Differentiation Between Aphis Pomi and Aphis Spiraecola Using Multiplex Real-Time PCR Based on DNA Barcode Sequences A

Total Page:16

File Type:pdf, Size:1020Kb

Differentiation Between Aphis Pomi and Aphis Spiraecola Using Multiplex Real-Time PCR Based on DNA Barcode Sequences A J. Appl. Entomol. ORIGINAL CONTRIBUTION Differentiation between Aphis pomi and Aphis spiraecola using multiplex real-time PCR based on DNA barcode sequences A. M. Naaum1, R. G. Foottit2, H. E. L. Maw2 & R. Hanner1 1 Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada 2 Agriculture and Agri-Food Canada, Invertebrate Biodiversity, National Environmental Health Program, Ottawa, Ontario, Canada Keywords apple aphid, pest identification, TaqMan Abstract The green apple aphid (Aphis pomi) and the spirea aphid (Aphis spiraeco- Correspondence la) are pests of apples in North America. Although management regimes Amanda M. Naaum (Corresponding author), Department of Integrative Biology, University exist to effectively control these pests, they differ significantly because of Guelph, 50 Stone Road. E., Guelph, Ontario of varying susceptibility of each species to common pesticides and differ- N1G 2W1, Canada. ences in their life cycles. Therefore, accurate identification of the species E-mail: [email protected] present is essential for pest control. However, the identification process is complicated because of the morphological similarity between these Received: September 21, 2011; accepted: two species. As a result, confusion between A. pomi and A. spiraecola January 5, 2011. often occurs. DNA barcoding has been proven to accurately identify spe- doi: 10.1111/j.1439-0418.2012.01706.x cies of Aphididae. A further study demonstrated that DNA barcodes could be used to accurately differentiate A. pomi and A. spiraecola. DNA barcoding represents an important step towards rapid identification of these pests as distinctions can be easily made between morphologically similar species as well as from eggs and immature individuals in addition to adults. However, samples must still be sent to specially equipped facil- ities for sequence analysis, which can take between several hours and days. Real-time PCR is emerging as a useful tool for more rapid pest identification. The purpose of this study was to develop a real-time PCR assay for differentiation of A.pomi from A. spiraecola based on DNA bar- code sequences from the Barcode of Life Data System. This assay was designed on the portable SmartCycler II platform and can be used in field settings to differentiate these species quickly and accurately. It has the potential to be a valuable tool to improve pest management of A. pomi and A. spiraecola. their life cycles (Foottit et al. 2009). Therefore, accu- Introduction rate identification of the species present is essential The green apple aphid (Aphis pomi De Geer 1783) for pest control. However, the identification process and the spirea aphid (Aphis spiraecola Patch 1914) are is complicated because of the morphological similar- pests of apples in North America (Foottit et al. ity between these two species. As a result, confusion 2006). They play a role in disease transmission between A. pomi and A. spiraecola often occurs (Blackman and Eastop 2000) and affect healthy (Blackman and Eastop 2000; Foottit et al. 2009). growth of their hosts (Kaakeh et al. 1993). Although DNA barcoding using the 5¢ end of the mitochon- management regimes exist to effectively control drial cytochrome C oxidase I (COI) gene (Hebert these pests, they differ significantly because of vary- et al. 2003) has been proven to accurately identify ing susceptibility of each species to common pesti- most species of Aphididae (Foottit et al. 2008; Lee cides (Lowery et al. 2005, 2006) and differences in et al. 2011). A further study demonstrated that DNA 704 J. Appl. Entomol. 136 (2012) 704–710 ª 2012 Blackwell Verlag, GmbH A. M. Naaum et al. Differentiation between Aphis pomi and Aphis spiraecola barcodes could be used to accurately differentiate Aphididae’. These sequences were derived from indi- between A. pomi and A. spiraecola (Foottit et al. viduals collected over a wide geographical range. Pri- 2009). DNA barcoding represents an important step mer and probe design was based on all unique towards rapid identification of these pests as distinc- haplotypes from this project. Haplotype analysis was tions can be easily made between morphologically carried out using the haplotype variation tool at similar species as well as from eggs and immature ibarcode.org. In total, 209 unique haplotypes were individuals in addition to adults based on sequence used for primer and probe design, including a single differences as demonstrated recently in cereal aphids haplotype of A. pomi from four individuals collected (Shufran and Puterka 2011). However, samples must from Canada and the US and a single haplotype of still be sent to specially equipped facilities for A. spiraecola from 11 individuals collected from Can- sequence analysis, which can take between several ada, the United States, Palau, Marshall Islands, hours and days. Hawaii and Guam. Primers and probes were also Real-time PCR is emerging as a reliable method tested for specificity against sequences from unique for pest insect identification (Huang et al. 2010; haplotypes of A. spiraecola from the public BOLD Walsh et al. 2005; Yu et al. 2005; Madani et al. project ‘Aphis Species on Apple (A. pomi, A. spiraeco- 2005). These assays can produce results much la)’. These haplotypes were identical to the haplo- quicker than traditional barcoding, often in 1 h, and types used in primer and probe design at the primer the results are simple to interpret. The one-step pro- and probe sites. Primers and probes (Table 1) were cess not only reduces the length of time required to developed using AlleleID (version 7.7; Premier Bio- identify specimens, but also reduces the chance of soft International, Palo Alto, CA, USA). The A. pomi contamination by eliminating the post-PCR process- -specific probe was tagged at the 5¢ end with the ing steps necessary for DNA barcoding. In addition fluorescent reporter tetrachloro-6-carboxyfluorescein to being more rapid than DNA barcoding, some real- (TET) and at the 3¢ end with Black Hole Quencher-1 time PCR platforms are portable. Paired with the use (BHQ-1) quenching dye. The A. spiraecola -specific of lyophilized reagents, this would allow accurate probe was tagged with the fluorescent reporter 6-carb- identification in field settings, eliminating the need oxyfluorescein (FAM) at the 5¢ end, and BHQ-1 at the to send samples off-site. 3¢ end. Optimization of probe and primer concentra- Species-specific primers and probes for use with tions and cycling conditions was carried out according real-time PCR can be designed using the DNA bar- to the guidelines set by Cepheid for the Smart Cycler code sequences of target species in publically avail- II System (SmartNote 6.2; http://www.cepheid.com/ able projects in the Barcode of Life Data System systems-and-software/smartcycler-system/). (BOLD; http://www.boldsystems.org; Ratnasingham and Hebert 2007). Using sequences from related Species selection and sample collection individuals to avoid cross-amplification with other species is an important aspect of primer and probe A number of species with various degrees of related- design. As errors arising from misidentification are ness to the target species were selected for specific- often found in GenBank (Harris 2003; Vigalys 2003), ity testing, following the classification scheme of the use of sequences from vouchered specimens in BOLD can lead to more accurate primer and probe design. The objective of this study was to create a real-time PCR assay for accurate and rapid differenti- Table 1 Sequences of species-specific oligonucleotides used in this ation of A. pomi and A. spiraecola, based on COI DNA study and respective amplicon length. All primers and probes target barcode sequences from BOLD, to be run on a porta- portions of the C oxidase I DNA barcode region ble platform. Aphis Aphis pomi spiraecola Material and Methods Forward primer TGCCCAGATATA GAGCAATTAATTTT sequence (5¢-3¢) TCTTTCC ATTTGTACA Multiplex PCR Primer and probe design Reverse primer CCTGTTCCT GCTAGAACTGGTAGAGA Species-specific primers and TaqMan probes were sequence (5¢-3¢) GTTCCATTA developed for Aphis pomi and Aphis spiraecola using Probe sequence TET-AGATTCTGATTATT 6FAM-TTAAATCAAAT (5¢-3¢) ACCGCCTTCACT-BHQ1 CCCACTATTTCCATG-BHQ1 690 COI barcode sequences from 338 species in the Amplicon Length 110 base pairs 130 base pairs publically available BOLD project ‘Barcoding the J. Appl. Entomol. 136 (2012) 704–710 ª 2012 Blackwell Verlag, GmbH 705 Differentiation between Aphis pomi and Aphis spiraecola A. M. Naaum et al. Remaudie`re and Remaudie`re (1997). The following according to manufacturer guidelines. PCR cycling species were selected: other species of genus Aphis conditions were as follows: an initial step of 95°C for (Aphis coreopsidis (Thomas), Aphis craccivora Koch, 120 s, followed by 40 cycles of 94°C for 11 s, 60°C Aphis fabae Scopoli, Aphis farinose Gmelin, Aphis gly- for 40 s and 72°C for 25 s. Fluorescence readings cines Matsumura, Aphis gossypii Glover, Aphis helianthi were taken at the annealing step of each cycle. All Monell in Riley and Monell, Aphis hyperici Monell in reactions were carried out on the SmartCycler II Riley and Monell, Aphis illinoisensis Shimer, Aphis im- platform (Cepheid). The cycle threshold (Ct) value patientis Thomas, Aphis lugentis Williams, Aphis macu- was determined as the number of cycles at which latae Oestlund, Aphis nasturtii Kaltenbach, Aphis the fluorescence reading exceeded the detection neilliae Oestlund, Aphis neogillettei Palmer, Aphis nerii threshold. If no signal was observed, a Ct value
Recommended publications
  • Strawberry Vein Banding Caulimovirus
    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Strawberry vein banding caulimovirus IDENTITY Name: Strawberry vein banding caulimovirus Taxonomic position: Viruses: Caulimovirus Common names: SVBV (acronym) Veinbanding of strawberry (English) Adernmosaik der Erdbeere (German) Notes on taxonomy and nomenclature: Strains of this virus that have been identified include: strawberry yellow veinbanding virus, strawberry necrosis virus (Schöninger), strawberry chiloensis veinbanding virus, strawberry eastern veinbanding virus. In North America, most strains found on the west coast are more severe than those found along the east coast. EPPO computer code: SYVBXX EPPO A2 list: No. 101 EU Annex designation: I/A1 HOSTS The virus is known to occur only on Fragaria spp. The main host is Fragaria vesca (wild strawberry). Commercial strawberries may also be infected, but diagnostic symptoms are usually only apparent when strawberry latent C 'rhabdovirus' is present simultaneously (EPPO/CABI, 1996). GEOGRAPHICAL DISTRIBUTION EPPO region: Locally established in Czech Republic, Hungary, Ireland and Russia (European); unconfirmed reports from Germany, Italy, Slovakia, Slovenia, Yugoslavia. Asia: China, Japan, Russia (Far East). North America: Canada (British Columbia, Ontario), USA (found in two distinct zones, one along the east coast including Arkansas, the other on the west coast (California)). South America: Brazil (São Paulo), Chile. Oceania: Australia (New South Wales, Tasmania). EU: Present. For further information, see also Miller & Frazier (1970). BIOLOGY The following aphids are cited as vectors: Acyrthosiphon pelargonii, Amphorophora rubi, Aphis idaei, A. rubifolii, Aulacorthum solani, Chaetosiphon fragaefolii, C. jacobi, C. tetrarhodum, C. thomasi, Macrosiphum rosae, Myzus ascalonicus, M.
    [Show full text]
  • Effects of Cultural Methods for Controlling Aphids on Potatoes in Northeastern Maine
    EFFECTS OF CULTURAL METHODS FOR CONTROLLING APHIDS ON POTATOES IN NORTHEASTERN MAINE W. A. Shands, Geddes W. Simpson and H. J. Murphy A Cooperative Publication of the Life Sciences and Agriculture Experiment Station, University of Maine at Orono, and the Entomology Research Division, Agricultural Research Service, United States Department of Agriculture Technical Bulletin 57 June, 1972 Contents Acknowledgment Introduction Materials and Methods Varieties, plot size and separations, and cultural practices 4 Cultural treatments 5 Experimental design . 5 Leaf roll reservoir abundance . 5 Determination of disease spread 6 Prevalence and severity of Rhizoctonia .6 Yield of tubers 6 Abundance of aphids . 6 Expression of aphid abundance 7 Results and Discussion Effects of cultural treatments upon aphid populations . 8 Variations in total-season and relative abundance 8 Aphid populations in 1954 8 Aphid populations in 1955 .13 Aphid populations in 1956 .16 Aphid populations in 1957 17 Aphid populations in 1958 .21 Effects of cultural treatments upon yield of tubers 23 Effects of cultural treatments upon plant diseases 24 Spread of leaf roll 24 Prevalence and severity of Rhizoctonia 24 Summary and Conclusions .26 Acknowledgment We gratefully acknowledge the assistance of Corinne C. Gordon, Biological Technician, Entomology Research Division, Agricultural Research Service, USDA, Orono, Maine 04473, who made the graphs, and aided in summarizing the data; and of Donald Merriam, Technician, Life Sciences and Agriculture Experiment Station, Aroostook Farm, Presque Isle, Maine 04769, and F. E. Manzer, Professor of Plant Pathology, University of Maine, Orono, Maine 04473, who made the field readings of leaf roll. Effects of Cultural Methods for Controlling Aphids1 on Potatoes in Northeastern Maine W.A.
    [Show full text]
  • 2U11/13482U Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Λ ft / ft 3 November 2011 (03.11.2011) 2U11/13482U Al (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A 47/06 (2006.01) A01P 7/04 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/EP201 1/056129 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 18 April 201 1 (18.04.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 1016 1124.2 27 April 2010 (27.04.2010) EP GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): SYN- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, GENTA PARTICIPATIONS AG [CH/CH]; EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Schwarzwaldallee 215, CH-4058 Basel (CH).
    [Show full text]
  • The Aphids of British Columbia (Forbes
    58 .J. E"TO~IOI.. SOl'. BI(IT. COLI ' MBlA 70 (1973), A UG . 1, 1973 THE API-III)S (HO"OPTER.-\: .-\PHIDIDAE) OF BRITISH COLl'IBL\. 2. A HOST PLA:\T CATALOGlE' A . R. F ORBES AND B. D. FRAZER Research Station , A griculture Canada Vancouver 8, British Columbia ABSTRACT A host pla nt catalogue is presented for 189 species of a phids collected in British Columbia. INTRODUCTION Ace r platanoides Norway Maple This paper presents a hos t plant catalogue Periph yllus ly ropictus for most of the a ph id s recorded in the basic li st Periph yllus leslUdinacea of the aphids of British Columbia (Forbes. Acer sp Maple Frazer. & MacCarthy 1973 1. Only a phids DrepiITwsiphum plalilnoides actually co lo nizing on hosts are included . Stray Periph y LllIs californiensis alate aphids and species ta ken only in traps are Periph yllus lyrupiclU s not included . The list will be of particular use Adam's Needle see Yucca to econom ic entomologists wi shing to know the African Marigold see Tagetes aphids which occur on crops and ornamentals African Vio let see Saintpaulia and to entomologists studying ve cto r tran­ Agropyron repens Couch Grass smission o f plant virus diseases whenever th ey Sipha kurdjrnu vi must kn ow all th e po tential vectors that occur Agropyron sp Wheat Grass on a crop. M Ilcrosiph llm avenae The plant hosts are listed alphabetically by Siph'l kllrdjmovi genus and species. The aphids colonizing each host are given alphabeti cally by genus and Ald er see Alnus species.
    [Show full text]
  • Aphis Spiraecola
    Rapid Pest Risk Analysis (PRA) for Aphis spiraecola STAGE 1: INITIATION 1. What is the name of the pest? Aphis spiraecola Patch (Hemiptera, Aphididae) – Spiraea aphid (also Green citrus aphid). Synonyms: many, due to historic confusion over its identity; most common is Aphis citricola van der Goot (see CABI, 2013). 2. What initiated this rapid PRA? The UK Plant Health Risk Register identified the need to update the first UK PRA (MacLeod, 2000), taking into account recent information on hosts, impacts, vectored pathogens and UK status. 3. What is the PRA area? The PRA area is the United Kingdom of Great Britain and Northern Ireland. STAGE 2: RISK ASSESSMENT 4. What is the pest’s status in the EC Plant Health Directive (Council Directive 2000/29/EC1) and in the lists of EPPO2? Aphis spiraecola is not listed in the EC Plant Health Directive, not recommended for regulation as a quarantine pest by EPPO and it is not on the EPPO Alert List. 5. What is the pest’s current geographical distribution? Aphis spiraecola probably originates in the Far East. It is now very widespread around the world in temperate and tropical regions, occurring across every continent except Antarctica (CABI, 2013). In Europe, A. spiraecola is found around the Mediterranean, with a patchy Balkan distribution and it is absent from Scandinavia and the Baltic states. It is stated as present in: Spain, Portugal, France, Switzerland, Italy, Slovenia, Croatia, Serbia, Hungary, Bulgaria, Greece, Cyprus, Malta, and Russia (west of the Urals) (CABI 2013). It is not confirmed as being established in the Netherlands, either outdoors or under protection.
    [Show full text]
  • Melon Aphid Or Cotton Aphid, Aphis Gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L
    EENY-173 Melon Aphid or Cotton Aphid, Aphis gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L. Capinera2 Distribution generation can be completed parthenogenetically in about seven days. Melon aphid occurs in tropical and temperate regions throughout the world except northernmost areas. In the In the south, and at least as far north as Arkansas, sexual United States, it is regularly a pest in the southeast and forms are not important. Females continue to produce southwest, but is occasionally damaging everywhere. Be- offspring without mating so long as weather allows feeding cause melon aphid sometimes overwinters in greenhouses, and growth. Unlike many aphid species, melon aphid is and may be introduced into the field with transplants in the not adversely affected by hot weather. Melon aphid can spring, it has potential to be damaging almost anywhere. complete its development and reproduce in as little as a week, so numerous generations are possible under suitable Life Cycle and Description environmental conditions. The life cycle differs greatly between north and south. In the north, female nymphs hatch from eggs in the spring on Egg the primary hosts. They may feed, mature, and reproduce When first deposited, the eggs are yellow, but they soon parthenogenetically (viviparously) on this host all summer, become shiny black in color. As noted previously, the eggs or they may produce winged females that disperse to normally are deposited on catalpa and rose of sharon. secondary hosts and form new colonies. The dispersants typically select new growth to feed upon, and may produce Nymph both winged (alate) and wingless (apterous) female The nymphs vary in color from tan to gray or green, and offspring.
    [Show full text]
  • How Will Aphids Respond to More Frequent Drought?
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.168112; this version posted December 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 1 Stressful times in a climate crisis: how will aphids respond to more 2 frequent drought? 3 Running title: Aphid-plant interactions under drought stress 4 Abstract 5 Aim 6 Aphids are abundant in natural and managed vegetation, supporting a diverse 7 community of organisms and causing damage to agricultural crops. Using a meta- 8 analysis approach, we aimed to advance understanding of how increased drought 9 incidence will affect this ecologically and economically important insect group, and to 10 characterise the underlying mechanisms. 11 Location 12 Global. 13 Time period 14 1958–2020. 15 Major taxa studied 16 Aphids. 17 Methods 18 We used qualitative and quantitative synthesis techniques to determine whether 19 drought stress has a negative, positive, or null effect on aphid fitness. We examined 20 these effects in relation to 1) aphid biology, 2) the aphid-plant. species combination. 21 We compiled two datasets: 1) a “global” dataset (n = 55 from 55 published studies) 22 comprising one pooled effect size per study, and 2) an “expanded” dataset (n = 93) 23 containing multiple datapoints per study, separated into different measures of aphid 24 fitness but pooled across aphid-plant combinations. Where reported, we extracted 25 data on the effect of drought on plant vigour, and plant tissue concentrations of 26 nutrients and defensive compounds, to capture the potential causes of aphid 27 responses.
    [Show full text]
  • Aphid Species (Hemiptera: Aphididae) Infesting Medicinal and Aromatic Plants in the Poonch Division of Azad Jammu and Kashmir, Pakistan
    Amin et al., The Journal of Animal & Plant Sciences, 27(4): 2017, Page:The J.1377 Anim.-1385 Plant Sci. 27(4):2017 ISSN: 1018-7081 APHID SPECIES (HEMIPTERA: APHIDIDAE) INFESTING MEDICINAL AND AROMATIC PLANTS IN THE POONCH DIVISION OF AZAD JAMMU AND KASHMIR, PAKISTAN M. Amin1, K. Mahmood1 and I. Bodlah 2 1 Faculty of Agriculture, Department of Entomology, University of Poonch, 12350 Rawalakot, Azad Jammu and Kashmir, Pakistan 2Department of Entomology, PMAS-Arid Agriculture University, 46000 Rawalpindi, Pakistan Corresponding Author Email: [email protected] ABSTRACT This study conducted during 2015-2016 presents first systematic account of the aphids infesting therapeutic herbs used to cure human and veterinary ailments in the Poonch Division of Azad Jammu and Kashmir, Pakistan. In total 20 aphid species, representing 12 genera, were found infesting 35 medicinal and aromatic plant species under 31 genera encompassing 19 families. Aphis gossypii with 17 host plant species was the most polyphagous species followed by Myzus persicae and Aphis fabae that infested 15 and 12 host plant species respectively. Twenty-two host plant species had multiple aphid species infestation. Sonchus asper was infested by eight aphid species and was followed by Tagetes minuta, Galinosoga perviflora and Chenopodium album that were infested by 7, 6 and 5 aphid species respectively. Asteraceae with 11 host plant species under 10 genera, carrying 13 aphid species under 8 genera was the most aphid- prone plant family. A preliminary systematic checklist of studied aphids and list of host plant species are provided. Key words: Aphids, Medicinal/Aromatic plants, checklist, Poonch, Kashmir, Pakistan.
    [Show full text]
  • Biodiversity of the Natural Enemies of Aphids (Hemiptera: Aphididae) in Northwest Turkey
    Phytoparasitica https://doi.org/10.1007/s12600-019-00781-8 Biodiversity of the natural enemies of aphids (Hemiptera: Aphididae) in Northwest Turkey Şahin Kök & Željko Tomanović & Zorica Nedeljković & Derya Şenal & İsmail Kasap Received: 25 April 2019 /Accepted: 19 December 2019 # Springer Nature B.V. 2020 Abstract In the present study, the natural enemies of (Hymenoptera), as well as eight other generalist natural aphids (Hemiptera: Aphididae) and their host plants in- enemies. In these interactions, a total of 37 aphid-natural cluding herbaceous plants, shrubs and trees were enemy associations–including 19 associations of analysed to reveal their biodiversity and disclose Acyrthosiphon pisum (Harris) with natural enemies, 16 tritrophic associations in different habitats of the South associations of Therioaphis trifolii (Monell) with natural Marmara region of northwest Turkey. As a result of field enemies and two associations of Aphis craccivora Koch surveys, 58 natural enemy species associated with 43 with natural enemies–were detected on Medicago sativa aphids on 58 different host plants were identified in the L. during the sampling period. Similarly, 12 associations region between March of 2017 and November of 2018. of Myzus cerasi (Fabricius) with natural enemies were In 173 tritrophic natural enemy-aphid-host plant interac- revealed on Prunus avium (L.), along with five associa- tions including association records new for Europe and tions of Brevicoryne brassicae (Linnaeus) with natural Turkey, there were 21 representatives of the family enemies (including mostly parasitoid individuals) on Coccinellidae (Coleoptera), 14 of the family Syrphidae Brassica oleracea L. Also in the study, reduviids of the (Diptera) and 15 of the subfamily Aphidiinae species Zelus renardii (Kolenati) are reported for the first time as new potential aphid biocontrol agents in Turkey.
    [Show full text]
  • Aphids (Hemiptera, Aphididae)
    A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 435–474. doi: 10.3897/biorisk.4.57 Abstract Our study aimed at providing a comprehensive list of Aphididae alien to Europe. A total of 98 species originating from other continents have established so far in Europe, to which we add 4 cosmopolitan spe- cies of uncertain origin (cryptogenic). Th e 102 alien species of Aphididae established in Europe belong to 12 diff erent subfamilies, fi ve of them contributing by more than 5 species to the alien fauna. Most alien aphids originate from temperate regions of the world. Th ere was no signifi cant variation in the geographic origin of the alien aphids over time.
    [Show full text]
  • Data Requirements for the Authorisation of a New
    European and Mediterranean Plant Protection Organization Organisation Européenne et Méditerranéenne pour la Protection des Plantes 14/19647 Examples of zonal efficacy evaluation Clarification of efficacy data requirements for the authorization of an insecticide against aphids, thrips and whiteflies in ornamental plants in greenhouses in the EU Proposed by Claudia Jilesen, National Plant Protection Organization, the Netherlands, February 2014 This document is intended to assist applicants and evaluators to interpret EPPO Standard PP 1/278 Principles of zonal data production and evaluation. Expert judgement should be applied in all cases. The focus of this paper is in particular on the number and location of trials for the justification of effectiveness, phytotoxicity and resistance issues. There is a need to provide clarification of these areas as part of the zonal authorization process for plant protection products (as defined in EU Regulation 1107/2009 (EC, 2009). Regulation EC 1107/2009 specifies that the assessment of plant protection products should be conducted on a zonal basis. Article 33 of EC 1107/2009 considers that in the case of an application for use in greenhouses, only one Member State evaluates the application, taking account of all zones. All trials should be carried out under Good Experimental Practice (GEP) and using all relevant general EPPO Standards. Efficacy trials should be performed according to relevant EPPO Standards PP 1/23 Aphids on ornamental plants, PP 1/160 Thrips on glasshouse crops and 1/36 Whiteflies (Trialeurodes vaporariorum, Bemisia tabaci) on protected crops (available at http://pp1.eppo.int/). The most common and harmful sucking insects in ornamental plants are aphids, thrips and whiteflies and this example applies only to them.
    [Show full text]
  • Detection of Citrus Tristeza Virus by Print Capture and Squash Capture-PCR in Plant Tissues and Single Aphids
    Fourteenth IOCV Conference, 2000—Citrus Tristeza Virus Detection of Citrus Tristeza Virus by Print Capture and Squash Capture-PCR in Plant Tissues and Single Aphids M. Cambra, A. Olmos, M. T. Gorris, C. Marroquín, O. Esteban, S. M. Garnsey, R. Llauger, L. Batista, I. Peña, and A. Hermoso de Mendoza ABSTRACT. Two sensitive methods using immobilized targets on membranes (hemi-nested- PCR and nested-PCR in a single closed tube) were applied successfully for amplification of citrus tristeza virus (CTV) targets from plant material (print capture) and aphids (squash capture). Amplification was obtained from different aphid species regardless of transmission efficiency showing that CTV is acquired by different aphid species. The use of preprinted or presquashed targets offers a new and sensitive diagnostic tool for CTV detection for many applications includ- ing epidemiological studies. Index words. Citrus tristeza virus, detection, aphids, Toxoptera citricida, Aphis gossypii, Aphis nerii, Hyalopterus pruni, squash capture-PCR, print capture-PCR, hemi-nested-PCR, nested-PCR. Citrus tristeza virus (CTV) is one The use of certified pathogen-free of the most detrimental virus diseas- plants and epidemiological studies es of citrus (2), especially where CTV- to track the incidence and spread of sensitive rootstocks are used. CTV is CTV in the field are the two strate- vectored by a number of aphid spe- gies to manage the tristeza problem. cies (Homoptera, Aphididae) in a Accurate epidemiological data al- noncirculative, semi-persistent man- lows the proper recommendation to ner (19). Seven aphid species have be given to a grower on what to do to been determined as CTV vectors in control CTV such as the use of se- different geographical areas (13).
    [Show full text]