Teredo Navalis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Short Historical Investigation Into Cross-Cultural Australian Ideas
Coolabah, No.11, 2013, ISSN 1988-5946, Observatori: Centre d’Estudis Australians, Australian Studies Centre, Universitat de Barcelona A short historical investigation into cross-cultural Australian ideas about the marine animal group Teredinidae, their socioecological consequences and some options 1 Mary Gardner Copyright©2013 Mary Gardner. This text may be archived and redistributed both in electronic form and in hard copy, provided that the author and journal are properly cited and no fee is charged. Abstract: How are contemporary multicultural coastal Australians, Aboriginals and settlers alike, to develop wiser ideas and practices towards marine animals as well as each other? To illustrate the importance and complexity of this question, I offer a short historical investigation of some contrasting ideas and practices held by Australian Aboriginal and settler cultures about marine animals of the group Teredinidae. I present two “screenshots”: one from the period 1798-1826 and another from 1970-2012. The first period examines a negative but influential interpretation by Thomas Malthus of a cross cultural encounter featuring Australian Aboriginal consumption of local Teredinidae known as “cobra”. While this cultural tone remains largely unchanged in the second period, the biological understanding of the marine animals has developed greatly. So has awareness of the socioecology of Teredinidae: their estuarine habitats and cultural significance. Their potential role as subjects of community based monitoring is undeveloped but could serve overlapping concerns of environmental justice as well as the restoration and “future proofing” of habitats. Such a new composite of ideas and practices will rely on better integration of biology with community based social innovations. -
Wood-Eating Bivalves Daniel L
The University of Maine DigitalCommons@UMaine University of Maine Office of Research and Special Collections Sponsored Programs: Grant Reports 1-27-2006 Evolution of Endosymbiosis in (xylotrophic) Wood-Eating Bivalves Daniel L. Distel Principal Investigator; University of Maine, Orono Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports Part of the Marine Biology Commons Recommended Citation Distel, Daniel L., "Evolution of Endosymbiosis in (xylotrophic) Wood-Eating Bivalves" (2006). University of Maine Office of Research and Sponsored Programs: Grant Reports. 133. https://digitalcommons.library.umaine.edu/orsp_reports/133 This Open-Access Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in University of Maine Office of Research and Sponsored Programs: Grant Reports by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Annual Report: 0129117 Annual Report for Period:06/2004 - 06/2005 Submitted on: 01/27/2006 Principal Investigator: Distel, Daniel L. Award ID: 0129117 Organization: University of Maine Title: Evolution of Endosymbiosis in (xylotrophic) Wood-Eating Bivalves Project Participants Senior Personnel Name: Distel, Daniel Worked for more than 160 Hours: Yes Contribution to Project: Post-doc Graduate Student Name: Luyten, Yvette Worked for more than 160 Hours: Yes Contribution to Project: Graduate student participated in lab research with support from this grant. Name: Mamangkey, Gustaf Worked for more than 160 Hours: Yes Contribution to Project: Gustaf Mamangkey is a lecturer at the Tropical Marine Mollusc Programme, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University,Jl. Kampus UNSRAT Bahu, Manado 95115,Indonesia. -
TSUNODA, Kunio; NISHIMOTO, Koichi
Studies on the Shipworms I : The Occurrence and Seasonal Title Settlement of Shipworms. Author(s) TSUNODA, Kunio; NISHIMOTO, Koichi Wood research : bulletin of the Wood Research Institute Kyoto Citation University (1972), 53: 1-8 Issue Date 1972-08-31 URL http://hdl.handle.net/2433/53408 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Studies on the Shipworms I The Occurrence and Seasonal Settlement of Shipworms. Kunio TSUNODA* and Koichi NISHIMOTO* Abstract--The previous investigation on the occurrence of shipworms in December, 1971 indicated the co-existence of three species of shipworms: Bankia bipalmulata LAMARCK, Teredo navalis LINNAEUS and Lyrodus pedicellatus QUATREFAGES. However, the absence of B. bipalmulata was found in this investigation carried out from February, 1971 to January, 1972. Of these three species, T. navalis was the commonest. In this survey of larval settlement on floating wood surfaces, there was no settlement from January to May, and the first settlement of larvae was not observed until June, when water temperature was over 20°C. The explosive settlement was observed in September. After June, boring damage always occurred when wood blocks were submerged in the sea for over 60 days. Introduction The import of logs into Japan has enormously increased in recent years, and this trend will continue for some time. The imported logs are transported by ship into 85 international trading ports along Japanese coasts. For the last three years the annual amount has been not 3 less than 50,000,000 m , which is equivalent to more than 50 percent of Japan's total wood supply. -
Bankia Setacea Class: Bivalvia, Heterodonta, Euheterodonta
Phylum: Mollusca Bankia setacea Class: Bivalvia, Heterodonta, Euheterodonta Order: Imparidentia, Myida The northwest or feathery shipworm Family: Pholadoidea, Teredinidae, Bankiinae Taxonomy: The original binomen for Bankia the presence of long siphons. Members of setacea was Xylotrya setacea, described by the family Teredinidae are modified for and Tryon in 1863 (Turner 1966). William Leach distiguished by a wood-boring mode of life described several molluscan genera, includ- (Sipe et al. 2000), pallets at the siphon tips ing Xylotrya, but how his descriptions were (see Plate 394C, Coan and Valentich-Scott interpreted varied. Although Menke be- 2007) and distinct anterior shell indentation. lieved Xylotrya to be a member of the Phola- They are commonly called shipworms (though didae, Gray understood it as a member of they are not worms at all!) and bore into many the Terdinidae and synonyimized it with the wooden structures. The common name ship- genus Bankia, a genus designated by the worm is based on their vermiform morphology latter author in 1842. Most authors refer to and a shell that only covers the anterior body Bankia setacea (e.g. Kozloff 1993; Sipe et (Ricketts and Calvin 1952; see images in al. 2000; Coan and Valentich-Scott 2007; Turner 1966). Betcher et al. 2012; Borges et al. 2012; Da- Body: Bizarrely modified bivalve with re- vidson and de Rivera 2012), although one duced, sub-globular body. For internal anato- recent paper sites Xylotrya setacea (Siddall my, see Fig. 1, Canadian…; Fig. 1 Betcher et et al. 2009). Two additional known syno- al. 2012. nyms exist currently, including Bankia Color: osumiensis, B. -
UNIVERSITY of KERALA Zoology Core Course
1 UNIVERSITY OF KERALA First Degree Programme in Zoology Choice Based Credit and Semester System Zoology Core Course Syllabus-2015 Admission Onwards 2 FIRST DEGREE PROGRAMME IN ZOOLOGY Scheme of Instruction and Evaluation Course Study Components Instructional Credit Duration Evaluation Total Code Hrs/week of Univ. Credit T P Exam CE ESE Semster EN1111 English I 5 4 3 Hrs 20% 80% 1111 Additional language I 4 3 3 Hrs 20% 80% EN 1121 Foundation course I 4 2 3 Hrs 20% 80% CH1131.4 Complementary course I 2 2 3 Hrs 20% 80% Complementary course I 2 16 I Practical of CH1131.4 BO1131 Complementary course II 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1131 ZO1141 Core Course I 3 3 3 Hrs 20% 80% Core Course Practical of ZO1141 1 EN1211 English II 4 3 3 Hrs 20% 80% EN1212 English III 5 4 3 Hrs 20% 80% 1211 Additional language II 4 3 3 Hrs 20% 80% CH1231.4 Complementary course III 2 2 3 Hrs 20% 80% II Complementary course III 2 Practical of CH1231.4 17 BO1231 Complementary course IV 2 2 3 Hrs 20% 80% Complementary course II 2 Practical of BO1231 ZO1241 Core Course II 3 3 3 Hrs 20% 80% Core Course Practical of ZO1241 1 III EN1311 English IV 5 4 3 Hrs 20% 80% EN1312 Additional language III 5 4 3 Hrs 20% 80% CH1331 Complementary course V 3 3 3 Hrs 20% 80% CH1331.4 Complementary course V 2 Practical of CH1331.4 BO1331 Complementary course VI 3 3 3 Hrs 20% 80% 17 BO1332 Complementary course VI 2 Practical of BO1331 ZO1341 Core Course III 3 3 3 Hrs 20% 80% ZO1341 Core Course Practical of ZO1341 2 IV EN1411 English V 5 4 3 Hrs 20% 80% EN1411 Additional language II 5 4 3 Hrs 20% 80% CH1431.4 Complementary course VII 3 3 3 Hrs 20% 80% CH1432.4 Complementary course 2 4 3 Hrs 20% 80% Practical of CH1131.4, CH1231.4, CH1331.4, CH1431.4. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Marine Boring Bivalve Mollusks from Isla Margarita, Venezuela
ISSN 0738-9388 247 Volume: 49 THE FESTIVUS ISSUE 3 Marine boring bivalve mollusks from Isla Margarita, Venezuela Marcel Velásquez 1 1 Museum National d’Histoire Naturelle, Sorbonne Universites, 43 Rue Cuvier, F-75231 Paris, France; [email protected] Paul Valentich-Scott 2 2 Santa Barbara Museum of Natural History, Santa Barbara, California, 93105, USA; [email protected] Juan Carlos Capelo 3 3 Estación de Investigaciones Marinas de Margarita. Fundación La Salle de Ciencias Naturales. Apartado 144 Porlama,. Isla de Margarita, Venezuela. ABSTRACT Marine endolithic and wood-boring bivalve mollusks living in rocks, corals, wood, and shells were surveyed on the Caribbean coast of Venezuela at Isla Margarita between 2004 and 2008. These surveys were supplemented with boring mollusk data from malacological collections in Venezuelan museums. A total of 571 individuals, corresponding to 3 orders, 4 families, 15 genera, and 20 species were identified and analyzed. The species with the widest distribution were: Leiosolenus aristatus which was found in 14 of the 24 localities, followed by Leiosolenus bisulcatus and Choristodon robustus, found in eight and six localities, respectively. The remaining species had low densities in the region, being collected in only one to four of the localities sampled. The total number of species reported here represents 68% of the boring mollusks that have been documented in Venezuelan coastal waters. This study represents the first work focused exclusively on the examination of the cryptofaunal mollusks of Isla Margarita, Venezuela. KEY WORDS Shipworms, cryptofauna, Teredinidae, Pholadidae, Gastrochaenidae, Mytilidae, Petricolidae, Margarita Island, Isla Margarita Venezuela, boring bivalves, endolithic. INTRODUCTION The lithophagans (Mytilidae) are among the Bivalve mollusks from a range of families have more recognized boring mollusks. -
Bivalvia: Teredinidae) in Drifted Eelgrass
Short Notes 263 The Rhizome-Boring Shipworm Zachsia zenkewitschi (Bivalvia: Teredinidae) in Drifted Eelgrass Takuma Haga Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan The shipworm Zachsia zenkewitschi Bulatoff & free-swimming larval stage. Turner & Yakovlev Rjabtschikoff, 1933 lives inside the rhizomes of the (1983) observed that the larvae swam mostly near eelgrasses Phyllospadix and Zostera (Helobiales; the bottom of a culture dish in their laboratory. Zosteraceae) and has sporadic distribution records They hypothesized that in natural environments the from Primorskii Krai (=Primoriye Region) to larvae can swim only for short distances within the Siberia in the Russian Far East and in Japanese eelgrass beds and that wide dispersal might have waters (Higo et al., 1999). Its detailed distribution been achieved through long-distance transporta- and habitats have been surveyed in detail only tion of the host eelgrass by accidental drifting. locally along the coast of Vladivostok in Primoriye However, this hypothesis has not been verified to (Turner et al., 1983; Fig. 1F). In Japanese waters, date. this species has been recorded in only three cata- This report is the first documentation of Z. logues of local molluscan faunas (Fig. 1; Inaba, zenkewitschi in drifted rhizomes of eelgrass, and 1982; Kano, 1981; Kuroda & Habe, 1981). These describes the soft animal morphology of this spe- catalogues, however, did not provide information cies. on detailed collecting sites and habitats. This rare species was recently rediscovered along the coast Zachsia zenkewitschi in drift eelgrass of Miyagi Prefecture, northeast Japan (Sasaki et al., 2006; Fig. -
Paalwormen Hoewel Hun Naam En Vorm Doet Denken Aan Een Worm, Zijn De Paalworm En De Scheepsworm Tweekleppige Weekdieren, Net Zoals De Mossel of De Kokkel
Niet-inheemse soorten van het Belgisch deel van de Noordzee en aanpalende estuaria Paalwormen Hoewel hun naam en vorm doet denken aan een worm, zijn de paalworm en de scheepsworm tweekleppige weekdieren, net zoals de mossel of de kokkel. Ze boren gangen in hout. Beide soor- ten hebben zich al vroeg verspreid over alle we- reldzeeën, dankzij transport via scheepsrompen en drijfhout. Hierdoor is het moeilijk te achter- halen waar deze soorten oorspronkelijk vandaan komen. Scheeps- en paalwormen baren de zeelui al eeuwenlang zorgen, doordat ze het hout van schepen aantasten. Ze kregen dan ook de bijnaam ‘termieten van de zee’… paalworm © Marco Faasse (www.acteon.nl) Wetenschappelijke naam Teredo navalis Linnaeus, 1758 - paalworm Psiloteredo megotara (Hanley in Forbes & Hanley, 1848) - scheepsworm Beide soorten behoren tot de familie van de ‘paalwormen’ of de ‘Teredo wormen’. Gezien ze heel sterk op elkaar gelijken in biologie en ecologie, zullen ze in deze fiche samen besproken worden. Oorspronkelijke verspreiding Verschillende klassieke auteurs zoals Aristoteles, Ovidius en Plinius maakten in hun geschriften al melding van paalwormen, zonder echter te weten wat hun identiteit of oorsprong was. Ze verwezen daarbij naar plaatsen in het Middellandse Zeegebied [1,2]. Een eventuele vroege aanwezigheid van paalwormen in de Noord-Europese regio kan niet bevestigd worden. Er zijn immers geen overleveringen of geschriften beschikbaar die rapporteren over schade toegebracht aan Vikingschepen door deze weekdieren [1]. De paalworm heeft vandaag een bijna wereldwijde verspreiding, en komt in Europa voor vanaf het Noordpoolgebied tot in de Middellandse Zee. De scheepsworm daarentegen komt enkel voor van het Noordpoolgebied tot in de Middellandse Zee [3]. -
Comparing the Dutch and British Maritime Technologies During the Napoleonic Era (1792–1815)
Technology and Empire: Comparing the Dutch and British Maritime Technologies during the Napoleonic Era (1792–1815) By Ivor Mollema December, 2015 Director of Thesis: Dr. Lynn Harris Major Department: History The two ships, Bato (1806) and Brunswick (1805) wrecked in Simons Bay, South Africa, provide an opportunity to compare British and Dutch maritime technologies during the Napoleonic Era (1792–1815). The former was a Dutch 74-gun ship of the line and the latter a British East Indiaman. Their remains reveal pertinent information about the maritime technologies available to each European power. Industrial capacity and advanced metal working played a significant role in ship construction initiatives of that period, while the dwindling timber supplies forced invention of new technologies. Imperial efforts during the Napoleonic Era relied on naval power. Maritime technologies dictated imperial strategy as ships were deployed to expand or maintain colonial empires. Naval theorists place the strategy into a wider spectrum and the analysis of the material culture complements further understanding of sea power. The study also recommends management options to preserve the archaeological sites for future study and to showcase for heritage tourism. TECHNOLOGY AND EMPIRE: Comparing Dutch and British Maritime Technologies During the Napoleonic Era (1792–1815) Title Page A Thesis Presented To The Faculty of the Department of History East Carolina University In Partial Fulfillment Of the Requirements for the Degree Master of Arts, Program in Maritime Studies by Ivor Mollema December, 2015 © Ivor Mollema, 2015 Copyright Page TECHNOLOGY AND EMPIRE: Comparing Dutch and British Maritime Technologies During the Napoleonic Era (1792–1815) by Ivor Mollema Signature Page APPROVED BY: DIRECTOR OF THESIS: ________________________________________________________ Dr. -
Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
Check List 10(3): 609–614, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Interesting shipworm (Mollusca: Bivalvia: Teredinidae) records from India ISTRIBUTIO * D Rao M. V. , Pachu A. V. and Balaji M. RAPHIC Wood Biodegradation Centre (Marine), Institute of Wood Science and Technology via Yoga Village, Beach Road, A. U. Post, Visakhapatnam-530 G 003, A.P., India. EO * Corresponding author. E-mail: [email protected] G N O Abstract: In a survey on the occurrence of marine wood boring organisms at Chippada-Rambilli, Visakhapatnam- OTES Bhimunipatnam and Soralgondi-Nachugunta coastal stretches along Bay of Bengal on the east coast of India, a good N Uperotus panamensis (Bartsch), U. lieberkindi (Roch), Teredora malleolus (Turton), Teredo poculifer Iredale and Nototeredo norvagicaassemblage (Spengler) of wood borers, are new especially records teredinidsto India; three were species, collected. namely, Among Teredo these mindanensis samples, five Bartsch, species T.of portoricensisteredinids, namely, Clapp and T. somersi Clapp new to the mainland and one species, namely, Teredothyra matocotana (Bartsch) new to the east coast. Systematic details of these nine teredinid taxa are presented in this communication. DOI: 10.15560/10.3.609 Information on the occurrence and distribution of Clapp, T. clappi Bartsch, T. somersi Clapp, T. indomalaiica marine wood borers in Indian waters relative to the Roch, Nototeredo norvagica (Spengler), N. edax (Hedley), country’s vast coastal stretch is far from satisfactory (Rao Nausitora fusticula (Jeffreys), N. dunlopei Wright, Bankia et al. 2008). Hence, efforts have been renewed to generate carinata (Gray), B. -
The ECPHORA the Newsletter of the Calvert Marine Museum Fossil Club Volume 26 Number 1 March 2011
The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 26 Number 1 March 2011 Stranded Beaked Whale Features Shark Tooth Hill, California Homage to Jean Hooper Calvert Cliffs at Last Serpulid Worm Shells, Corrected Inside May 21 Lecture by Catalina Pimiento ―Giant Shark Babies from Panama‖ Dolphin Limb Donated by USNMNH President’s Message CMMFC Shirt Order(See Page 12) Unfortunately, this adult male beaked whale, Mesoplodon grayi, stranded Fossil Club Field Trips in western Victoria, Australia in January. Museum Victoria collected the and Events whole animal for future research. See an up-close image of the beak on Stranded Beaked Whale page 11. Photo © by Sean Wright; submitted by Erich Fitzgerald. ☼ The Smithsonian Institution recently donated these small dolphin flipper bones to the comparative osteology collection at the Calvert Marine Museum. Many thanks to Charley Potter for arranging/facilitating the donation. ☼ CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora March 2011 President's Message in 2009. The phosphate is used for fertilizer and animal feed; the phosphoric acid ends up in that cold bottle of Coca Cola you swig after a day of The weather is warming up in eastern North collecting. Carolina, but it's been a tough 12 months for Much of the demand comes from the collecting south of the border. PCS Aurora skyrocketing need for fertilizer, especially overseas (Miocene) is still closed to fossil collecting as is the in India and China. Late last year rumors circulated Martin Marietta mine in Belgrade (Late Oligocene, that the Chinese were trying to buy the company.