Tribute to Brain Titlepage.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
South African Palaeo-Scientists the Names Listed Below Are Just Some of South Africa’S Excellent Researchers Who Are Working Towards Understanding Our African Origins
2010 African Origins Research MAP_Layout 1 2010/04/15 11:02 AM Page 1 South African Palaeo-scientists The names listed below are just some of South Africa’s excellent researchers who are working towards understanding our African origins. UNIVERSITY OF CAPE TOWN (UCT) Dr Thalassa Matthews analyses the Dr Job Kibii focuses PALAEOBIOLOGICAL RESEARCH thousands of tiny teeth and bones of fossil on how fossil hominid Professor Anusuya Chinsamy-Turan is one microfauna to reconstruct palaeoenviron- and non-hominid of only a few specialists in the world who mental and climatic changes on the west faunal communities coast over the last 5 million years. changed over time and African Origins Research studies the microscopic structure of bones of dinosaurs, pterosaurs and mammal-like uses this to reconstruct reptiles in order to interpret various aspects ALBANY MUSEUM, past palaeoenviron- of the biology of extinct animals. GRAHAMSTOWN ments and palaeo- A summary of current research into fossils of animals, plants and early hominids from the beginning of life on Earth to the Middle Stone Age PERMIAN AGE PLANTS ecology. THE HOFMEYR SKULL Dr Rose Prevec studies the “No other country in the world can boast the oldest evidence of life on Earth extending back more than 3 billion years, the oldest multi-cellular animals, the oldest land-living plants, Professor Alan Morris described the Glossopteris flora of South Africa (the PAST HUMAN BEHAVIOUR Hofmeyer skull, a prehistoric, fossilized ancient forests that formed our coal Professor Chris Henshilwood directs the most distant ancestors of dinosaurs, the most complete record of the more than 80 million year ancestry of mammals, and, together with several other African countries, a most remarkable human skull about 36 000 years old deposits) and their end-Permian excavations at Blombos Cave where that corroborates genetic evidence that extinction. -
Dental Pathology, Wear and Developmental Defects in South African Hominins
Dental pathology, wear and developmental defects in South African hominins IAN EDWARD TOWLE A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy June 2017 Abstract Studying different types of dental pathology, wear, and developmental defects can allow inferences into diet and behaviour in a variety of ways. In this project data on these different variables were collected for South African hominins and compared with extant primates. The species studied include Paranthropus robustus, Australopithecus africanus, A. sediba, early Homo, Homo naledi, baboons, chimpanzees and gorillas. Macroscopic examination of each specimen was performed, with a 10X hand lens used to verify certain pathologies. Variables recorded include antemortem chipping, enamel hypoplasia, caries, occlusal wear, tertiary dentine, abscesses, and periodontal disease. Clear differences in frequencies were found in the different South African hominin species. Homo naledi displays high rates of chipping, especially small fractures above molar wear facets, likely reflecting a diet containing high levels of contaminants. Other noteworthy results include the high levels of pitting enamel hypoplasia in P. robustus molars compared to other species, likely due to a species-specific enamel formation property or developmental disturbance. The low rates of chipping in P. robustus does not fit with this species being a hard food specialist. Instead, the wear best supports a diet of low-quality tough vegetation. Australopithecus africanus likely had a broad diet, with angled molar wear, lack of caries, and high chipping frequencies supporting this conclusion. Seven new carious lesions are described, two from H. naledi and five P. -
The Partial Skeleton Stw 431 from Sterkfontein – Is It Time to Rethink the Plio-Pleistocene Hominin Diversity in South Africa?
doie-pub 10.4436/JASS.98020 ahead of print JASs Reports doi: 10.4436/jass.89003 Journal of Anthropological Sciences Vol. 98 (2020), pp. 73-88 The partial skeleton StW 431 from Sterkfontein – Is it time to rethink the Plio-Pleistocene hominin diversity in South Africa? Gabriele A. Macho1, Cinzia Fornai 2, Christine Tardieu3, Philip Hopley4, Martin Haeusler5 & Michel Toussaint6 1) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX, England; School of Archaeology, University of Oxford, Oxford OX1 3QY, England email: [email protected]; [email protected] 2) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Anthropology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria 3) Muséum National d’Histoire Naturelle, 55 rue Buffon, 75005 Paris, France 4) Earth and Planetary Science, Birkbeck, University of London, London WC1E 7HX; Department of Earth Sciences, University College London, London, WC1E 6BT, England 5) Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 6) retired palaeoanthropologist, Belgium email: [email protected] Summary - The discovery of the nearly complete Plio-Pleistocene skeleton StW 573 Australopithecus prometheus from Sterkfontein Member 2, South Africa, has intensified debates as to whether Sterkfontein Member 4 contains a hominin species other than Australopithecus africanus. For example, it has recently been suggested that the partial skeleton StW 431 should be removed from the A. africanus hypodigm and be placed into A. prometheus. Here we re-evaluate this latter proposition, using published information and new comparative data. Although both StW 573 and StW 431 are apparently comparable in their arboreal (i.e., climbing) and bipedal adaptations, they also show significant morphological differences. -
Title: Drimolen Crania Indicate Contemporaneity of Australopithecus, Paranthropus and Early Homo Erectus in S
Submitted Manuscript: Confidential Title: Drimolen crania indicate contemporaneity of Australopithecus, Paranthropus and early Homo erectus in S. Africa Authors: Andy I.R. Herries1,2*†, Jesse M. Martin1†, A.B. Leece1†, Justin W. Adams3,2†, Giovanni Boschian4,2†, Renaud Joannes-Boyau5,2, Tara R. Edwards1, Tom Mallett1, Jason Massey3,6, Ashleigh Murszewski1, Simon Neuebauer7, Robyn Pickering8.9, David Strait10,2, Brian J. Armstrong2, Stephanie Baker2, Matthew V. Caruana2, Tim Denham11, John Hellstrom12, Jacopo Moggi-Cecchi13, Simon Mokobane2, Paul Penzo-Kajewski1, Douglass S. Rovinsky3, Gary T. Schwartz14, Rhiannon C. Stammers1, Coen Wilson1, Jon Woodhead12, Colin Menter13 Affiliations: 1. Palaeoscience Labs, Dept. Archaeology and History, La Trobe University, Bundoora, 3086, VIC, Australia. 2. Palaeo-Research Institute, University of Johannesburg, Gauteng Province, South Africa. 3. Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, VIC, Australia. 4. Department of Biology, University of Pisa, Italy 5. Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross University, Military Rd, Lismore, 2480, NSW, Australia 6. Department of Integrative Biology and Physiology, University of Minnesota Medical School, USA 7. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Germany. 8. Department of Geological Sciences, University of Cape Town, Western Cape, South Africa 9. Human Evolution Research Institute, University of Cape Town, Western Cape, South Africa 10. Department of Anthropology, Washington University in St. Louis, St. Louis, USA 11. Geoarchaeology Research Group, School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia 12. Earth Sciences, University of Melbourne, Australia 13. Department of Biology, University of Florence, Italy 14. Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, U.S.A. -
Surface Model and Tomographic Archive of Fossil Primate and Other
RESEARCH ARTICLE Surface Model and Tomographic Archive of Fossil Primate and Other Mammal Holotype and Paratype Specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa Justin W. Adams1*, Angela Olah2,3, Matthew R. McCurry1,3, Stephany Potze4 a11111 1 Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia, 2 Department of Biological Sciences, Faculty of Sciences, Monash University, Clayton, Victoria, Australia, 3 Geosciences, Museum Victoria, Carlton, Victoria, Australia, 4 Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum of Natural History, Pretoria, South Africa * [email protected] OPEN ACCESS Citation: Adams JW, Olah A, McCurry MR, Potze S (2015) Surface Model and Tomographic Archive of Abstract Fossil Primate and Other Mammal Holotype and Nearly a century of paleontological excavation and analysis from the cave deposits of the Paratype Specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa. PLoS ONE Cradle of Humankind UNESCO World Heritage Site in northeastern South Africa underlies 10(10): e0139800. doi:10.1371/journal.pone.0139800 much of our understanding of the evolutionary history of hominins, other primates and other Editor: Brenda A Wilson, University of Illinois at mammal lineages in the late Pliocene and early Pleistocene of Africa. As one of few desig- Urbana-Champaign, UNITED STATES nated fossil repositories, the Plio-Pleistocene Palaeontology Section of the Ditsong National Received: January 29, 2015 Museum of Natural History (DNMNH; the former Transvaal Museum) curates much of the mammalian faunas recovered from the fossil-rich deposits of major South African hominin- Accepted: September 17, 2015 bearing localities, including the holotype and paratype specimens of many primate, carni- Published: October 6, 2015 vore, and other mammal species (Orders Primates, Carnivora, Artiodactyla, Eulipotyphla, Copyright: © 2015 Adams et al. -
Teaching Materials Associated with Module 1 Taung Child
Teaching Materials Associated With Module 1 Taung Child: - Discovered in 1924 by Australian anatomy professor Raymond Dart - Among the first human fossils to be found in Africa - Dated to between 2.5 and 3 million years ago - Based on dental eruption patterns, Taung child’s age at death was ~3.3 years old - It is thought that an eagle killed Taung child based on what appear to be talon puncture marks on the skull Discovery of Taung Child: - Dart’s discovery: “Australian anatomy professor Raymond Dart was adjusting the collar of his dress suit in preparation for a friend’s wedding when a box, shipped from a limestone quarry near Taung, South Africa, arrived at the doorstep of his Johannesburg home in November 1924. Dart abandoned his collar to dig through the package’s contents—all the while ignoring the grumblings of his wife and the groom, who were anxious to begin the wedding ceremony. Inside the box, he found a fossilized mold of a brain and a matching child’s skull partially buried in stone. Dart quickly realized the significance of the finding, and by February 1925 had published an article in Nature identifying a new species: Australopithecus africanus. The 2.5-million-year-old “Taung Child” or “Taung Baby,” as Dart called it, was the first member of the Australopithecus genus discovered, and it challenged contemporary ideas about human evolution.” – The Scientist Magazine - This can be considered “armchair paleoanthropology” as Dart did not participate in the excavation of Taung child himself. Instead, he was sent the samples and completed the analysis from Johannesburg. -
Little Foot, a South African Australopithecus As Old As
Press release Little Foot, a South African Australopithecus as 14 March 2014 old as Lucy? Laurent Bruxelles of Inrap has co-published an article with Ronald Clarke, Richard Maire, Richard Ortega and Dominic Stratford in the Journal of Human Evolution on the dating of Little Foot (StW 573) through stratigraphic analysis (Silberberg Grotto, Sterkfontein, South Africa). Sterkfontein, located to the north-west of Johannesburg in the province of Gauteng, is part of a zone classified by UNESCO in 1999 as a World Heritage Site called the “Cradle of Humankind”. Since its discovery in 1997 in Silberberg Grotto, a skeleton known as Little Foot has been meticulously excavated. Found under exceptional circumstances, this Australopithecine, which is the most complete ever identified, contributes unique elements to our knowledge of human origins. Although its age, somewhere between 2 and 4 million years, is still debated, a team of French researchers, in collaboration with the University of the Witwatersrand (Johannesburg), has contributed new elements to its dating. An exceptional discovery On September 6, 1994, in a box of animal bones, Ronald J. Clarke discovered four left foot bones belonging to a hominid found during an excavation of the lime miners’ rubble in the Sterkfontein cave system. This first discovery was dubbed “Little Foot” by P.V. Tobias, due to the small size of the foot that was identified. In May 1997, in a different box, he identified more bones from the same foot and a fragment of right shin bone.Being certain that these bones belonged to the same individual, Ron Clarke sent his assistants, Stephen Motsumi and Nkwane Molefe, to find the entire skeleton. -
Use-Trace Analysis of Bone Tools: a Brief Overview of Four
South African Archaeological Bulletin 70 (201): 3–14, 2015 3 Research Article USE-TRACE ANALYSIS OF BONE TOOLS: A BRIEF OVERVIEW OF FOUR METHODOLOGICAL APPROACHES JUSTIN BRADFIELD Department of Anthropology and Development Studies, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, 2006, South Africa E-mail: [email protected] (Received January 2015. Revised April 2015) ABSTRACT until mechanical failure results in a fracture (Johnson 1985; In comparison with some other parts of the world, there has been a Lakes et al. 1990; Kim et al. 2006; Rennick 2012). Adhesive wear marked lack of engagement with the functional study of bone tools in arises from frictional contact between two surfaces. However, southern Africa. Only a handful of researchers are actively conducting instead of resulting in material attrition, as occurs with abrasive work on this important aspect of material culture on the sub- wear, material from one object is transferred to the other continent. In this paper, I explore four avenues of use-trace analyses (LeMoine 1994; Francis 2002). The contact material is identified, that can be used to investigate the past function of bone tools, namely, based on the residue of the adhering material. Chemical wear is use-wear, macrofracture analysis, morphological residues studies and the physical alteration of a tool surface due to chemical action, micro-focus computed tomography. Despite the increasing application which normally occurs after deposition but which can also of sophisticated analytical software, definitions of use-traces still differ occur as a result of contact with skin and other acidic sub- among analysts. Here I provide a brief overview of various use-trace stances or organic enzymes. -
Little Foot’ Fossil Chiselled out of Stone Yields Secrets Mysterious Ancient Hominin Retrieved After 20-Year Effort Might Be a Distinct Species
NEWS IN FOCUS HEALTH Mysterious polio- PUBLISHING China gets behind INFECTIOUS DISEASE Ebola NEUROSCIENCE Unlocking like disease probed with bold European open-access cases slip under how the brain makes machine learning p.170 plan p.171 the radar p.174 sense of faces p.176 PATRICK LANDMANN/SCIENCE PHOTO LIBRARY LANDMANN/SCIENCE PHOTO PATRICK The unique skeleton was embedded in rock deep inside a South African cave. ARCHAEOLOGY ‘Little Foot’ fossil chiselled out of stone yields secrets Mysterious ancient hominin retrieved after 20-year effort might be a distinct species. BY COLIN BARRAS a musculoskeletal biologist at the University He realized that a handful of small bones in the of Liverpool, UK, who collaborated with the collection belonged to a species of Australo- fter a tortuous 20-year-long excavation, research team that excavated the skeleton. pithecus — ape-like hominins in Africa between an ancient skeleton is starting to reveal The nickname Little Foot, echoing the mythi- about 4 million and 2 million years ago, before new information about early human cal ‘Bigfoot’, refers to the small foot bones that the human genus Homo rose to dominance1. Aevolution. The first of a raft of papers about ‘Lit- were among the first parts of the skeleton to Clarke and his colleagues then found more tle Foot’ suggests that the fossil is a female who be discovered. In 1994, Ronald Clarke, a pal- bones embedded in a matrix of solid rock deep showed some of the earliest signs of human-like, aeoanthropologist at the University of the Wit- in the caves. -
Paleoanthropology Society Meeting Abstracts, Memphis, Tn, 17-18 April 2012
PALEOANTHROPOLOGY SOCIETY MEETING ABSTRACTS, MEMPHIS, TN, 17-18 APRIL 2012 Paleolithic Foragers of the Hrazdan Gorge, Armenia Daniel Adler, Anthropology, University of Connecticut, USA B. Yeritsyan, Archaeology, Institute of Archaeology & Ethnography, ARMENIA K. Wilkinson, Archaeology, Winchester University, UNITED KINGDOM R. Pinhasi, Archaeology, UC Cork, IRELAND B. Gasparyan, Archaeology, Institute of Archaeology & Ethnography, ARMENIA For more than a century numerous archaeological sites attributed to the Middle Paleolithic have been investigated in the Southern Caucasus, but to date few have been excavated, analyzed, or dated using modern techniques. Thus only a handful of sites provide the contextual data necessary to address evolutionary questions regarding regional hominin adaptations and life-ways. This talk will consider current archaeological research in the Southern Caucasus, specifically that being conducted in the Republic of Armenia. While the relative frequency of well-studied Middle Paleolithic sites in the Southern Caucasus is low, those considered in this talk, Nor Geghi 1 (late Middle Pleistocene) and Lusakert Cave 1 (Upper Pleistocene), span a variety of environmental, temporal, and cultural contexts that provide fragmentary glimpses into what were complex and evolving patterns of subsistence, settlement, and mobility over the last ~200,000 years. While a sample of two sites is too small to attempt a serious reconstruction of Middle Paleolithic life-ways across such a vast and environmentally diverse region, the sites -
1St Uj Palaeo-Research Symposium
PROGRAMME 1ST UJ PALAEO-RESEARCH SYMPOSIUM in combination with the 2ND PALAEO-TRACKS SYMPOSIUM Monday 13 November 2017 Funded by the African Origins Platform of the National Research Foundation of South Africa Through the Palaeo-TrACKS Research Programme 08:30 Arrival, coffee & loading of Power Point presentations Freshly brewed tea and coffee with a selection of freshly baked croissants, Danish pastries & muffins 09:00 5 min Welcome Prof Alex Broadbent (Executive Dean of Humanities & Professor of Philosophy, University of Johannesburg) Introduction of Chairs Morning session: Prof Kammila Naidoo, Humanities Deputy Dean Research & Professor of Sociology Afternoon session: Prof Marlize Lombard, Director of the Centre for Anthropological Research 09:05 10 min Opening address Prof Angina Parekh (Deputy Vice Chancellor: Academic and Institutional Planning, University of Johannesburg) SESSION 1: INVITED KEYNOTE LECTURES 09:15 30 min The Rising Star fossil discoveries and human origins Prof John Hawks (Vilas-Borghesi Distinguished Achievement Professor of Anthropology, University of Wisconsin-Madison, USA) Abstract: Discoveries in the Dinaledi and Lesedi Chambers of the Rising Star cave system have transformed our knowledge of South African fossil hominins during the Middle Pleistocene. The research strategies undertaken in the Rising Star cave system provide a strong framework for inter- disciplinary work in palaeo-anthropology. This talk gives an overview of the Rising Star research project, focusing on the processes that have enabled effective -
Human Origin Sites and the World Heritage Convention in Eurasia
World Heritage papers41 HEADWORLD HERITAGES 4 Human Origin Sites and the World Heritage Convention in Eurasia VOLUME I In support of UNESCO’s 70th Anniversary Celebrations United Nations [ Cultural Organization Human Origin Sites and the World Heritage Convention in Eurasia Nuria Sanz, Editor General Coordinator of HEADS Programme on Human Evolution HEADS 4 VOLUME I Published in 2015 by the United Nations Educational, Scientific and Cultural Organization, 7, place de Fontenoy, 75352 Paris 07 SP, France and the UNESCO Office in Mexico, Presidente Masaryk 526, Polanco, Miguel Hidalgo, 11550 Ciudad de Mexico, D.F., Mexico. © UNESCO 2015 ISBN 978-92-3-100107-9 This publication is available in Open Access under the Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (http://creativecommons.org/licenses/by-sa/3.0/igo/). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (http://www.unesco.org/open-access/terms-use-ccbysa-en). The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization. Cover Photos: Top: Hohle Fels excavation. © Harry Vetter bottom (from left to right): Petroglyphs from Sikachi-Alyan rock art site.