Bioenergy from Finnish Forests: Sustainable, Efficient, Modern Use

Total Page:16

File Type:pdf, Size:1020Kb

Bioenergy from Finnish Forests: Sustainable, Efficient, Modern Use BIOENERGY FROM FINNISH FORESTS Sustainable, efficient, modern use of wood Copyright © IRENA, VTT and MEAE 2018 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA, VTT Technical Research Centre of Finland Ltd and the Ministry of Economic Affairs and Employment of Finland (MEAE) as the joint sources and copyright holders. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN 978-92-9260-012-9 Citation: IRENA (2018), Bioenergy from Finnish forests: Sustainable, efficient and modern use of wood, International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org About VTT VTT Technical Research Centre of Finland Ltd is a state owned and controlled non-profit limited liability company established by law and operating under the ownership steering of the Finnish Ministry of Economic Affairs and Employment. VTT carries out research and innovation activities for the needs of industry and knowledge-based society. VTT is organised around three main areas: knowledge-intensive products and services, smart industry and energy systems, and solutions for natural resources and the environment. VTT is one of the leading research and technology organisations in Europe and has a staff of 2 100. www.vtt.fi ACKNOWLEDGEMENTS This report is based on research conducted by VTT Technical Research Centre of Finland Ltd (VTT) with funding from the Finnish Ministry of Economic Affairs and Employment (MEAE). The initial research study was written by Eija Alakangas, Principal Scientist, and Tomi J Lindroos, Research Scientist, and reviewed by Tiina Koljonen, Research Team Leader, at VTT. IRENA is grateful for VTT’s collaboration and the Finnish government’s support. Thanks are due as well to Kati Veijonen, Senior Specialist, MAEA; Luc Pelkmans, Technical Coordinator, IEA Bioenergy; Professor Antti Asikainen, Natural Resources Institute Finland (Luke); and Professor Timo Pukkala, University of Eastern Finland, for their helpful review and suggestions. Jeffrey Skeer at IRENA assisted in synthesising the text. Cover photograph by Ville Heikkinen. Report layout by Nacho Sanz. DISCLAIMER This publication and the material herein are provided “as is”. All reasonable precautions have been taken by IRENA and VTT to verify the reliability of the material in this publication. However, neither IRENA nor VTT nor any of their respective officials, agents, data or other third-party content providers provides a warranty of any kind, either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein. The information contained herein does not necessarily represent the views of the Members of IRENA. The mention of specific companies or certain projects or products does not imply that they are endorsed or recommended by IRENA or VTT in preference to others of a similar nature that are not mentioned. The designations employed and the presentation of material herein do not imply the expression of any opinion on the part of IRENA or VTT concerning the legal status of any region, country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries. Photographs whose source is not otherwise indicated are from Shutterstock. BIOENERGY FROM FINNISH FORESTS CONTENTS Figures ......................................................... 4 Tables ......................................................... 4 Abbreviations ................................................... 5 Executive summary ............................................... 6 1. Sustainable sourcing and harvesting of Finnish forest wood .............. 8 1.1 Wood flows in Finland: Half for products, half for energy .................................... 9 1.2 Harvesting of industrial roundwood and energy wood ......................................11 2. Combined heat and power (CHP) production from wood in Finland ...... 12 2.1 Fluidised bed combustion technology for biomass fuels ....................................12 2.2 Large wood-fuelled CHP plants ..........................................................13 2.3 Wood-fuelled heating plants .............................................................13 3. Case study: Metsä Fibre bioproduct mill at Äänekoski ................. 16 3.1 Feedstock supply ......................................................................16 3.2 Bioproducts ...........................................................................17 3.3 Mill process ............................................................................19 3.4 Biogas and CHP production ............................................................20 4. Case study: High-efficiency multifuel CHP plant at Järvenpää .......... 23 4.1 Standardised innovation ............................................................... 23 4.2 High efficiency proven in annual operation ............................................... 24 4.3 Versatile fuel feedstock .................................................................27 4.4 Efficient and versatile compared to a typical biomass CHP plant ............................ 28 5. Case study: Bio-oil production integrated into CHP plant at Joensuu ..... 30 5.1 Bio-oil production from biomass ........................................................30 5.2 Feedstocks ........................................................................... 32 5.3 Fast pyrolysis ......................................................................... 32 References ..................................................... 34 SUSTAINABLE, EFFICIENT, MODERN USE OF WOOD 3 FIGURES TABLES Figure 1. Case studies in southern, central Table 1. Comparison of typical modern and eastern Finland. .6 pulp mill and Metsä Fibre bioproduct mill ....................19 Figure 2. Roundwood at the roadside ........8 Table 2. Overview of the Järvenpää multifuel Figure 3. Wood flows in Finland, 2013 ....... 10 CHP project .....................24 Figure 4. Different parts of wood from Table 3. Technical characteristics of the final felling ........................11 Järvenpää multifuel CHP project ...26 Figure 5. Keljonlahti CHP Plant in Jyväskylä ...13 Table 4. Operational data for the Järvenpää Figure 6. Vaskiluodon Voima Oy biomass multifuel CHP plant ...............27 gasification plant in Vaasa ..........14 Table 5. Fuel data for the Järvenpää Figure 7. Peak load heating plant in Tampere multifuel CHP plant ...............28 with pulverised combustion of wood Table 6. Comparison of Fortum’s new BFB pellets ............................15 boiler with typical boilers and Figure 8. Äänekoski bioproduct mill shown incinerators ......................29 behind the existing plant ...........17 Table 7. Typical characteristics of fast Figure 9. Sankey diagram of Äänekoski mill pyrolysis bio-oils .................33 roundwood use and bioproducts ....18 Figure 10. Bioproduct mill schematic drawing . 20 Figure 11. Bark gasifier schematic drawing .....21 Figure 12. Aerial view of Järvenpää multifuel CHP plant .......................23 Figure 13. Schematic flow chart of the Järvenpää multifuel CHP plant .....25 Figure 14. Model of industrial-scale integrated bio-oil plant in Joensuu ............31 Figure 15. Process diagram of integrated bio-oil plant in Joensuu ...........32 4 BIOENERGY FROM FINNISH FORESTS ABBREVIATIONS Mt megatonne; million tonnes BFB bubbling fluidised bed MtCO -eq million tonnes carbon dioxide Ca calcium 2 equivalent CFB circulating fluidised bed MWh megawatt hour CHP combined heat and power MWe megawatt of electricity DH district heating MWheat megawatt equivalent for heat FBC fluidised bed combustion MWfuel megawatt equivalent for fuel GWh gigawatt hours Na sodium K potassium Na2S sodium sulphide KOH potassium hydroxide NaOH sodium hydroxide kW kilowatt NOx nitrogen oxide kWh kilowatt hour PEFC Programme for Endorsement of Forest Luke Natural Resources Institute Finland Certification m2 square meter PJ petajoules m3 cubic meter ppm part per million (100 milligrams per kilogram, 0.01%) Mg magnesium SO sulfur dioxide Mha million hectares 2 total acid number MJ megajoule TAN terawatt hours Mm3 million cubic metres solid TWh mm3 cubic millimetres One euro (EUR) is equivalent to approximately 1.2 United States dollars (USD) at time of publication. SUSTAINABLE, EFFICIENT, MODERN USE OF WOOD 5 EXECUTIVE SUMMARY Finland is a northern European country with vast to which biomass is transported from forests. forest resources and sustainable wood production Cases in central and eastern Finland illustrate the that supports industrial output, energy supply, integration of biomass
Recommended publications
  • The Story of Paper, Trees and Printing Is a Product from (Forest in School in Denmark)
    William’s grandfather is a fore- ster. He lives in a red house in the The story of forest. Some of his trees shall be harvested and made into paper. But how do you actually make white paper out of 15 meter tall p trees and printing trees with bark and branches? aper How did people invent paper ma- king? What has paper got to do with photosynthesis? How does printing press work? And how to make your own recycled paper? William and his grandpa take a journey into the history of paper, trees, and printing. ”The story of paper, trees, and printing” can be used in science classes’ from grade 4. The book covers paper, forest, forestry, wood, photosynthesis, wood fibres, paper history, recycling, the environment, the climate, paper production, printing press - and much more. The story of paper, trees and printing is a product from www.skoven-i-skolen.dk, (Forest in School in Denmark). English version is available from www.leaf-international.org, Learning about Forests. Malene Bendix Artwork by Eva Wulff The story of trees paperand printing Malene Bendix Graphic Association of Denmark and Forests in School in Denmark. The story of paper, trees and printing Originally published by The Graphic Association of Denmark and Skoven i Skolen (Forest in School in Denmark) 2012. Author: Malene Bendix, Skoven i Skolen (Forest in School in Denmark) Artwork and graphic design: Eva Wulff, Grafisk Tegnestue. Printed version: The original publication in Danish was printed by Kailow Graphic. Kailow Graphic is certified by DS 49001, which is a standard for social responsibility and sustainable business operation.
    [Show full text]
  • Finland 242 Finland Finland
    FINLAND 242 FINLAND FINLAND 1. GENERAL INFORMATION 1.1. General Overview Finland (in Finnish Suomi) is a republic in northern Europe, bounded on the north by Norway, on the east by Russia, on the south by the Gulf of Finland and Estonia, on the south-west by the Baltic Sea and on the west by the Gulf of Bothnia and Sweden. Nearly one third of the country lies north of 2 2 the Arctic Circle. The area of Finland, including 31 557 km of inland water, totals 338 000 km . The terrain is generally level, hilly areas are more prominent in the north and mountains are found only in the extreme north-west. The average July temperature in the capital Helsinki on the southern coast is 17 °C. The February average in Helsinki is about -5.7 °C. The corresponding figures at Sodankylä (Lapland) in the northern Finland are 14.1 °C and -13.6 °C. Precipitation (snow and rain) averages about 460 mm in the north and 710 mm in the south. Snow covers the ground for four to five months a year in the south, and about seven months in the north. Finland has a population of 5.16 million (1998) and average population density of 17 per km2 of land. Historical population data is shown in Table 1. The predicted annual population growth rate between the years 1998 and 2010 is 0.21 %. More than two thirds of the population reside in the southern third of the country. In Finland the total primary energy consumption1 per capita was about 60 % higher than the European Union average (according to 1996 statistics) and about 35 % higher than the OECD average.
    [Show full text]
  • Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing
    energies Article Advantages of Applying Large-Scale Energy Storage for Load-Generation Balancing Dawid Chudy * and Adam Le´sniak Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 18/22, PL 90-924 Lodz, Poland; [email protected] * Correspondence: [email protected] Abstract: The continuous development of energy storage (ES) technologies and their wider utiliza- tion in modern power systems are becoming more and more visible. ES is used for a variety of applications ranging from price arbitrage, voltage and frequency regulation, reserves provision, black-starting and renewable energy sources (RESs), supporting load-generation balancing. The cost of ES technologies remains high; nevertheless, future decreases are expected. As the most profitable and technically effective solutions are continuously sought, this article presents the results of the analyses which through the created unit commitment and dispatch optimization model examines the use of ES as support for load-generation balancing. The performed simulations based on various scenarios show a possibility to reduce the number of starting-up centrally dispatched generating units (CDGUs) required to satisfy the electricity demand, which results in the facilitation of load-generation balancing for transmission system operators (TSOs). The barriers that should be encountered to improving the proposed use of ES were also identified. The presented solution may be suitable for further development of renewables and, in light of strict climate and energy policies, may lead to lower utilization of large-scale power generating units required to maintain proper operation of power systems. Citation: Chudy, D.; Le´sniak,A. Keywords: load-generation balancing; large-scale energy storage; power system services modeling; Advantages of Applying Large-Scale power system operation; power system optimization Energy Storage for Load-Generation Balancing.
    [Show full text]
  • Bioenergy's Role in Balancing the Electricity Grid and Providing Storage Options – an EU Perspective
    Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Front cover information panel IEA Bioenergy: Task 41P6: 2017: 01 Bioenergy's role in balancing the electricity grid and providing storage options – an EU perspective Antti Arasto, David Chiaramonti, Juha Kiviluoma, Eric van den Heuvel, Lars Waldheim, Kyriakos Maniatis, Kai Sipilä Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Foreword The global energy supply system is currently in transition from one that relies on polluting and depleting inputs to a system that relies on non-polluting and non-depleting inputs that are dominantly abundant and intermittent. Optimising the stability and cost-effectiveness of such a future system requires seamless integration and control of various energy inputs. The role of energy supply management is therefore expected to increase in the future to ensure that customers will continue to receive the desired quality of energy at the required time. The COP21 Paris Agreement gives momentum to renewables. The IPCC has reported that with current GHG emissions it will take 5 years before the carbon budget is used for +1,5C and 20 years for +2C. The IEA has recently published the Medium- Term Renewable Energy Market Report 2016, launched on 25.10.2016 in Singapore.
    [Show full text]
  • The World´S Largest Biofuel CHP Plant Alholmens Kraft, Pietarsaari
    OPET Finland ENERGIE The world´s largest biofuel CHP plant Alholmens Kraft, Pietarsaari § exploitation of pulp and paper mill and saw Project background mill by-products as fuel Pietarsaari, founded in 1652, is located on the § optimisation of the plant size and process Swedish-speaking west coast of Finland. The parameters total area is 93 km2 and there are 19 600 § sufficient fuel resources within economical inhabitant living in Pietarsaari. 56% of the transportation distance working population are employed by service The main innovation sector, 1% by forestry and agriculture and 40% by the industry, the biggest employer being the Alholmens Kraft Ltd builds the worlds largest pulp and paper mill of UPM-Kymmene. biofuelled power plant and the CFB boiler one of the biggest. The plant is an industrial CHP During the last years the utilisation of biofuels plant producing steam for forest industry and as on large scale has been focused on forest a utility producing district heat for the industry sites where large amounts of biomass is municipality. The wood fuel procurement available. system is also innovative and based on bailing the forest residues. Alholmens Kraft Ltd aims to When the planning of Alholmens Kraft new use annually 300 000 bales of forest residues. power plant (AK2) was started, the most important objectives were: Project description § electricity production with competitive Alholmens Kraft power plant introduces the price “best-practise” biomass/fossil fuel cofired § exploitation of process steam in the paper power plant concept with extremely diverse fuel mill and in town’s district heating selection – suitable to be replication almost anywhere in Europe.
    [Show full text]
  • Paper from Alternative Fibres the Facts
    Paper From Alternative Fibres The Facts The paper and paper packaging industry depend on an efficient, abundant and economically viable source of cellulose fibre to manufacture the huge variety of paper products we use today, like; newspapers, magazines, tissue, and paper packaging. Most commonly fibre is sourced from trees, a natural renewable and sustainable source but, cellulose can also come from other agricultural sources. What are ‘alternative fibres’? • Cotton and linen remain excellent papermaking fibres, with very high cellulose content. This gives superior The key ingredient in papermaking is cellulose, which is strength and a luxurious feel but comes at a higher cost. derived from the vegetable fibres found in trees and other plants. Wood fibre (including recycled fibre) is by far the most • Bamboo has similar technical characteristics to wood common source used in modern papermaking, due to its pulp and is used commercially in some parts of the world, cost-effective availability, relatively high proportion of cellulose particularly Asia, albeit in relatively small quantities. and reliable technical characteristics. Alternative fibres come • Bagasse, the fibrous residue after extraction of sugar from from grasses, seed hairs and other parts of plants (such as sugar cane, behaves similarly to straw but is more difficult bast fibres and leaves) and have historically been used too, to process. albeit in relatively low volumes. • Sugar beet, meanwhile, has some potential, particularly History because of a low lignin content (the ‘glue’ that binds fibre together, causing impurities in paper) but is unproven at Paper was traditionally made from clothing rags, and scale. sometimes plant material such as straw, until the mid-19th century.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • Cellulose Based Electrical Insulation
    . Cellulose-based electrical insulation REBECCA HOLLERTZ Supervised by Lars Wågberg and Claire Pitois DIELECTRIC INTRODUCTION PROPERTIES The aim of this PhD-project is to use novel A more efficient electrical energy generation and modification routes for wood-fibres, such as nano Increasing voltage levels transmission will be increasingly vital to meet Demand for fibrillation and layer-by-layer (LbL) adsorption of Permittivity and dielectric growing societal needs. The major failures in oil- improved electrical loss are important dielectric filled high voltage transformers, a key component modifying components to clarify the influence of Integration of renewables insulation properties which affect the in power transmission networks (with paper and chemistry and morphology on relevant electrical materials loss of energy and the build- pressboard used as the solid insulation material), phenomena and improve the electrical insulating Increased reliability up of electric fields in the are related to the insulation material. capability of wood-fibre based electrical insulation. insulator, and at inter-faces. The dielectric strength is used to describe the RESULTS AND OUTLOOK maximum electric field a material can with-stand * before flash-over or short- 1. Streamer inception and propagation circuiting. Before experiencing break- Streamer inception down, the insulating material is often subjected to deteriorating discharges and streamers which can also be triggered and analysed in the laboratory. Streamers, conducting gaseous channels which can travel in high speed, at oil- pressboard inter-faces have been identified as a signi- ficant cause responsible for PAPER transformer failures. The ultimate goal of this PhD project is a better The setup constructed gives valuable information about streamer inception and propagation at the solid-liquid interface and understanding of which will be used to characterize the influence of the solid material by testing different polymers and modified paper sheets.
    [Show full text]
  • Outlook for U.S. Paper and Paperboard Sector and Wood Fiber Supply in North America
    Chapter 5 - Outlook for U.S. paper and paperboard sector and Wood fiber supply in North America Mr. Peter J. Ince United States Forest Service U.S. Forest Products Laboratory, Madison, Wisconsin Abstract, Consumption of wood fiber in pulp, paper and paperboard increased in the United States over the past century and is projected to increase well into the next century at a decelerating rate of growth. Harvest of pulpwood on forest land is the single largest source of wood fiber, followed by recycled paper and wood residues. In the past decade, wood residues declined in supply while use of recycled paper increased rapidly. Use of recycled paper is projected to increase more steadily in the future with slower growth in paper recovery for recycling. Harvest of pulpwood on forest land is projected to remain the dominant source of U.S. fiber supply through the first half of the next century. Softwood pulpwood harvest on forest land is projected to increase as U.S. softwood residue supplies decline. Pulpwood stumpage values are projected to increase in the United States, based on supply and demand analysis, gradually improving economic opportunities for growing hardwood short-rotation woody crops on agricultural land. Hardwood pulpwood harvest on forest land is projected to increase for several decades but then decline in the long run with increasing fiber supply from agricultural short-rotation woody crops. Canada is projected to remain the principal source of U.S. pulp and paper imports, which are projected to increase. Most Canadian domestic pulpwood supply is projected to remain wood residues, as Canadian lumber production and residue output are projected to increase in the future.
    [Show full text]
  • Global Renewable Energy Guide 2014.Pdf
    2014 Editors Av. Mesut Çakmak Av. Dr. Çağdaş Evrim Ergün Publication Assistant Zeynep Babür Published by Çakmak Yayınevi ve Medya Limited Şirketi Piyade Sokak, No. 18 06650 Çankaya, Ankara, Turkey Printed by Sözkesen Matbaacılık Tic. Ltd. Şti., Ankara, Turkey August 2014, Ankara ISBN: 978-9944-794-17-6 ISBN (e-book): 978-9944-794-16-9 © Çakmak Yayınevi ve Medya Limited Şirketi All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher. Due to the general nature of its contents, this publication should not be regarded as legal advice. The publisher makes no representation or warranty as to, and assumes no responsibility for, the accuracy or completeness of the information contained herein. CONTENTS 1- AUSTRIA, Wolf Theiss Rechtsanwãlte GmbH ................................................................................................................................ 3 2- BELARUS, Vlasova Mikhel & Partners ........................................................................................................................................ 10 3- BELGIUM, White & Case ............................................................................................................................................................. 19 4- BOSNIA & HERZEGOVINA, Huskić Law Office ......................................................................................................................................................
    [Show full text]
  • PESTLE ANALYSIS of Barriers to Community Energy Development
    PESTLE ANALYSIS of Barriers to Community Energy Development 1 CONTRIBUTING AUTHORS AND INSTITUTIONS IN ALPHABETICAL ORDER: Aisling Nic Aoidh Údarás na Gaeltachta Christina Hülsken Renewable Energies Agency Clara Good UiT, the Arctic University of Norway Eamonn Ó Neachtain Údarás na Gaeltachta Erik Elfgren Luleå University of Technology Fionnán Ó hOgáin Údarás na Gaeltachta Johanna Salmi Centria.fi Lasse Jansson Centria.fi Mikael Risberg Luleå University of Technology Orla Nic Suibhne Western Development Commission Pauline Leonard Western Development Commission Pentti Etelamaki Lohtaja Energy Cooperative Robert Fischer Luleå University of Technology Ryotaro Kajimura Renewable Energies Agency Silva Herrmann Jokkmokk municipality Ulrich Müller Renewable Energies Agency Wolfgang Mehl Jokkmokk municipality CONTENTS 1 Introduction .................................................................................... 4 2 What is a PESTLE analysis? ............................................................. 6 3 Finland .............................................................................................7 3.1 PESTLE Analysis ....................................................................... 8 3.2 Summary .................................................................................10 4 Ireland ............................................................................................12 4.1 PESTLE Analysis ......................................................................13 4.2 Summary .................................................................................14
    [Show full text]
  • Minnesota Energy Systems, a Primer Developed for the Clean Energy Resource Teams
    Minnesota Energy Systems, A Primer Developed for the Clean Energy Resource Teams The Minnesota Project University of Minnesota’s Regional Sustainable Development Partnerships. March 2004 Communities and Local Energy Minnesota Energy Systems, A Primer Communities and Local Energy ENERGY SYSTEMS IN MINNESOTA This booklet provides CERTS members with a general overview of the systems that deliver the energy that runs our economy, keeps us warm, and provides necessities and conveniences of modern life. The energy system is divided into four end use sectors: residential, commercial, industrial and transportation. End use of energy refers to the point where energy is consumed to provide some benefit or service, such as light or heat. Basic energy resources are referred to a primary energy sources. Primary energy sources include resources like Figure 1. Energy End Use in coal, petroleum, natural gas, nuclear fuels, flowing water, Minnesota, 1999 wind, and solar radiation. Minnesota’s total energy use in the four end use sectors was approximately 1,700 trillion Btus in 2000. Industry and transportation are the largest end use sectors in the state. They each use somewhat more than one-third of the energy consumed in Minnesota. The remaining one- forth to one-third of energy consumption is divided between the residential and commercial sectors-with the residential sector taking a little larger share. Source: Minnesota Department of Commerce Fossil fuels Figure 2. Inputs Used to Produce dominate the market for primary energy sources in Energy Consumed in Minnesota, 1999 Minnesota. Petroleum, coal and natural gas supply about 88% of the energy used in Minnesota.
    [Show full text]