South African Archaeological Bulletin 70 (201): 3–14, 2015 3 Research Article USE-TRACE ANALYSIS OF BONE TOOLS: A BRIEF OVERVIEW OF FOUR METHODOLOGICAL APPROACHES JUSTIN BRADFIELD Department of Anthropology and Development Studies, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa E-mail:
[email protected] (Received January 2015. Revised April 2015) ABSTRACT until mechanical failure results in a fracture (Johnson 1985; In comparison with some other parts of the world, there has been a Lakes et al. 1990; Kim et al. 2006; Rennick 2012). Adhesive wear marked lack of engagement with the functional study of bone tools in arises from frictional contact between two surfaces. However, southern Africa. Only a handful of researchers are actively conducting instead of resulting in material attrition, as occurs with abrasive work on this important aspect of material culture on the sub- wear, material from one object is transferred to the other continent. In this paper, I explore four avenues of use-trace analyses (LeMoine 1994; Francis 2002). The contact material is identified, that can be used to investigate the past function of bone tools, namely, based on the residue of the adhering material. Chemical wear is use-wear, macrofracture analysis, morphological residues studies and the physical alteration of a tool surface due to chemical action, micro-focus computed tomography. Despite the increasing application which normally occurs after deposition but which can also of sophisticated analytical software, definitions of use-traces still differ occur as a result of contact with skin and other acidic sub- among analysts. Here I provide a brief overview of various use-trace stances or organic enzymes.