Penicillium Camemberti

Total Page:16

File Type:pdf, Size:1020Kb

Penicillium Camemberti Lessard et al. BMC Genomics 2014, 15:235 http://www.biomedcentral.com/1471-2164/15/235 RESEARCH ARTICLE Open Access Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese Marie-Hélène Lessard1, Catherine Viel1, Brian Boyle2, Daniel St-Gelais1,3 and Steve Labrie1* Abstract Background: Camembert-type cheese ripening is driven mainly by fungal microflora including Geotrichum candidum and Penicillium camemberti. These species are major contributors to the texture and flavour of typical bloomy rind cheeses. Biochemical studies showed that G. candidum reduces bitterness, enhances sulphur flavors through amino acid catabolism and has an impact on rind texture, firmness and thickness, while P. camemberti is responsible for the white and bloomy aspect of the rind, and produces enzymes involved in proteolysis and lipolysis activities. However, very little is known about the genetic determinants that code for these activities and their expression profile over time during the ripening process. Results: The metatranscriptome of an industrial Canadian Camembert-type cheese was studied at seven different sampling days over 77 days of ripening. A database called CamemBank01was generated, containing a total of 1,060,019 sequence tags (reads) assembled in 7916 contigs. Sequence analysis revealed that 57% of the contigs could be affiliated to molds, 16% originated from yeasts, and 27% could not be identified. According to the functional annotation performed, the predominant processes during Camembert ripening include gene expression, energy-, carbohydrate-, organic acid-, lipid- and protein- metabolic processes, cell growth, and response to different stresses. Relative expression data showed that these functions occurred mostly in the first two weeks of the ripening period. Conclusions: These data provide further advances in our knowledge about the biological activities of the dominant ripening microflora of Camembert cheese and will help select biological markers to improve cheese quality assessment. Background culture, on culture media or on model cheese medium [3], Camembert cheese is a soft, mold-ripened cheese. The biochemical pathways potentially involved in the deve- mold Penicillium camemberti and the yeast Geotrichum lopment of sensory properties and even microbiological candidum are the two major Fungi that give the white succession during Camembert ripening [4-10]. Surprisingly, coated characteristic of this cheese variety. Their asso- only limited genetic information is available for these Fungi, ciation is crucial not only for appearance, but also for typ- since fewer than 30 different genes of each organism have ical sensory characteristics of Camembert cheese [1,2]. been deposited in public databases. Previous studies considered aroma production in pure Molecular biology techniques were recently used to evaluate several aspects of sensory characteristics of cheese. * Correspondence: [email protected] For example, multispecies DNA microarrays combined 1Department of Food Sciences and Nutrition, Institute of Nutrition and with biochemical analysis (HPLC and SPME-GCMS) Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, 2425 has been a useful tool to evaluate L-methionine catabo- rue de l′Agriculture, G1V 0A6 Québec City, QC, Canada Full list of author information is available at the end of the article lism, production of volatile sulfur compounds (VSC) and © 2014 Lessard et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Lessard et al. BMC Genomics 2014, 15:235 Page 2 of 13 http://www.biomedcentral.com/1471-2164/15/235 lactose/lactate consumption during yeast growth [11,12]. quantified using a TaqMan-based qPCR method [5,41], Even though microarrays provide information about gene G. candidum and P. camemberti had similar growth pro- expression under various conditions, their utility is limited files with an active phase in the first 5 days of ripening. to organisms for which genetic information is available Their maximum cell density was 6.45 × 109 and 4.69 × [13]. Next-Generation sequencing (NGS) methods are now 1010 gene copies/cm2, respectively, at the end of ripening widely used for de novo- and re- sequencing of genomes, (Figure 1). transcriptomes, epigenomes and metagenomes [14-19]. The first metagenomic analysis using 454 pyrosequenc- Sequencing and assembly of the Camembert ing was performed on bacterial communities in mines cheese transcriptome [20] and since then, high quality information is available Since only scarce genetic information is available for G. about ecosystems from soil [21,22], sea water [23,24], candidum and P. camemberti, the metatranscriptomic humans [25,26], and even cheese [27], most of them iden- approach using massive parallel sequencing had the ad- tifying microorganisms and establishing their phylogenetic vantage of simultaneously identifying new genes and de- relationships [28]. Genome and metagenome sequencing termining their expression profile during cheese ripening. are powerful tools, but massive transcriptome sequencing A de novo assembly performed using all 1,019,060 reads using NGS provides a more dynamic and functional view generated 8,909 contigs (length > 99 nt, average length of microbial activity under particular conditions by accu- of 916 nt). After sorting data for a minimum contig mulating data on RNA and its expression profile. length of 200 nt and a minimum of 6 assembled reads, Several studies used NGS technologies to compare the 8,318 contigs were conserved in the original cheese transcriptomic response of a single organism exposed to database. Reads were mapped back to the de novo as- different conditions [29-35]. In multiple-organism envi- sembly to enable semi-quantitative analysis and quality ronments, establishing the metatranscriptome reveals control of the assembly. De novo assembly and mapping the activity of a community, but only rare and very re- data were compared to remove artefacts, such as dupli- cent papers selected this approach [36-39]. This study is cated transcript models, resulting in the exclusion of the first comprehensive metatranscriptome analysis of 402/8,318 contigs. The assembly contigs were free of the Camembert cheese complex fungal ripening ecosys- fungal rDNA and mt-rDNA contamination as revealed tem. Here, the fungal metatranscriptome was sequenced by local BLAST search. This high quality dataset of 7,916 using a Roche 454 pyrosequencing NGS strategy, without contigs (average length of 988 nt; Table 1) represents the prior knowledge of the Penicillium camemberti and Geo- fungal metatranscriptome of the Canadian Camembert- trichum candidum genome sequences. The longer reads type cheese selected and was called CamemBank01, hence- produced by the 454 instruments enabled the discovery forth compensating the absence of available sequenced and characterization of new genetic information for these genomes for ripening species Penicillium camemberti Fungi and simultaneously established their activity profile. and Geotrichum candidum. Many fungal activities were identified using this strategy, including the central metabolism and the response to en- Identification and functional annotation of contigs found vironmental stresses and nutrient availability in the cheese in CamemBank01 matrix. This semi-quantitative gene expression profiling All 7,916 contigs were analyzed using the Blast2GO plat- revealed the adaptation of G. candidum and P. camem- form [42]. Because no genome of the yeast G. candidum berti during the 77-day ripening period of a commercial and the mold P. camemberti are currently available in Canadian Camembert-type cheese. public databases, sequence analysis was performed with caution. Therefore, contigs were assigned according to Results and discussion their similarity to mold or yeast relatives if sequences Cheese characteristics and fungal growth had a >70% identity with known proteins in GenBank. Commercial Camembert-type cheeses made from pas- Globally, 56,7% contigs originated from molds (M, n = teurized milk were obtained from a processing plant lo- 4,491 contigs) and 16,4% from yeasts (Y, n = 1,299 contigs). cated in Canada. Cheeses used in the present study The other 26,9% was defined as of uncharacterized origin developed no obvious defects during the ripening period (U), either because the Blastx protein similarity was under and met the high quality criteria of the company who 70% or because they had no significant homology. Over the provided the cheeses for the characteristics of cheese 563,733 reads assembled, 275,586 reads (48.89%) were con- texture, fat matter, salt and water content (confidential fidently assigned to molds and 105,017 reads (18.63%) to data, not presented). Also, the measured pH increase fit yeasts, while 183,130 reads are still unassigned. The aver- the normal alkalinisation of the rind over time observed age expression was 71 reads/contig, or 71 transcripts/ for similar Canadian mold ripened
Recommended publications
  • Fungal Systematics: Is a New Age to Some Fungal Taxonomists, the Changes Were Seismic11
    Nature Reviews Microbiology | AOP, published online 3 January 2013; doi:10.1038/nrmicro2942 PERSPECTIVES Nomenclature for Algae, Fungi, and Plants ESSAY (ICN). To many scientists, these may seem like overdue, common-sense measures, but Fungal systematics: is a new age to some fungal taxonomists, the changes were seismic11. of enlightenment at hand? In the long run, a unitary nomenclature system for pleomorphic fungi, along with the other changes, will promote effective David S. Hibbett and John W. Taylor communication. In the short term, however, Abstract | Fungal taxonomists pursue a seemingly impossible quest: to discover the abandonment of dual nomenclature will require mycologists to work together and give names to all of the world’s mushrooms, moulds and yeasts. Taxonomists to resolve the correct names for large num‑ have a reputation for being traditionalists, but as we outline here, the community bers of fungi, including many economically has recently embraced the modernization of its nomenclatural rules by discarding important pathogens and industrial organ‑ the requirement for Latin descriptions, endorsing electronic publication and isms. Here, we consider the opportunities ending the dual system of nomenclature, which used different names for the sexual and challenges posed by the repeal of dual nomenclature and the parallels and con‑ and asexual phases of pleomorphic species. The next, and more difficult, step will trasts between nomenclatural practices for be to develop community standards for sequence-based classification. fungi and prokaryotes. We also explore the options for fungal taxonomy based on Taxonomists create the language of bio‑ efforts to classify taxa that are discovered environmental sequences and ask whether diversity, enabling communication about through metagenomics5.
    [Show full text]
  • Tales of Mold-Ripened Cheese SISTER NOËLLA MARCELLINO, O.S.B.,1 and DAVID R
    The Good, the Bad, and the Ugly: Tales of Mold-Ripened Cheese SISTER NOËLLA MARCELLINO, O.S.B.,1 and DAVID R. BENSON2 1Abbey of Regina Laudis, Bethlehem, CT 06751; 2Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125 ABSTRACT The history of cheese manufacture is a “natural cheese both scientifically and culturally stems from its history” in which animals, microorganisms, and the environment ability to assume amazingly diverse flavors as a result of interact to yield human food. Part of the fascination with cheese, seemingly small details in preparation. These details both scientifically and culturally, stems from its ability to assume have been discovered empirically and independently by a amazingly diverse flavors as a result of seemingly small details in preparation. In this review, we trace the roots of cheesemaking variety of human populations and, in many cases, have and its development by a variety of human cultures over been propagated over hundreds of years. centuries. Traditional cheesemakers observed empirically that Cheeses have been made probably as long as mam- certain environments and processes produced the best cheeses, mals have stood still long enough to be milked. In unwittingly selecting for microorganisms with the best principle, cheese can be made from any type of mam- biochemical properties for developing desirable aromas and malian milk. In practice, of course, traditional herding textures. The focus of this review is on the role of fungi in cheese animals are far more effectively milked than, say, moose, ripening, with a particular emphasis on the yeast-like fungus Geotrichum candidum.
    [Show full text]
  • Title Melon Aroma-Producing Yeast Isolated from Coastal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Melon aroma-producing yeast isolated from coastal marine Title sediment in Maizuru Bay, Japan Sutani, Akitoshi; Ueno, Masahiro; Nakagawa, Satoshi; Author(s) Sawayama, Shigeki Citation Fisheries Science (2015), 81(5): 929-936 Issue Date 2015-09 URL http://hdl.handle.net/2433/202563 The final publication is available at Springer via http://dx.doi.org/10.1007/s12562-015-0912-5.; The full-text file will be made open to the public on 28 July 2016 in Right accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。 Type Journal Article Textversion author Kyoto University 1 FISHERIES SCIENCE ORIGINAL ARTICLE 2 Topic: Environment 3 Running head: Marine fungus isolation 4 5 Melon aroma-producing yeast isolated from coastal marine sediment in Maizuru Bay, 6 Japan 7 8 Akitoshi Sutani1 · Masahiro Ueno2 · Satoshi Nakagawa1· Shigeki Sawayama1 9 10 11 12 __________________________________________________ 13 (Mail) Shigeki Sawayama 14 [email protected] 15 16 1 Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, 17 Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan 18 2 Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto 19 University, Kyoto 625-0086, Japan 1 20 Abstract Researches on marine fungi and fungi isolated from marine environments are not 21 active compared with those on terrestrial fungi. The aim of this study was isolation of novel 22 and industrially applicable fungi derived from marine environments.
    [Show full text]
  • Caveats of Fungal Barcoding: a Case Study in Trametes S.Lat
    Caveats of fungal barcoding: a case study in Trametes s.lat. (Basidiomycota: Polyporales) in Vietnam reveals multiple issues with mislabelled reference sequences and calls for third-party annotations Authors: Lücking, Robert, Truong, Ba Vuong, Huong, Dang Thi Thu, Le, Ngoc Han, Nguyen, Quoc Dat, et al. Source: Willdenowia, 50(3) : 383-403 Published By: Botanic Garden and Botanical Museum Berlin (BGBM) URL: https://doi.org/10.3372/wi.50.50302 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Willdenowia on 10 Feb 2021 Terms of Use: https://bioone.org/terms-of-use Willdenowia Annals of the Botanic Garden and Botanical Museum Berlin ROBERT LÜCKING1*, BA VUONG TRUONG2, DANG THI THU HUONG3, NGOC HAN LE3, QUOC DAT NGUYEN4, VAN DAT NGUYEN5, ECKHARD VON RAAB-STRAUBE1, SARAH BOLLENDORFF1, KIM GOVERS1 & VANESSA DI VINCENZO1 Caveats of fungal barcoding: a case study in Trametes s.lat.
    [Show full text]
  • From “Viili” Towards “Termoviili”, a Novel Type of Fermented Milk
    Avens Publishing Group Inviting Innovations Open Access Research Article J Food Processing & Beverages December 2013 Vol.:1, Issue:2 © All rights are reserved by Alatossava T et al. AvensJournal Publishing of Group InviFoodting Innovations Processing & From “Viili” Towards Beverages “Termoviili”, a Novel Type of Fermented Milk: Characterization Tapani Alatossava*, Ruojie Li and Patricia Munsch-Alatossava Department of Food and Environmental Sciences, University of of Growth Conditions and Factors Helsinki, Finland *Address for Correspondence Tapani Alatossava, Department of Food and Environmental Sciences, for a Co-culture of Lactobacillus P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland, Tel: +358 9 191 58312; Fax: +358 9 191 58460; Email: [email protected] Submission: 11 November 2013 delbrueckii and Geotrichum Accepted: 12 December 2013 candidum Published: 18 December 2013 determinants for the production of fermented milk products with different tastes and flavors [1,2]. Fermented milks are beneficial to Keywords: Viili; yoghurt; Lactobacillus delbrueckii; Streptococcus thermophilus; Geotrichum candidum; formic acid; milk heat treatment human health, conditioning the intestine environment, lowering the blood pressure, and reducing the risks of bladder cancer and colon Abstract cancer [3-8]. Nowadays, the increasing consumption of fermented The traditional Northern fermented milk product “Viili” is based on milks offers a potential market for novel fermented milk products [9]. the use of a starter comprising both mesophilic lactic acid bacteria (LAB) and Geotricum candidum mold strains for milk fermentation at Globally among the commercial fermented milk products, yogurt 18 to 20°C for about 20 hours. The goal of the present study was to is the most popular product.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M.
    [Show full text]
  • Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces Geotrichum KL20A
    water Article Bio-Removal of Methylene Blue from Aqueous Solution by Galactomyces geotrichum KL20A Margarita Contreras 1, Carlos David Grande-Tovar 1,* , William Vallejo 1 and Clemencia Chaves-López 2 1 Grupo de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia 81007, Colombia; [email protected] (M.C.); [email protected] (W.V.) 2 Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +57-5-3599484 Received: 23 October 2018; Accepted: 7 January 2019; Published: 6 February 2019 Abstract: The conventional treatments used to remove dyes produced as a result of different industrial activities are not completely effective. At times, some toxic by-products are generated, affecting aquatic ecosystems. In this article, an efficient use of microorganisms is presented as a biodegradation technique that is a safe environmental alternative for the benefit of aquatic life. A strain of the yeast Galactomyces geotrichum KL20A isolated from Kumis (a Colombian natural fermented milk) was used for Methylene Blue (MB) bioremoval. Two parameters of the bioremediation process were studied at three different levels: initial dye concentration and growth temperature. The maximum time of MB exposure to the yeast was 48 h. Finally, a pseudo-first-order model was used to simulate the kinetics of the process. The removal percentages of MB, by action of G. geotrichum KL20A were greater than 70% under the best operating conditions and in addition, the kinetic simulation of the experimental results indicated that the constant rate of the process was 2.2 × 10-2 h−1 with a half time for biotransformation of 31.2 h.
    [Show full text]
  • Microbiological Risk Assessment of Raw Milk Cheese
    Microbiological Risk Assessment of Raw Milk Cheese Risk Assessment Microbiology Section December 2009 MICROBIOLOGICAL RISK ASSESSMENT OF RAW MILK CHEESES ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................. VII ABBREVIATIONS ............................................................................................................. VIII 1. EXECUTIVE SUMMARY .................................................................................................. 1 2. BACKGROUND ................................................................................................................... 8 3. PURPOSE AND SCOPE ..................................................................................................... 9 3.1 PURPOSE...................................................................................................................... 9 3.2 SCOPE .......................................................................................................................... 9 3.3 DEFINITION OF RAW MILK CHEESE ............................................................................... 9 3.4 APPROACH ................................................................................................................ 10 3.5 OTHER RAW MILK CHEESE ASSESSMENTS .................................................................. 16 4. INTRODUCTION .............................................................................................................. 18 4.1 CLASSIFICATION
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. Visagie1, J. Houbraken1*, J.C. Frisvad2*, S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; 6Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közep fasor 52, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade.
    [Show full text]
  • Potential Production of Cyclopiazonic Acid by Penicillium Camemberti Strains Isolated from Camembert Type Cheese
    Journal of Microbiology, Biotechnology and Císarová et al. 2012 : 2 (2) 434-445 FoodSciences REGULAR ARTICLE POTENTIAL PRODUCTION OF CYCLOPIAZONIC ACID BY PENICILLIUM CAMEMBERTI STRAINS ISOLATED FROM CAMEMBERT TYPE CHEESE Miroslava Císarová, Dana Tančinová*, Zuzana Barboráková, Zuzana Mašková, Soňa Felšöciová, Vladimíra Kučerková Address: Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Tr. A. Hlinku 2, 949 76 Nitra *Corresponding author: [email protected] ABSTRACT The aim of this study was to isolate the strains of fungi from Camembert type cheese, identify them and to test isolated strains of Penicillium camemberti for their ability to produce cyclopiazonic acid. The description of micro- and macromorphological features was used for identification of Penicillium camemberti strains. Strains were subsequently in vitro tested on their potential ability to produce mycotoxin cyclopiazonic acid (CPA). All of the 14 strains of Penicillium camemberti, which were obtained from 20 samples of Camembert type cheese, were cultivated 7, 14, 21, 27 and 30 days on CYA medium at 10±1°C, 15±1°C and 25±1°C in the dark. For determination of CPA production ability by P. camemberti isolates in vitro was TLC used. After 7 days of cultivation cyclopiazonic acid was produced only by 5 from 14 strains cultivated at all cultivation temperatures. After 14 and 21 days of cultivation was CPA produced by 6 strains at all of cultivation temperatures. After 27 and 30 days of cultivation was CPA identified in 7 strains cultivated at all temperatures of cultivation. The other strains also produced mycotoxin, however, not at each temperature.
    [Show full text]
  • Isolation and Risk Assessment of Geotrichum Spp. in the White Shrimp (Litopenaeus Vannamei Boone, 1931) from Culture Ponds
    Lat. Am. J. Aquat. Res., 43(4): 755-765, 2015Risk assessment of Geotrichum spp. for L. vannamei cultures 755 DOI: 10.3856/vol43-issue4-fulltext-14 Research Article Isolation and risk assessment of Geotrichum spp. in the white shrimp (Litopenaeus vannamei Boone, 1931) from culture ponds José Luis Ochoa1†, Norma Ochoa-Alvarez1, Maria Antonia Guzmán-Murillo1 Sergio Hernandez2 & Felipe Ascencio1 1Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional Nº195 Col. Playa Palo de Santa Rita, La Paz, BCS, 23096, México 2Centro Interdisciplinario de Ciencias Marinas (IPN), Instituto Politécnico Nacional s/n Col. Playa Palo de Santa Rita. La Paz BCS, 23096, México Corresponding author: Felipe Ascencio ([email protected]) †This study is dedicated in memory of the late Prof. José Luis Ochoa ABSTRACT. The present study was done in order to identify the fungus invading some of the supralittoral ponds used for shrimp aquaculture in the CIBNOR facilities in La Paz, Baja California Sur (BCS), México during the summer season. From the walls and bottoms of the ponds, two strains of Geotrichum spp. were isolated and morphologically identified. Fungal adhesion towards hemocytes and primary cultures of various white shrimp (Litopeneaus vannamei) tissues (gill, tegument, and gut) was analyzed to determine infectivity. Extracellular protease, lipase, and amylase activity were evaluated as virulence factors. Survival of shrimp post- larvae (PL8) exposed to fungal culture supernatant or to their filaments was also investigated. The results showed that shrimp tegument cells and hemocytes were very susceptible to Geotrichum spp. invasion, and that this fungus provokes great mortality of post-larvae. Hence, Geotrichum spp.
    [Show full text]
  • Quantitative Characterization of Geotrichum Candidum Growth in Milk
    applied sciences Article Quantitative Characterization of Geotrichum candidum Growth in Milk Petra Šipošová , Martina Ko ˇnuchová * , L’ubomír Valík , Monika Trebichavská and Alžbeta Medved’ová Department of Nutrition and Food Quality Assessment, Institute of Food Sciences and Nutrition, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia; [email protected] (P.Š.); [email protected] (L’.V.); [email protected] (M.T.); [email protected] (A.M.) * Correspondence: [email protected] Abstract: The study of microbial growth in relation to food environments provides essential knowl- edge for food quality control. With respect to its significance in the dairy industry, the growth of Geotrichum candidum isolate J in milk without and with 1% NaCl was investigated under isother- mal conditions ranging from 6 to 37 ◦C. The mechanistic model by Baranyi and Roberts was used to fit the fungal counts over time and to estimate the growth parameters of the isolate. The ef- fect of temperature on the growth of G. candidum in milk was modelled with the cardinal models, ◦ ◦ and the cardinal temperatures were calculated as Tmin = −3.8–0.0 C, Topt = 28.0–34.6 C, and ◦ Tmax = 35.2–37.2 C. The growth of G. candidum J was slightly faster in milk with 1% NaCl and in temperature regions under 21 ◦C. However, in a temperature range that was close to the optimum, its growth was slightly inhibited by the lowered water activity level. The present study provides useful cultivation data for understanding the behaviour of G.
    [Show full text]