Phillip Vallentine Tobias (1925–2012) Palaeoanthropologist Who Pioneered Description of African Hominins

Total Page:16

File Type:pdf, Size:1020Kb

Phillip Vallentine Tobias (1925–2012) Palaeoanthropologist Who Pioneered Description of African Hominins COMMENT OBITUARY Phillip Vallentine Tobias (1925–2012) Palaeoanthropologist who pioneered description of African hominins. hillip Vallentine Tobias, known to his reclassified as Australopithecus boisei, then early variety of Homo, and Clarke argued that friends and colleagues as PVT, was the as Paranthropus boisei). others belonged to Paranthropus robustus. doyen of the palaeoanthropological Tobias’s collaboration with Louis and the The Sterkfontein fossils are crucial to debates Pcommunity. His descriptions of the early British anatomist John Napier to describe about whether hominins moved freely hominin fossils found at Olduvai Gorge, Tan- the Olduvai fossils became the basis for the between eastern and southern Africa, or zania, are part of the bedrock on which rests description of Homo habilis — a new, and at evolved independently in the two regions. our knowledge of human origins. In 1994, Clarke discovered four austra- For half a century, he stewarded the lopith foot bones in a box of fossils that had excavations at Sterkfontein, a group of been collected in 1977. He and Tobias pub- fossil-rich caves northwest of Johannes- lished an account of the bones, and Clarke burg, South Africa. He was a colleague has since recovered much of the skeleton, of Louis and Mary Leakey, the husband- nicknamed ‘Little Foot’. The collection is and-wife team who did much to establish on track to being the most complete early that humans originated in Africa. And he hominin skeleton ever recovered. AVUSA/GALLO IMAGES/GETTY AVUSA/GALLO remained in South Africa throughout his Tobias’s undergraduate contemporaries career — with all the professional compli- at Wits’ medical school included Sydney cations and opportunities for activism that Brenner and Aaron Klug. Whereas their entailed. All this gave him a distinctive research interests led them away from role at the University of the Witwatersrand South Africa, Tobias stayed put. He had to (‘Wits’) in Johannesburg, and in the field. remain where the fossils were. He became Tobias was born and received his early a consistent thorn in the side of the South education largely in Durban, South Africa. African apartheid regime. His vociferous In the first volume of his autobiography, opposition, in speeches and in demonstra- Into the Past (Picador Africa, 2005), he tions that were ruthlessly suppressed by the suggested that the premature death of his authorities, began in 1948 when he became sister Val from diabetes, as well as his visits president of the National Union of South to the Durban Natural Science Museum, African Students. He was no less ardent as were the reasons for his interest in science. a senior academic. Although his scientific A six-decade-long connection with prominence gave him a measure of protec- Wits began when he started his BSc in tion, his moral and physical courage was physiology, histology and embryol- not to be underestimated. It was distressing ogy, which he gained in 1946. While an that Tobias was occasionally tarred with undergraduate, Tobias met his mentor, the apartheid brush and denied access to Raymond Dart, who was famous for conferences in other countries. discovering Australopithecus africanus, the first contentious, hominin species. A mono­ Wedded to his work, Tobias never married. first early hominin to be unearthed in Africa. graph, The Cranium and Maxillary Denti- Apart from watching his beloved cricket at Tobias completed a medical degree in 1950, tion of Australopithecus (Zinjanthropus) the Bidvest Wanderers Stadium in Johannes- but opted for a career in research. boisei (Cambridge University Press, 1967), burg, he either worked or travelled. I visited After attaining a PhD in genetics in 1953, followed. Two mammoth volumes entitled him once at his home. Even though he owned Tobias took part in an expedition to study The Skulls, Endocasts and Teeth of Homo three large tables, we had to eat dinner from the San bushmen in the Kalahari Desert. habilis (Cambridge University Press, 1991) trays on our laps, because his ‘habilis volume’ This drew him into physical anthropology. provided exquisite details of subsequent was spread out on all the other surfaces. He spent 1955 at the University of Cam- hominin discoveries from Olduvai. As meticulous about his manners and dress bridge, UK, examining hominin fossils For much of his career, Tobias focused as he was about his writing and lectures, PVT curated in England and France. In 1956 he on excavations at the Sterkfontein caves. In was kind and encouraging to students and toured the United States, returning to South 1958 Sterkfontein became the property of young researchers, me included. South Africa Africa late that year. Through these travel- Wits, and Tobias ramped up the operations and the palaeoanthropological community ling fellowships he gained contacts that he there, which continue to this day. Initially, are immeasurably poorer for his passing. ■ nurtured for the rest of his career. the excavations were supervised by Alun In 1959, shortly after Dart retired, Tobias Hughes, who had worked with Dart. Since Bernard Wood is the University Professor was appointed as head of the anatomy 1991, they have been led by Ronald Clarke, of Human Origins at George Washington department at Wits, a position he held until who had assisted the Leakeys. University, Washington DC 20052, USA. he retired in 1990. That was also the year By the early 1990s, Tobias’s team had col- Tobias became his unofficial mentor after that he got his big scientific break. Louis lected more than 500 hominin fossils, mostly Wood visited Wits to study fossil craniums in and Mary Leakey invited him to analyse of A. africanus. However, some (includ- 1972. His research builds on Tobias’s seminal the Zinjanthropus boisei cranium that Mary ing the jaw in his left hand, pictured) were work on the Olduvai hominin fossil record. had just discovered at Olduvai Gorge (since judged by Tobias and Hughes to belong to an e-mail: [email protected] 40 | NATURE | VOL 487 | 5 JULY 2012 © 2012 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • Homo Habilis
    COMMENT SUSTAINABILITY Citizens and POLICY End the bureaucracy THEATRE Shakespeare’s ENVIRONMENT James Lovelock businesses must track that is holding back science world was steeped in on surprisingly optimistic governments’ progress p.33 in India p.36 practical discovery p.39 form p.41 The foot of the apeman that palaeo­ ‘handy man’, anthropologists had been Homo habilis. recovering in southern Africa since the 1920s. This, the thinking went, was replaced by the taller, larger-brained Homo erectus from Asia, which spread to Europe and evolved into Nean­ derthals, which evolved into Homo sapiens. But what lay between the australopiths and H. erectus, the first known human? BETTING ON AFRICA Until the 1960s, H. erectus had been found only in Asia. But when primitive stone-chop­ LIBRARY PICTURE EVANS MUSEUM/MARY HISTORY NATURAL ping tools were uncovered at Olduvai Gorge in Tanzania, Leakey became convinced that this is where he would find the earliest stone- tool makers, who he assumed would belong to our genus. Maybe, like the australopiths, our human ancestors also originated in Africa. In 1931, Leakey began intensive prospect­ ing and excavation at Olduvai Gorge, 33 years before he announced the new human species. Now tourists travel to Olduvai on paved roads in air-conditioned buses; in the 1930s in the rainy season, the journey from Nairobi could take weeks. The ravines at Olduvai offered unparalleled access to ancient strata, but field­ work was no picnic in the park. Water was often scarce. Leakey and his team had to learn to share Olduvai with all of the wild animals that lived there, lions included.
    [Show full text]
  • Seminar on the Evolution of Language PSYC GU4242 4 Points Professor Herb Terrace 418 Schermerhorn Hall [email protected]
    Seminar on the Evolution of Language PSYC GU4242 4 points Professor Herb Terrace 418 Schermerhorn Hall [email protected] 212-854-4544 Thursdays 10:10-12 Schermerhorn 200C Office hours: Thursdays 9-10am and other times TBA Course description: This seminar will consider the evolution of language at the levels of the word and grammar, in each instance, phylogenetically and ontogenetically. Since humans are the only species that use language, attention will be paid to how language differs from animal communication. Prerequisites: Introduction to linguistics, introduction to psychology, and permission of instructor. Role of PSYC GU4242 in the Psychology curriculum: GU4242 is a seminar open to graduate students and advanced undergraduate students. It fulfills the following degree requirements. • For graduate students, it can partially fulfill the seminar requirement for the M.A. or the elective requirement for the M.Phil. • For undergraduates Psychology majors or concentrators and for students in the Psychology Postbaccalaureate certificate program, it meets the Group I (Perception & Cognition) distribution requirement. • For Psychology majors and Psychology Postbac students, it fulfills the seminar requirement. • For undergraduates pursuing the Neuroscience & Behavior major, it fulfills the advanced seminar requirement in the Psychology portion of the major. • Graduate students in Psychology and junior and senior Neuroscience & Behavior, Psychology, and Linguistics majors will have priority for registration. However, for non-majors in the College and in G.S., GU4242 could count as one term of the natural science requirement, provided the student has taken the prerequisite courses and has instructor permission. Role of PSYC GU4242 in the Linguistics curriculum: This course can be used to meet the “psychology and biology of language” theme requirement or the elective course requirement for the Linguistics major.
    [Show full text]
  • Paranthropus Boisei: Fifty Years of Evidence and Analysis Bernard A
    Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Fall 11-28-2007 Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard A. Wood George Washington University Paul J. Constantino Biological Sciences, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons Recommended Citation Wood B and Constantino P. Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology 50:106-132. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. YEARBOOK OF PHYSICAL ANTHROPOLOGY 50:106–132 (2007) Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard Wood* and Paul Constantino Center for the Advanced Study of Hominid Paleobiology, George Washington University, Washington, DC 20052 KEY WORDS Paranthropus; boisei; aethiopicus; human evolution; Africa ABSTRACT Paranthropus boisei is a hominin taxon ers can trace the evolution of metric and nonmetric var- with a distinctive cranial and dental morphology. Its iables across hundreds of thousands of years. This pa- hypodigm has been recovered from sites with good per is a detailed1 review of half a century’s worth of fos- stratigraphic and chronological control, and for some sil evidence and analysis of P. boi se i and traces how morphological regions, such as the mandible and the both its evolutionary history and our understanding of mandibular dentition, the samples are not only rela- its evolutionary history have evolved during the past tively well dated, but they are, by paleontological 50 years.
    [Show full text]
  • Teaching Materials Associated with Module 1 Taung Child
    Teaching Materials Associated With Module 1 Taung Child: - Discovered in 1924 by Australian anatomy professor Raymond Dart - Among the first human fossils to be found in Africa - Dated to between 2.5 and 3 million years ago - Based on dental eruption patterns, Taung child’s age at death was ~3.3 years old - It is thought that an eagle killed Taung child based on what appear to be talon puncture marks on the skull Discovery of Taung Child: - Dart’s discovery: “Australian anatomy professor Raymond Dart was adjusting the collar of his dress suit in preparation for a friend’s wedding when a box, shipped from a limestone quarry near Taung, South Africa, arrived at the doorstep of his Johannesburg home in November 1924. Dart abandoned his collar to dig through the package’s contents—all the while ignoring the grumblings of his wife and the groom, who were anxious to begin the wedding ceremony. Inside the box, he found a fossilized mold of a brain and a matching child’s skull partially buried in stone. Dart quickly realized the significance of the finding, and by February 1925 had published an article in Nature identifying a new species: Australopithecus africanus. The 2.5-million-year-old “Taung Child” or “Taung Baby,” as Dart called it, was the first member of the Australopithecus genus discovered, and it challenged contemporary ideas about human evolution.” – The Scientist Magazine - This can be considered “armchair paleoanthropology” as Dart did not participate in the excavation of Taung child himself. Instead, he was sent the samples and completed the analysis from Johannesburg.
    [Show full text]
  • Identity of Newly Found, Fully Intact Hominid Skulls from Ethiopia Chris Lemke College of Dupage
    ESSAI Volume 7 Article 31 4-1-2010 Identity of Newly Found, Fully Intact Hominid Skulls from Ethiopia Chris Lemke College of DuPage Follow this and additional works at: http://dc.cod.edu/essai Recommended Citation Lemke, Chris (2009) "Identity of Newly Found, Fully Intact Hominid Skulls from Ethiopia," ESSAI: Vol. 7, Article 31. Available at: http://dc.cod.edu/essai/vol7/iss1/31 This Selection is brought to you for free and open access by the College Publications at [email protected].. It has been accepted for inclusion in ESSAI by an authorized administrator of [email protected].. For more information, please contact [email protected]. Lemke: Identity of Hominid Skulls Identity of Newly Found, Fully Intact Hominid Skulls from Ethiopia by Chris Lemke (Honors Biology 1151) ABSTRACT ecently, three fully intact hominid skulls have been found in the Afar Region of Ethiopia. Objectives were to date the skulls using Uranium-235, and to identify each of the skulls. RUranium-235 dating indicated skulls A and B to be 2.9 million years old, and skull C to be 1.7 million years old. Each skull was properly identified using existing fossil data. The two oldest skulls were found to be Australopithecus afarensis, and A. africanus. The younger skull was identified as Homo habilis. A discrepancy was found in the measured cranial capacity data against existing data. Due to condition of the newly found fossils, the most likely explanation for the discrepancy is inaccuracy of existing fossil data due to incomplete and fragmented specimens, or that the skulls in question were representative of a juvenile hominid.
    [Show full text]
  • 1St Uj Palaeo-Research Symposium
    PROGRAMME 1ST UJ PALAEO-RESEARCH SYMPOSIUM in combination with the 2ND PALAEO-TRACKS SYMPOSIUM Monday 13 November 2017 Funded by the African Origins Platform of the National Research Foundation of South Africa Through the Palaeo-TrACKS Research Programme 08:30 Arrival, coffee & loading of Power Point presentations Freshly brewed tea and coffee with a selection of freshly baked croissants, Danish pastries & muffins 09:00 5 min Welcome Prof Alex Broadbent (Executive Dean of Humanities & Professor of Philosophy, University of Johannesburg) Introduction of Chairs Morning session: Prof Kammila Naidoo, Humanities Deputy Dean Research & Professor of Sociology Afternoon session: Prof Marlize Lombard, Director of the Centre for Anthropological Research 09:05 10 min Opening address Prof Angina Parekh (Deputy Vice Chancellor: Academic and Institutional Planning, University of Johannesburg) SESSION 1: INVITED KEYNOTE LECTURES 09:15 30 min The Rising Star fossil discoveries and human origins Prof John Hawks (Vilas-Borghesi Distinguished Achievement Professor of Anthropology, University of Wisconsin-Madison, USA) Abstract: Discoveries in the Dinaledi and Lesedi Chambers of the Rising Star cave system have transformed our knowledge of South African fossil hominins during the Middle Pleistocene. The research strategies undertaken in the Rising Star cave system provide a strong framework for inter- disciplinary work in palaeo-anthropology. This talk gives an overview of the Rising Star research project, focusing on the processes that have enabled effective
    [Show full text]
  • Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
    EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).
    [Show full text]
  • Paranthropus Through the Looking Glass COMMENTARY Bernard A
    COMMENTARY Paranthropus through the looking glass COMMENTARY Bernard A. Wooda,1 and David B. Pattersona,b Most research and public interest in human origins upper jaw fragment from Malema in Malawi is the focuses on taxa that are likely to be our ancestors. southernmost evidence. However, most of what we There must have been genetic continuity between know about P. boisei comes from fossils from Koobi modern humans and the common ancestor we share Fora on the eastern shore of Lake Turkana (4) and from with chimpanzees and bonobos, and we want to know sites in the Nachukui Formation on the western side of what each link in this chain looked like and how it be- the lake (Fig. 1A). haved. However, the clear evidence for taxic diversity The cranial and dental morphology of P.boisei is so in the human (aka hominin) clade means that we also distinctive its remains are relatively easy to identify (5). have close relatives who are not our ancestors (1). Two Unique features include its flat, wide, and deep face, papers in PNAS focus on the behavior and paleoenvi- flexed cranial base, large and thick lower jaw, and ronmental context of Paranthropus boisei, a distinctive small incisors and canines combined with massive and long-extinct nonancestral relative that lived along- chewing teeth. The surface area available for process- side our early Homo ancestors in eastern Africa between ing food is extended both forward—by having premo- just less than 3 Ma and just over 1 Ma. Both papers use lar teeth that look like molars—and backward—by the stable isotopes to track diet during a largely unknown, unusually large third molar tooth crowns, all of which but likely crucial, period in our evolutionary history.
    [Show full text]
  • Isotopic Evidence for Contrasting Diets of Early Hominins Homo Habilis And
    Research Letters South African Journal of Science 104, March/April 2008 153 An alternative method of sampling, recently developed, is that Isotopic evidence for of laser ablation, which removes sub-millimetre increments along the growth axis and makes it possible to assess seasonal contrasting diets of early variations in an individual’s diet.10 Laser ablation requires that hominins Homo habilis and specimens of whole or broken teeth be taken to the laboratory for analysis. In the case of the Tanzanian hominin fossils, this is Australopithecus boisei of not an option. Isotopic analysis of fossils has been developed over the past Tanzania 25 years and is a well-established technique for dietary assess- ment in palaeontology. Tooth enamel has proved to be the most reliable sample material, since it is highly crystalline and resistant a* b Nikolaas J. van der Merwe , Fidelis T. Masao and to chemical alteration over time.11–13 Tooth enamel is a biological c Marion K. Bamford apatite (calcium phosphate) containing carbonate, which makes up about 3% of the enamel weight (as CO3). The stable carbon and oxygen isotope ratios (δ13C and δ18O values, relative to the PDB standard) of carbonates in tooth enamel are measured Isotopic dietary studies of early hominins have hitherto been confined simultaneously in a mass spectrometer. Of these measurements, to specimens from South Africa. We are now able to report isotopic δ18O values are related to the water intake (from food and drink- analyses of two species of early hominins from Tanzania: Homo ing) and water excretion (sweat, urine, breath) of an animal;14 habilis and Australopithecus boisei.
    [Show full text]
  • Early Hominidshominids
    EarlyEarly HominidsHominids TheThe FossilFossil RecordRecord TwoTwo StoriesStories toto Tell:Tell: 1.1. HowHow hominidshominids evolvedevolved 2.2. HowHow interpretationsinterpretations changechange InsightInsight intointo processprocess PastPast && futurefuture changeschanges InteractingInteracting elements...elements... InterplayInterplay ofof ThreeThree ElementsElements “Hard” evidence Fossils Archeological associations Explanation Dates Reconstructions Anatomy Behavior Phylogeny Reconstruction Evidence Explanatory Frames Why did it happen? What does it mean? MutualMutual InfluenceInfluence WhereWhere toto start?start? SouthSouth Africa,Africa, 19241924 TaungTaung ChildChild Raymond Dart, 1924 Taung, South Africa Why did Dart call it a Hominid? TaungTaung ChildChild Raymond Dart, 1924 Taung, South Africa Australopithecus africanus 2.5 mya Four-year old with an ape-sized brain, humanlike small canines, and foramen magnum shifted forward NeanderthalNeanderthal HomoHomo sapienssapiens neanderthalensis neanderthalensis NeanderNeander Valley,Valley, Germany, Germany, 18561856 Age: 40-50,000 Significance: First human fossil acknowledged as such, and first specimen of Neanderthal. First dismissed as a freak, but Doctor J. C. Fuhlrott speculated that it was an ancient human. TrinilTrinil 1:1: “Java“Java Man”Man” HomoHomo erectuserectus Eugene Dubois, 1891 Trinil, Java, Indonesia Age: 500,000 yrs Significance: The Java hominid, originally classified as Pithecanthropus erectus, was the controversial “missing link” of its day.
    [Show full text]
  • Arguments That Prehistorical and Modern Humans Belong to the Same Species
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 doi:10.20944/preprints201905.0038.v1 Arguments that Prehistorical and Modern Humans Belong to the Same Species Rainer W. Kühne Tuckermannstr. 35, 38118 Braunschweig, Germany e-mail: [email protected] May 2, 2019 Abstract called either progressive Homo erectus or archaic Homo sapiens. I argue that the evidence of the Out-of-Africa A more primitive group of prehistorical hu- hypothesis and the evidence of multiregional mans is sometimes classified as Homo erec- evolution of prehistorical humans can be un- tus, but mostly classified as belonging to dif- derstood if there has been interbreeding be- ferent species. These include Homo anteces- tween Homo erectus, Homo neanderthalensis, sor, Homo cepranensis, Homo erectus, Homo and Homo sapiens at least during the preced- ergaster, Homo georgicus, Homo heidelbergen- ing 700,000 years. These interbreedings require sis, Homo mauretanicus, and Homo rhodesien- descendants who are capable of reproduction sis. Sometimes the more primitive Homo habilis and therefore parents who belong to the same is regarded as belonging to the same species as species. I suggest that a number of prehistori- Homo ergaster. cal humans who are at present regarded as be- A further species is Homo floresiensis, a dwarf longing to different species belong in fact to one form known from Flores, Indonesia. This species single species. shows some anatomical characteristics which are similar to those of the more primitive humans Keywords Homo ergaster and Homo georgicus and other Homo sapiens, Homo neanderthalensis, Homo anatomical characteristics which are similar to erectus, Homo floresiensis, Neandertals, Deniso- those of Homo sapiens [1][2][3].
    [Show full text]
  • Raymond Dart Remembered Professor of Anatomy Palaeontologist
    Raymond Dart Remembered (1893 – 1988) Professor of Anatomy Palaeontologist This appreciation of Raymond Dart is based on Professor Laurence Geffen’s inaugural address in 1991 as Dean of the Faculty of Medicine, University of Queensland (Dart’s Alma Mater) in Brisbane (Dart’s birthplace), and on an expanded version delivered to the Royal Australian and New Zealand College of Psychiatrists in 2012. (Circulated to the Class of 1960, as Newsletter #11 – Raymond Dart Newsletters) Page 1 of 13 The human brain is the most complicated known kilogram of matter in the universe. There is much debate about the evolutionary forces that directed the development of this marvellous organ, the understanding of which constitutes the ultimate frontier of biological research. As my title implies, I will focus on one of these forces, the dynamic interaction between that equally marvellous manipulative machine, the human hand, and the evolutionary development of the brain, an interaction facilitated by the adoption by our hominid ancestors of an upright, bipedal posture several million years ago. Let me state at the outset that the hidden hand in my lecture title does not refer to divine intervention, as portrayed in this iconic masterpiece by Michelangelo on the ceiling of the Sistine Chapel that depicts the hand of God reaching out to that of newly created Adam on the sixth day of Creation. Instead, it refers to the cryptic role that the manipulative properties of the human hand have played in guiding the evolution of the human brain. That is the background against which I wish to focus on the contribution of Raymond Arthur Dart, a Queenslander by birth, who migrated from Australia via the UK to South Africa to become Professor of Anatomy as a young man of 30 at the University of Witwatersrand in Johannesburg.
    [Show full text]