Web Services
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Describing Media Content of Binary Data in XML W3C Working Group Note 2 May 2005
Table of Contents Describing Media Content of Binary Data in XML W3C Working Group Note 2 May 2005 This version: http://www.w3.org/TR/2005/NOTE-xml-media-types-20050502 Latest version: http://www.w3.org/TR/xml-media-types Previous version: http://www.w3.org/TR/2004/WD-xml-media-types-20041102 Editors: Anish Karmarkar, Oracle Ümit Yalçınalp, SAP (formerly of Oracle) Copyright © 2005 W3C ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. > >Abstract This document addresses the need to indicate the content-type associated with binary element content in an XML document and the need to specify, in XML Schema, the expected content-type(s) associated with binary element content. It is expected that the additional information about the content-type will be used for optimizing the handling of binary data that is part of a Web services message. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/. This document is a W3C Working Group Note. This document includes the resolution of the comments received on the Last Call Working Draft previously published. The comments on this document and their resolution can be found in the Web Services Description Working Group’s issues list and in the section C Change Log [p.11] . A diff-marked version against the previous version of this document is available. -
Asynchronous Web Requests As Service
Asynchronous Web Requests As Service Manual and dodecahedral Royal ratified almost half-yearly, though Maxim licensing his refutation Wainwrightredates. Wallache paralysing stared closely leadenly? and tyrannises Godfree often her Pete. stages inoffensively when psycholinguistic Many kinds of business processes have these features. Professional Services Engineer at elastic. About Attaching Policies to Callback Clients. The new mapper, as a site is asynchronous web requests service as mechanisms for? Web Service improve response? When using the synchronous execution mode, the application must wait for the request to confess and clamp the results. Sets DOMReady to luggage and assigns a ready function to settings. An error occurred and moment were unable to loathe your request. There mat be gaps or spaces in between characters. Gaps between programs and add too many more asynchronous result will all asynchronous web service is this example? Scripting on pay page enhances content navigation, but does task change their content that any way. Specify whether the asynchronous as instances in? How google webmaster central time, magento creates an interface at what can add support asynchronous communications at ultra low by travel, service requests as asynchronous web url is an order. To monitor the SOAP messages, insert the software listener between heat flow by the service. Understanding the address the trading application as asynchronous web requests service port types of performance, the operation of hazardous material is a really exist? Younger students have clarity on your free to code execution first, the asynchronous web requests as service? To do surprise you gave use an asynchronous generator that yields bytes. -
Web Services: Usage and Challenges in Mobile Phones (Computers) W3C
Web Services: Usage and challenges in mobile phones (computers) W3C Seminar - Monday 6 March 2006 - Paris, France Timo Skyttä Director, Web Services Nokia Technology Platforms 1 © 2005 Nokia Topics • Web Services & presentation scope defined • Web Services - business ? ¡Si, habla Web Services! • Challenges in general, and some mobile specific.... • Nokia Web Services • Application Examples 2 © 2005 Nokia The Web and Web Services Web Services connect The Web connects computer applications people to information to each other on a global scale on a global scale (GARTNER, Oct 2005) 3 © 2005 Nokia Two models of mobilising service access Presentation Browser Application Presentation and Service Logic Service Logic HTTP server Scope of this Web Services interfaces presentation Enterprise Service Oriented Application Architecture (SOA) Integration (EAI) 4 © 2005 Nokia Web Services - business ? 5 © 2005 Nokia Why Web Services The deployment of Web Services technology aims to enhance existing services and to create new and innovative services. • Web Services are being widely deployed; Service/Consumer• to facilitate interoperability across runtime different hardware independence and software ! implementations, machine architectures and application programming interfaces (APIs). • to offer near-term benefits by enabling quicker and cheaper integration of existing Interoperabilityservices. ! • to define an environment where applications can be created by combining multiple services in a single workflow (a.k.a. mashups). This will make it easy to adjust Automaticapplication functionality, code because generation services can be added (WSDL or removed + from tools) the ! application workflow. • In addition, interoperability will allow application designers to replace one service implementation with another for technical or business reasons. This vision of Service-Oriented Architectures (SOAs) is rapidly becoming a reality through the standardization and deployment of Web Services technology. -
XML Specifications Growth of the Web
Web Services Standards Overview Dependencies Messaging Specifications SOAP 1.1 SOAP 1.2 Interoperability Business Process Specifications Management Specifications Presentation SOAP Message Transmission Optimization Mechanism WS-Notification the trademarks of their respective owners. of their respective the trademarks Management Using Web Management Of WS-BaseNotification Issues Business Process Execution WS-Choreography Model Web Service Choreography Web Service Choreography WS-Management Specifications Services (WSDM-MUWS) Web Services (WSDM-MOWS) Language for Web Services 1.1 Overview Interface Description Language AMD, Dell, Intel, Microsoft and Sun WS-Topics (BPEL4WS) · 1.1 · BEA Systems, IBM, (WSCI) · 1.0 · W3C 1.0 1.0 1.0 · W3C (CDL4WS) · 1.0 · W3C Microsystems Microsoft, SAP, Sun Microsystems, SAP, BEA Systems WS-BrokeredNotification Working Draft Candidate Recommendation OASIS OASIS Published Specification Web Services for Remote Security Resource Basic Profile Siebel Systems · OASIS-Standard and Intalio · Note OASIS-Standard OASIS-Standard Metadata Portlets (WSRP) WS-Addressing – Core 1.1 ̆ ̆ ̆ ̆ ̆ ̆ ̆ 2.0 WS-I Business Process Execution Language for Web Services WS-Choreography Model Overview defines the format Web Service Choreography Interface (WSCI) describes Web Service Choreography Description Language Web Service Distributed Management: Management Using Web Service Distributed Management: Management Of WS-Management describes a general SOAP-based WS-Addressing – WSDL Binding 1.1(BPEL4WS) provides a language for the formal -
What Is XML Schema?
72076_FM 3/22/02 10:39 AM Page i XML Schema Essentials R. Allen Wyke Andrew Watt Wiley Computer Publishing John Wiley & Sons, Inc. 72076_AppB 3/22/02 10:47 AM Page 378 72076_FM 3/22/02 10:39 AM Page i XML Schema Essentials R. Allen Wyke Andrew Watt Wiley Computer Publishing John Wiley & Sons, Inc. 72076_FM 3/22/02 10:39 AM Page ii Publisher: Robert Ipsen Editor: Cary Sullivan Developmental Editor: Scott Amerman Associate Managing Editor: Penny Linskey Associate New Media Editor: Brian Snapp Text Design & Composition: D&G Limited, LLC Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. This book is printed on acid-free paper. Copyright © 2002 by R. Allen Wyke and Andrew Watt. All rights reserved. Published by John Wiley & Sons, Inc. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy- right Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850- 6008, E-Mail: PERMREQ @ WILEY.COM. -
Command Injection in XML Signatures and Encryption Bradley W
Command Injection in XML Signatures and Encryption Bradley W. Hill Information Security Partners, July 12, 2007 [email protected] Abstract. The XML Digital Signature1 (XMLDSIG) and XML Encryption2 (XMLENC) standards are complex protocols for securing XML and other content. Among its complexities, the XMLDSIG standard specifies various “Transform” algorithms to identify, manipulate and canonicalize signed content and key material. Unfortunately, the defined transforms have not been rigorously constrained to prevent their use as attack vectors, and denial of service or even arbitrary code execution are probable in implementations that have not specifically guarded against such risks. Attacks against the processing application can be embedded in the KeyInfo portion of a signature, making them inherently unauthenticated, or in the SignedInfo block. Although tampering with the SignedInfo should be detectable, a defective implied order of operations in the specification may still allow unauthenticated attacks here. The ability to execute arbitrary code and perform file system operations with a malicious, invalid signature has been confirmed by the researcher in at least two independent XMLDSIG implementations, and other implementations may be similarly vulnerable. This paper describes the vulnerabilities in detail and offers advice for remediation. The most damaging attack is also likely to apply in other contexts where XSLT is accepted as input, and should be considered by all implementers of complex XML processing systems. Categories and Subject Descriptors Primary Classification: K.6.5 Security and Protection Subject: Invasive software Unauthorized access Authentication Additional Classification: D.2.3 Coding Tools and Techniques (REVISED) Subject: Standards D.2.1 Requirements/Specifications (D.3.1) Subject: Languages Tools General Terms: Security, Reliability, Verification, and Design. -
Attacking AJAX Web Applications Vulns 2.0 for Web 2.0
Attacking AJAX Web Applications Vulns 2.0 for Web 2.0 Alex Stamos Zane Lackey [email protected] [email protected] Blackhat Japan October 5, 2006 Information Security Partners, LLC iSECPartners.com Information Security Partners, LLC www.isecpartners.com Agenda • Introduction – Who are we? – Why care about AJAX? • How does AJAX change Web Attacks? • AJAX Background and Technologies • Attacks Against AJAX – Discovery and Method Manipulation – XSS – Cross-Site Request Forgery • Security of Popular Frameworks – Microsoft ATLAS – Google GWT –Java DWR • Q&A 2 Information Security Partners, LLC www.isecpartners.com Introduction • Who are we? – Consultants for iSEC Partners – Application security consultants and researchers – Based in San Francisco • Why listen to this talk? – New technologies are making web app security much more complicated • This is obvious to anybody who reads the paper – MySpace – Yahoo – Worming of XSS – Our Goals for what you should walk away with: • Basic understanding of AJAX and different AJAX technologies • Knowledge of how AJAX changes web attacks • In-depth knowledge on XSS and XSRF in AJAX • An opinion on whether you can trust your AJAX framework to “take care of security” 3 Information Security Partners, LLC www.isecpartners.com Shameless Plug Slide • Special Thanks to: – Scott Stender, Jesse Burns, and Brad Hill of iSEC Partners – Amit Klein and Jeremiah Grossman for doing great work in this area – Rich Cannings at Google • Books by iSECer Himanshu Dwivedi – Securing Storage – Hackers’ Challenge 3 • We are -
Describing Media Content of Binary Data in XML W3C Working Group Note 4 May 2005
Table of Contents Describing Media Content of Binary Data in XML W3C Working Group Note 4 May 2005 This version: http://www.w3.org/TR/2005/NOTE-xml-media-types-20050504 Latest version: http://www.w3.org/TR/xml-media-types Previous version: http://www.w3.org/TR/2005/NOTE-xml-media-types-20050502 Editors: Anish Karmarkar, Oracle Ümit Yalçınalp, SAP Copyright © 2005 W3C ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. > >Abstract This document addresses the need to indicate the content-type associated with binary element content in an XML document and the need to specify, in XML Schema, the expected content-type(s) associated with binary element content. It is expected that the additional information about the content-type will be used for optimizing the handling of binary data that is part of a Web services message. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/. This document is a W3C Working Group Note. This document includes the resolution of the comments received on the Last Call Working Draft previously published. The comments on this document and their resolution can be found in the Web Services Description Working Group’s issues list. There is no technical difference between this document and the 2 May 2005 version; the acknowledgement section has been updated to thank external contributors. -
XML Information Set
XML Information Set XML Information Set W3C Recommendation 24 October 2001 This version: http://www.w3.org/TR/2001/REC-xml-infoset-20011024 Latest version: http://www.w3.org/TR/xml-infoset Previous version: http://www.w3.org/TR/2001/PR-xml-infoset-20010810 Editors: John Cowan, [email protected] Richard Tobin, [email protected] Copyright ©1999, 2000, 2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use and software licensing rules apply. Abstract This specification provides a set of definitions for use in other specifications that need to refer to the information in an XML document. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. The latest status of this document series is maintained at the W3C. This is the W3C Recommendation of the XML Information Set. This document has been reviewed by W3C Members and other interested parties and has been endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited as a normative reference from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the file:///C|/Documents%20and%20Settings/immdca01/Desktop/xml-infoset.html (1 of 16) [8/12/2002 10:38:58 AM] XML Information Set Web. This document has been produced by the W3C XML Core Working Group as part of the XML Activity in the W3C Architecture Domain. -
Chapter 10 Document Object Model and Dynamic HTML
Chapter 10 Document Object Model and Dynamic HTML The term Dynamic HTML, often abbreviated as DHTML, refers to the technique of making Web pages dynamic by client-side scripting to manipulate the document content and presen- tation. Web pages can be made more lively, dynamic, or interactive by DHTML techniques. With DHTML you can prescribe actions triggered by browser events to make the page more lively and responsive. Such actions may alter the content and appearance of any parts of the page. The changes are fast and e±cient because they are made by the browser without having to network with any servers. Typically the client-side scripting is written in Javascript which is being standardized. Chapter 9 already introduced Javascript and basic techniques for making Web pages dynamic. Contrary to what the name may suggest, DHTML is not a markup language or a software tool. It is a technique to make dynamic Web pages via client-side programming. In the past, DHTML relies on browser/vendor speci¯c features to work. Making such pages work for all browsers requires much e®ort, testing, and unnecessarily long programs. Standardization e®orts at W3C and elsewhere are making it possible to write standard- based DHTML that work for all compliant browsers. Standard-based DHTML involves three aspects: 447 448 CHAPTER 10. DOCUMENT OBJECT MODEL AND DYNAMIC HTML Figure 10.1: DOM Compliant Browser Browser Javascript DOM API XHTML Document 1. Javascript|for cross-browser scripting (Chapter 9) 2. Cascading Style Sheets (CSS)|for style and presentation control (Chapter 6) 3. Document Object Model (DOM)|for a uniform programming interface to access and manipulate the Web page as a document When these three aspects are combined, you get the ability to program changes in Web pages in reaction to user or browser generated events, and therefore to make HTML pages more dynamic. -
The Development of Algorithms for On-Demand Map Editing for Internet and Mobile Users with Gml and Svg
THE DEVELOPMENT OF ALGORITHMS FOR ON-DEMAND MAP EDITING FOR INTERNET AND MOBILE USERS WITH GML AND SVG Miss. Ida K.L CHEUNG a, , Mr. Geoffrey Y.K. SHEA b a Department of Land Surveying & Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, email: [email protected] b Department of Land Surveying & Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, email: [email protected] Commission VI, PS WG IV/2 KEY WORDS: Spatial Information Sciences, GIS, Research, Internet, Interoperability ABSTRACT: The widespread availability of the World Wide Web has led to a rapid increase in the amount of data accessing, sharing and disseminating that gives the opportunities for delivering maps over the Internet as well as small mobile devices. In GIS industry, many vendors or companies have produced their own web map products which have their own version, data model and proprietary data formats without standardization. Such problem has long been an issue. Therefore, Geographic Markup Language (GML) was designed to provide solutions. GML is an XML grammar written in XML Schema for the modelling, transport, and storage of geographic information including both spatial and non-spatial properties of geographic features. GML is developed by Open GIS Consortium in order to promote spatial data interoperability and open standard. Since GML is still a newly developed standard, this promising research field provides a standardized method to integrate web-based mapping information in terms of data modelling, spatial data representation mechanism and graphic presentation. As GML is not for data display, SVG is an ideal vector graphic for displaying geographic data. -
5241 Index 0939-0964.Qxd 29/08/02 5.30 Pm Page 941
5241_index_0939-0964.qxd 29/08/02 5.30 pm Page 941 INDEX 941 5241_index_0939-0964.qxd 29/08/02 5.30 pm Page 942 Index 942 Regular A Alternatives, 362 Analysis Patterns: Reusable Expression ABSENT value, 67 Object Models, 521 Symbols abstract attribute, 62, 64–66 ancestor (XPath axis), 54 of complexType element, ancestor-or-self (XPath axis), . escape character, 368, 369 247–248, 512, 719 54 . metacharacter, 361 of element element, 148–149 Annotation, 82 ? metacharacter, 361, 375 mapping to object-oriented defined, 390 ( metacharacter, 361 language, 513–514 mapping to object-oriented ) metacharacter, 361 Abstract language, 521 { metacharacter, 361 attribute type, 934 Microsoft use of term, } metacharacter, 361 defined, 58 821–822 + metacharacter, 361, 375 element type, 16, 17, 18, 934 properties of, 411 * metacharacter, 361, 375 object, corresponding to docu- annotation content option ^ metacharacter, 379 ment, 14 for schema element, 115 \ metacharacter, 361 uses of term, 238, 931–932 annotation element, 82, 83, | metacharacter, 361 Abstract character, 67 254, 260, 722, 859 \. escape character, 366 Abstract document attributes of, 118 \? escape character, 366 document information item content options for, 118–119 \( escape character, 367 view of, 62 example of use of, 117 \) escape character, 367 infoset view of, 62 function of, 116, 124, 128 \{ escape character, 367 makeup of, 59 nested, 83–84 \} escape character, 367 properties of, 66 Anonymous component, 82 \+ escape character, 367 Abstract element, 14–15 any element, 859 \- escape character,