Walking Droplets, a Form of Wave-Particle Duality At
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Motion and Time Study the Goals of Motion Study
Motion and Time Study The Goals of Motion Study • Improvement • Planning / Scheduling (Cost) •Safety Know How Long to Complete Task for • Scheduling (Sequencing) • Efficiency (Best Way) • Safety (Easiest Way) How Does a Job Incumbent Spend a Day • Value Added vs. Non-Value Added The General Strategy of IE to Reduce and Control Cost • Are people productive ALL of the time ? • Which parts of job are really necessary ? • Can the job be done EASIER, SAFER and FASTER ? • Is there a sense of employee involvement? Some Techniques of Industrial Engineering •Measure – Time and Motion Study – Work Sampling • Control – Work Standards (Best Practices) – Accounting – Labor Reporting • Improve – Small group activities Time Study • Observation –Stop Watch – Computer / Interactive • Engineering Labor Standards (Bad Idea) • Job Order / Labor reporting data History • Frederick Taylor (1900’s) Studied motions of iron workers – attempted to “mechanize” motions to maximize efficiency – including proper rest, ergonomics, etc. • Frank and Lillian Gilbreth used motion picture to study worker motions – developed 17 motions called “therbligs” that describe all possible work. •GET G •PUT P • GET WEIGHT GW • PUT WEIGHT PW •REGRASP R • APPLY PRESSURE A • EYE ACTION E • FOOT ACTION F • STEP S • BEND & ARISE B • CRANK C Time Study (Stopwatch Measurement) 1. List work elements 2. Discuss with worker 3. Measure with stopwatch (running VS reset) 4. Repeat for n Observations 5. Compute mean and std dev of work station time 6. Be aware of allowances/foreign element, etc Work Sampling • Determined what is done over typical day • Random Reporting • Periodic Reporting Learning Curve • For repetitive work, worker gains skill, knowledge of product/process, etc over time • Thus we expect output to increase over time as more units are produced over time to complete task decreases as more units are produced Traditional Learning Curve Actual Curve Change, Design, Process, etc Learning Curve • Usually define learning as a percentage reduction in the time it takes to make a unit. -
NGSS Physics in the Universe
Standards-Based Education Priority Standards NGSS Physics in the Universe 11th Grade HS-PS2-1: Analyze data to support the claim that Newton’s second law of motion describes PS 1 the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. HS-PS2-2: Use mathematical representations to support the claim that the total momentum of PS 2 a system of objects is conserved when there is no net force on the system. HS-PS2-3: Apply scientific and engineering ideas to design, evaluate, and refine a device that PS 3 minimizes the force on a macroscopic object during a collision. HS-PS2-4: Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s PS 4 Law to describe and predict the gravitational and electrostatic forces between objects. HS-PS2-5: Plan and conduct an investigation to provide evidence that an electric current can PS 5 produce a magnetic field and that a changing magnetic field can produce an electric current. HS-PS3-1: Create a computational model to calculate the change in energy of one PS 6 component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known/ HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be PS 7 accounted for as either motions of particles or energy stored in fields. HS-PS3-3: Design, build, and refine a device that works within given constraints to convert PS 8 one form of energy into another form of energy. -
Intercommutation of U(1) Global Cosmic Strings
Prepared for submission to JHEP Intercommutation of U(1) global cosmic strings Guy D. Moore Institut f¨urKernphysik, Technische Universit¨atDarmstadt Schlossgartenstraße 2, D-64289 Darmstadt, Germany E-mail: [email protected] Abstract: Global strings (those which couple to Goldstone modes) may play a role in cosmology. In particular, if the QCD axion exists, axionic strings may control the efficiency of axionic dark matter abundance. The string network dynamics depend on the string intercommutation efficiency (whether strings re-connect when they cross). We point out that the velocity and angle in a collision between global strings \renormalize" between the network scale and the microscopic scale, and that this plays a significant role in their intercommutation dynamics. We also point out a subtlety in treating intercommutation of very nearly antiparallel strings numerically. We find that the global strings of a O(2)- breaking scalar theory do intercommute for all physically relevant angles and velocities. Keywords: axions, dark matter, cosmic strings, global strings arXiv:1604.02356v1 [hep-ph] 8 Apr 2016 Contents 1 Introduction1 2 Global string review3 3 Renormalization of string angle and velocity5 4 Microscopic study of intercommutation9 5 Discussion and Conclusions 12 1 Introduction fsec:introg Cosmic strings [1,2] are hypothetical extended solitonic excitations which may play a sig- nificant role in cosmology. Their original motivation, for structure formation [3{5], appears in conflict with modern microwave sky data [6]. But cosmic strings may be important in other contexts. In particular, if the QCD axion [7,8] exists, the axion field may contain a string network in the early Universe [9] which may dominate axion production and play a central role in the axion as a dark matter candidate. -
Chemistry in the Earth System HS Models: Handout 3
High School 3 Course Model: Chemistry in the Earth System HS Models: Handout 3 Guiding Questions Chemistry in the Earth System Performance Expectations Instructional What is energy, how is it HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the Segment 1: measured, and how does it strength of electrical forces between particles. [Clarification Statement: Emphasis is on understanding the strengths of forces between Combustion flow within a system? particles, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, What mechanisms allow us and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, to utilize the energy of our vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult’s law calculations of vapor pressure.] foods and fuels? (Introduced, but not assessed until IS3) HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. [Clarification Statement: Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples of models could include molecular-level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.] [Assessment Boundary: Assessment does not include calculating the total bond energy changes during a chemical reaction from the bond energies of reactants and products.] (Introduced, but not assessed until IS4) HS-PS1-7. -
Reduced Order Modelling of Streamers and Their Characterization by Macroscopic Parameters by Colin A
Reduced order modelling of streamers and their characterization by macroscopic parameters by Colin A. Pavan BASc, University of Waterloo (2017) Submitted to the Department of Aeronautical and Astronautical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Aeronautical and Astronautical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2019 ○c Massachusetts Institute of Technology 2019. All rights reserved. Author................................................................ Department of Aeronautical and Astronautical Engineering May 21, 2019 Certified by. Carmen Guerra-Garcia Assistant Professor of Aeronautics and Astronautics Thesis Supervisor Accepted by........................................................... Sertac Karaman Associate Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 2 Reduced order modelling of streamers and their characterization by macroscopic parameters by Colin A. Pavan Submitted to the Department of Aeronautical and Astronautical Engineering on May 21, 2019, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautical and Astronautical Engineering Abstract Electric discharges in gases occur at various scales, and are of both academic and prac- tical interest for several reasons including understanding natural phenomena such as lightning, and for use in industrial applications. Streamers, self-propagating ioniza- tion fronts, are a particularly challenging regime to study. They are difficult to study computationally due to the necessity of resolving disparate length and time scales, and existing methods for understanding single streamers are impractical for scaling up to model the hundreds to thousands of streamers present in a streamer corona. Conversely, methods for simulating the full streamer corona rely on simplified models of single streamers which abstract away much of the relevant physics. -
1 the Principle of Wave–Particle Duality: an Overview
3 1 The Principle of Wave–Particle Duality: An Overview 1.1 Introduction In the year 1900, physics entered a period of deep crisis as a number of peculiar phenomena, for which no classical explanation was possible, began to appear one after the other, starting with the famous problem of blackbody radiation. By 1923, when the “dust had settled,” it became apparent that these peculiarities had a common explanation. They revealed a novel fundamental principle of nature that wascompletelyatoddswiththeframeworkofclassicalphysics:thecelebrated principle of wave–particle duality, which can be phrased as follows. The principle of wave–particle duality: All physical entities have a dual character; they are waves and particles at the same time. Everything we used to regard as being exclusively a wave has, at the same time, a corpuscular character, while everything we thought of as strictly a particle behaves also as a wave. The relations between these two classically irreconcilable points of view—particle versus wave—are , h, E = hf p = (1.1) or, equivalently, E h f = ,= . (1.2) h p In expressions (1.1) we start off with what we traditionally considered to be solely a wave—an electromagnetic (EM) wave, for example—and we associate its wave characteristics f and (frequency and wavelength) with the corpuscular charac- teristics E and p (energy and momentum) of the corresponding particle. Conversely, in expressions (1.2), we begin with what we once regarded as purely a particle—say, an electron—and we associate its corpuscular characteristics E and p with the wave characteristics f and of the corresponding wave. -
A Two-Scale Approach to Logarithmic Sobolev Inequalities and the Hydrodynamic Limit
Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 2009, Vol. 45, No. 2, 302–351 DOI: 10.1214/07-AIHP200 © Association des Publications de l’Institut Henri Poincaré, 2009 www.imstat.org/aihp A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit Natalie Grunewalda,1, Felix Ottob,2, Cédric Villanic,3 and Maria G. Westdickenbergd,4 aInstitute für Angewandte Mathematik, Universität Bonn. E-mail: [email protected] bInstitute für Angewandte Mathematik, Universität Bonn. E-mail: [email protected] cUMPA, École Normale Supérieure de Lyon, and Institut Universitaire de France. E-mail: [email protected] dSchool of Mathematics, Georgia Institute of Technology. E-mail: [email protected] Received 30 May 2007; accepted 7 November 2007 Abstract. We consider the coarse-graining of a lattice system with continuous spin variable. In the first part, two abstract results are established: sufficient conditions for a logarithmic Sobolev inequality with constants independent of the dimension (Theorem 3) and sufficient conditions for convergence to the hydrodynamic limit (Theorem 8). In the second part, we use the abstract results to treat a specific example, namely the Kawasaki dynamics with Ginzburg–Landau-type potential. Résumé. Nous étudions un système sur réseau à variable de spin continue. Dans la première partie, nous établissons deux résultats abstraits : des conditions suffisantes pour une inégalité de Sobolev logarithmique avec constante indépendante de la dimension (Théorème 3), et des conditions suffisantes pour la convergence vers la limite hydrodynamique (Theorème 8). Dans la seconde partie, nous utilisons ces résultats abstraits pour traiter un exemple spécifique, à savoir la dynamique de Kawasaki avec un potentiel de type Ginzburg–Landau. -
Newtonian Mechanics Is Most Straightforward in Its Formulation and Is Based on Newton’S Second Law
CLASSICAL MECHANICS D. A. Garanin September 30, 2015 1 Introduction Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter is the subject of statics that is important in engineering. General properties of motion of bodies regardless of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics. Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of each of these areas of mechanics is the equation of motion, Newton's second law. Mechanics of material points is described by ordinary differential equations (ODE). One can distinguish between mechanics of one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by ordinary differential equations, including positions and velocities of their centers and the angles defining their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli- cated and described by partial differential equation. In many cases mechanics of continuum is coupled to thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE, including particles and rigid bodies. There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than the speed of light, v c, otherwise it becomes relativistic mechanics. Second, the bodies should have a sufficiently large mass and/or kinetic energy. -
Time Scales for Rounding of Rocks Through Stochastic Chipping
Time Scales for Rounding of Rocks through Stochastic Chipping D. J. Priour, Jr1 1Department of Physics & Astronomy, Youngstown State University, Youngstown, OH 44555, USA (Dated: March 10, 2020) For three dimensional geometries, we consider stones (modeled as convex polyhedra) subject to weathering with planar slices of random orientation and depth successively removing material, ultimately yielding smooth and round (i.e. spherical) shapes. An exponentially decaying acceptance probability in the area exposed by a prospective slice provides a stochastically driven physical basis for the removal of material in fracture events. With a variety of quantitative measures, in steady state we find a power law decay of deviations in a toughness parameter γ from a perfect spherical shape. We examine the time evolution of shapes for stones initially in the form of cubes as well as irregular fragments created by cleaving a regular solid many times along random fracture planes. In the case of the former, we find two sets of second order structural phase transitions with the usual hallmarks of critical behavior. The first involves the simultaneous loss of facets inherited from the parent solid, while the second transition involves a shift to a spherical profile. Nevertheless, for mono-dispersed cohorts of irregular solids, the loss of primordial facets is not simultaneous but occurs in stages. In the case of initially irregular stones, disorder obscures individual structural transitions, and relevant observables are smooth with respect to time. More broadly, we find that times for the achievement of salient structural milestones scale quadratically in γ. We use the universal dependence of variables on the fraction of the original volume remaining to calculate time dependent variables for a variety of erosion scenarios with results from a single weathering scheme such as the case in which the fracture acceptance probability depends on the relative area of the prospective new face. -
Motion and Forces Notes Key Speed • to Describe How Fast Something Is Traveling, You Have to Know Two Things About Its Motion
Motion and Forces Notes Key Speed • To describe how fast something is traveling, you have to know two things about its motion. • One is the distance it has traveled, or how far it has gone. • The other is how much time it took to travel that distance. Average Speed • To calculate average speed, divide the distance traveled by the time it takes to travel that distance. • Speed Equation Average speed (in m/s) = distance traveled (in m) divided by time (in s) it took to travel the distance s = d t • Because average speed is calculated by dividing distance by time, its units will always be a distance unit divided by a time unit. • For example, the average speed of a bicycle is usually given in meters per second. • Average speed is useful if you don't care about the details of the motion. • When your motion is speeding up and slowing down, it might be useful to know how fast you are going at a certain time. Instantaneous Speed • The instantaneous speed is the speed of an object at any instant of time. Constant Speed • Sometimes an object is moving such that its instantaneous speed doesn’t change. • When the instantaneous speed doesn't change, an object is moving with constant speed. • The average speed and the instantaneous speed are the same. Calculating Distance • If an object is moving with constant speed, then the distance it travels over any period of time can be calculated using the equation for average speed. • When both sides of this equation are multiplied by the time, you have the equation for distance. -
Gravity, Orbital Motion, and Relativity
Gravity, Orbital Motion,& Relativity Early Astronomy Early Times • As far as we know, humans have always been interested in the motions of objects in the sky. • Not only did early humans navigate by means of the sky, but the motions of objects in the sky predicted the changing of the seasons, etc. • There were many early attempts both to describe and explain the motions of stars and planets in the sky. • All were unsatisfactory, for one reason or another. The Earth-Centered Universe • A geocentric (Earth-centered) solar system is often credited to Ptolemy, an Alexandrian Greek, although the idea is very old. • Ptolemy’s solar system could be made to fit the observational data pretty well, but only by becoming very complicated. Copernicus’ Solar System • The Polish cleric Copernicus proposed a heliocentric (Sun centered) solar system in the 1500’s. Objections to Copernicus How could Earth be moving at enormous speeds when we don’t feel it? . (Copernicus didn’t know about inertia.) Why can’t we detect Earth’s motion against the background stars (stellar parallax)? Copernicus’ model did not fit the observational data very well. Galileo • Galileo Galilei - February15,1564 – January 8, 1642 • Galileo became convinced that Copernicus was correct by observations of the Sun, Venus, and the moons of Jupiter using the newly-invented telescope. • Perhaps Galileo was motivated to understand inertia by his desire to understand and defend Copernicus’ ideas. Orbital Motion Tycho and Kepler • In the late 1500’s, a Danish nobleman named Tycho Brahe set out to make the most accurate measurements of planetary motions to date, in order to validate his own ideas of planetary motion. -
Chapter1describing the Physical Universe
Chapter 1 Describing the Physical Universe On June 21, 2004, SpaceShipOne became the first private aircraft to leave Earth's atmosphere and enter space. What is the future of this technology? Private companies are hoping to sell tickets to adventurous people who want to take a trip beyond Earth's atmosphere. Our study of physics can help us understand how such a trip is possible. Many people, when asked the question “What is physics?” respond with “Oh, physics is all about complicated math equations and confusing laws to memorize.” This response may describe the physics studied in some classrooms, but this is not the physics of the world around us, and this is definitely not the physics that you will study in this Key Questions course! In this chapter you will be introduced to what 3 Does air have mass and take up studying physics is REALLY all about, and you will space? What about light? begin your physics journey by studying motion and 3 How can an accident or mistake speed. lead to a scientific discovery? 3 What is the fastest speed in the universe? 3 1.1 What Is Physics? Vocabulary What is physics and why study it? Many students believe physics is a complicated set of rules, natural law, experiment, analysis, equations to memorize, and confusing laws. Although this is sometimes the way physics is taught, mass, system, variable, it is not a fair description of the science. In fact, physics is about finding the simplest and least macroscopic, scientific method, complicated explanation for things. It is about observing how things work and finding the independent variable, dependent connections between cause and effect that explain why things happen.