicated to honest, respectful, endearing neighborliness. V>| e 9H > l U l c a 't S i y o Trotn vieavetk f y ^ 9 t. •f- A M m n X » PAGE TWO THE KELOWNA COURIER MONDAY, DECKMBEH I D r, Koodwill. ri,'ihup.> Uh' saving grace eJuud the adult mind, *! in e. :.d tlie gain will Im; collce- THE KELOWNA COURIER of bumunit.v is summed u(> in the 'lliis Chrirdmas wbovt' all, laul par- tue and dt < idedijr worthwhile.
    [Show full text]
  • Review Article Magma Loading in the Southern Coast Plutonic Complex, British Columbia and Washington
    GeoScienceWorld Lithosphere Volume 2020, Article ID 8856566, 17 pages https://doi.org/10.2113/2020/8856566 Review Article Magma Loading in the Southern Coast Plutonic Complex, British Columbia and Washington E. H. Brown Department of Geology, Western Washington University, USA Correspondence should be addressed to E. H. Brown; [email protected] Received 2 May 2020; Accepted 22 September 2020; Published 10 November 2020 Academic Editor: Tamer S. Abu-Alam Copyright © 2020 E. H. Brown. Exclusive Licensee GeoScienceWorld. Distributed under a Creative Commons Attribution License (CC BY 4.0). The southen end of the 1800 km long Coast Plutonic Complex (CPC), exposed in the Harrison Lake area of British Columbia and in the North Cascades of Washington, bears a record of great crustal thickening -20 to 40 km in localized zones during Late Cretaceous times. During this period, the CPC was positioned at the continental margin during collision/subduction of the Farallon plate. Arc magmatism and regional orogenic contraction were both active as potential crustal thickening processes. Magmatism is favored in this report as the dominant factor based on the delineation of four spatially and temporally separate loading events, the close association of the loaded areas with emplacement of large plutons, and a paucity of evidence of deep regional tectonic contraction. The timing and spatial location of crustal loading events are documented by the following: zircon ages in plutons; an early event of low pressure in pluton aureoles evidenced by andalusite, now pseudomorphed by high- pressure minerals; high pressures in country rock in pluton aureoles measured by mineral compositions in the assemblages garnet-biotite-muscovite-plagioclase and garnet-aluminum silicate-plagioclase; high pressures recorded in plutons by Al-in- hornblende barometry; and uplift ages of plutons derived from K-Ar and Ar-Ar ages of micas and hornblende in plutons.
    [Show full text]
  • EGU2010-1113, 2010 EGU General Assembly 2010 © Author(S) 2009
    Geophysical Research Abstracts Vol. 12, EGU2010-1113, 2010 EGU General Assembly 2010 © Author(s) 2009 New integrated data (isotopes, lithology, geochemistry, ammonites etc.) from the Lower Cretaceous Puez key-section in the Dolomites (Southern Alps; N-Italy; FWF project P20018-N10) Alexander Lukeneder Natural History Museum Vienna, Geology and Paleontology, Vienna, Austria ([email protected]) Investigations on different fossil groups within fields of isotopic, magneto- and cyclo-stratigraphic and geochem- ical analysis are combined to extract the Early Cretaceous history of environmental changes as displayed by the sea level and climate. This results in calibrating ammonite biostratigraphy and magnetostratigraphy through isotope data. The main investigation topics of the submitted project within the above-described framework are the biostratigraphic, palaeoecological, palaeobiogeographic, lithostratigraphic, cyclostratigraphic and magnetostrati- graphic development of the Early Cretaceous of the Puez area. The main locality within the project is located in huge outcrops located at the southern margin of the Puez Plateau. It is located within the area of the Puez-Geisler Nature park in the northern part of the Dolomites (Trentino-Alto Adige; South Tyrol). Lower Cretaceous ammonoids (n = 640) were collected at the Puez locality in the Dolomites of Southern Tyrol (Lukeneder and Aspmair 2006). The cephalopod fauna from the marly limestones to marls here indicates Late Valanginian to Late Albian age. The underlying Biancone Formation (Maiolica Formation) is of Early to Late Valanginian. The ammonoid fauna comprises 48 different genera, each apparently represented by one to three species. The complete occurrence at the Puez section is dominated by the Phylloceratina (30%) and the Ammonitina (34%).
    [Show full text]
  • Stratigraphy, Age, and Provenance of the Eocene Chumstick Basin
    Stratigraphy, age, and provenance of the Eocene Chumstick basin, Washington Cascades; implications for paleogeography, regional tectonics, and development of strike-slip basins Erin E. Donaghy1,†, Paul J. Umhoefer2, Michael P. Eddy1, Robert B. Miller3, and Taylor LaCasse4 1 Department of Earth, Planetary, and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907, USA 2 School of Earth Sciences and Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, USA 3 Department of Geology, San Jose State University, San Jose, California 95192, USA 4 Department of Geology, Carleton College, Northfield, Minnesota 55057 USA ABSTRACT tions can be constrained at high temporal Here we present a large provenance data set resolution (0.5–1.5 m.y. scale) for an ancient coupled with new lithofacies mapping from Strike-slip faults form in a wide variety strike-slip basin and permits a detailed re- the Chumstick basin within the framework of a of tectonic settings and are a first-order construction of sediment routing pathways recently developed precise depositional chronol- control on the geometry and sediment accu- and depositional environments. As a result, ogy (Eddy et al., 2016b). This basin formed in mulation patterns in adjacent sedimentary we can assess how varying sediment supply a strike-slip setting in central Washington and basins. Although the structural and depo- and accommodation space affects the depo- provides a unique opportunity to track changes sitional architecture of strike-slip basins is sitional architecture during strike-slip basin in sediment routing systems that are related well documented, few studies of strike-slip evolution. to rapidly changing paleogeography in basin- basins have integrated depositional age, bounding basement blocks.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE a New
    UNIVERSITY OF CALIFORNIA RIVERSIDE A New Species of an Enigmatic Fossil Taxon: Ischadites n. sp., a Middle Ordovician Receptaculitid From the Great Basin, Western USA A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Geological Sciences by Sara E Henry June 2014 Thesis Committee: Dr. Mary L. Droser, Chairperson Dr. Nigel C. Hughes Dr. Richard Minnich Copyright by Sara E Henry 2014 The Thesis of Sara E Henry is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my advisor, Dr. Mary L. Droser, for her continuous support throughout my graduate studies, field work, and research. I’d additionally like to thank the rest of my committee: Dr. Nigel C. Hughes and Dr. Richard Minnich for their encouragement, insight, and guidance. Dr. Ganqing Jiang of the University of Nevada, Las Vegas, assisted with stratigraphic measurements and provided valuable consultation on sedimentological interpretation in the field. Illustrations of Ischadites n. sp. were produced by my very talented brother, Mr. Keith R. Henry. Several field assistants allowed for large bulk sampling of fossils over multiple field work excursions: T. Beck, M. Nonu, R. Theroux, and J. Minor. Special thanks to L. Graham and T. Beck for lab work assistance. Field work required for this project was funded by the Geological Society of America, the Society for Sedimentary Geology, and the Gulf Coast Section of the Society for Sedimentary Geology. Lastly, I have to thank my parents, Kim and Susan Henry, for their unwavering support, patience, and encouragement.
    [Show full text]
  • The Barremian Heteromorph Ammonite Dissimilites from Northern Italy: Taxonomy and Evolutionary Implications
    The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxonomy and evolutionary implications ALEXANDER LUKENEDER and SUSANNE LUKENEDER Lukeneder, A. and Lukeneder, S. 2014. The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxon- omy and evolutionary implications. Acta Palaeontologica Polonica 59 (3): 663–680. A new acrioceratid ammonite, Dissimilites intermedius sp. nov., from the Barremian (Lower Cretaceous) of the Puez area (Dolomites, northern Italy) is described. Dissimilites intermedius sp. nov. is an intermediate form between D. dissimilis and D. trinodosum. The new species combines the ribbing style of D. dissimilis (bifurcating with intercalating single ribs) with the tuberculation style of D. trinodosum (trituberculation on entire shell). The shallow-helical spire, entirely comprising single ribs intercalated by trituberculated main ribs, is similar to the one of the assumed ancestor Acrioceras, whereas the increasing curvation of the younger forms resembles similar patterns observed in the descendant Toxoc- eratoides. These characters support the hypothesis of a direct evolutionary lineage from Acrioceras via Dissimilites to Toxoceratoides. D. intermedius sp. nov. ranges from the upper Lower Barremian (Moutoniceras moutonianum Zone) to the lower Upper Barremian (Toxancyloceras vandenheckii Zone). The new species allows to better understand the evolu- tion of the genus Dissimilites. The genus appears within the Nicklesia pulchella Zone represented by D. duboise, which most likely evolved into D. dissimilis. In the Kotetishvilia compressissima Zone, two morphological forms developed: smaller forms very similar to Acrioceras and forms with very long shaft and juvenile spire like in D. intermedius sp. nov. The latter most likely gave rise to D. subalternatus and D. trinodosum in the M.
    [Show full text]
  • A G~Ographic Dictionary of Washington
    ' ' ., • I ,•,, ... I II•''• -. .. ' . '' . ... .; - . .II. • ~ ~ ,..,..\f •• ... • - WASHINGTON GEOLOGICAL SURVEY HENRY LANDES, State Geologist BULLETIN No. 17 A G~ographic Dictionary of Washington By HENRY LANDES OLYMPIA FRAN K M, LAMBORN ~PUBLIC PRINTER 1917 BOARD OF GEOLOGICAL SURVEY. Governor ERNEST LISTER, Chairman. Lieutenant Governor Louis F. HART. State Treasurer W.W. SHERMAN, Secretary. President HENRY SuzzALLO. President ERNEST 0. HOLLAND. HENRY LANDES, State Geologist. LETTER OF TRANSMITTAL. Go,:ernor Ernest Lister, Chairman, and Members of the Board of Geological Survey: GENTLEMEN : I have the honor to submit herewith a report entitled "A Geographic Dictionary of Washington," with the recommendation that it be printed as Bulletin No. 17 of the Sun-ey reports. Very respectfully, HENRY LAKDES, State Geologist. University Station, Seattle, December 1, 1917. TABLE OF CONTENTS. Page CHAPTER I. GENERAL INFORMATION............................. 7 I Location and Area................................... .. ... .. 7 Topography ... .... : . 8 Olympic Mountains . 8 Willapa Hills . • . 9 Puget Sound Basin. 10 Cascade Mountains . 11 Okanogan Highlands ................................ : ....' . 13 Columbia Plateau . 13 Blue Mountains ..................................... , . 15 Selkirk Mountains ......... : . : ... : .. : . 15 Clhnate . 16 Temperature ......... .' . .. 16 Rainfall . 19 United States Weather Bureau Stations....................... 38 Drainage . 38 Stream Gaging Stations. 42 Gradient of Columbia River. 44 Summary of Discharge
    [Show full text]
  • Across the Cascade Range
    Series I B> DescriPtive Geology- 4l Bulletin No. 235 \ D, Petrography and Mineralogy, DEPARTMENT'OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY CHARLES \). WALCOTT, Di HECTOR GEOLOGICAL RECONNAISSANCE ACROSS THE CASCADE RANGE NEAR THE FORTY-NINTH PARALLEL GEORGE OTIS SMITH AND FRANK C. CALKINS WASHINGTON GOVERNMENT PRINTING OFFICE 1904 Trri-o^) SL'BD C 0 N T E N T S. I'lliJO. Letter of transmittal. ---_--_---..-.._-_.____.._-______._....._.._____.._.. 9 Introduction-__-._.__,.__-.----._--._._.__..._....__....---_--__._.__.-.-_- 11 Scope of report ---.--_.____.._______-.--....._---.._...._.__ ._.- 11 Route followed ........................:......................... 12 Geography .............................................................. 12 Topography .......................................................... 12 Primary divisions of the region..--.........-.--.-.--.-.-.. 12 Okanogan Valley .................:.. ............................ 18 Cascade Range ...............:........,..._ ....^......i........ 13 General characteristics..._.....-.....-..----.--.----.-.-..-.. 13 Northern termination.,.---.....-......--.-.............._ 13 Subdivision .............................................. 14 Okanogan Mountains ........................................... 14 Hozonieen Range ............................................ 15 Skagit Mountains....-.... ......-.----....-.-----..-...--.--- 16 Drainage ..................................................... 17 Climate ...................................................... ...... 17 Roads and trails
    [Show full text]