Optical Integrated Circuits for Large-Scale Quantum Networks
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITY OF SOUTHAMPTON FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Optoelectronics Research Centre Optical integrated circuits for large-scale quantum networks By Matthew T. Posner Thesis for the degree of Doctor of Philosophy December 2017 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Optoelectronics Research Centre DOCTOR OF PHILOSOPHY OPTICAL INTEGRATED CIRCUITS FOR LARGE-SCALE QUANTUM NETWORKS by Matthew Thomas Posner This thesis presents the development of a platform to fabricate photonics integrated circuits that can be used to scale networks intended for quantum information processing (QIP) experiments. The stringent technical requirements for the transport and manipulation of quantum states of light are discussed with respect to channel waveguides and integrated gratings fabricated in silica-on-silicon through direct UV writing laser processing. Tilted gratings are identified as a method to enable polarisation-based applications for this integrated platform. A novel implementation of in-line planar waveguide polarisers based on 45º tilted gratings is presented, demonstrating gratings with polarisation extinction ratio (PER) of 0.25 dB / mm and bandwidth impairments better than 0.3 dB in the C-band. 45º tilted gratings in UV written waveguides are used to create novel polarising coupler architectures with PER of 28.5 dB. The alteration of the material composition of germanosilicate planar core layers is investigated, producing waveguides with birefringence of 4.5 ± 0.2 × 10 , higher than previously reported for this platform. A process for producing −end4 facet endcaps to extend the platform’s capability for high power applications is also described. These developments offer potential for the scaling of QIP experiments with heralded spontaneous four-wave mixing single-photon sources. Finally, the thesis describes research-based education experiments conducted to inform a wide range of audiences on the importance of photonics technologies. The concept of Photonics, and the underlying science and associated research, has been introduced to 2,952 students from 81 schools in the South of England and over 6,000 people in public events. Contents Contents ....................................................................................................................................................... v List of figures ............................................................................................................................................ xi List of tables ........................................................................................................................................... xix Nomenclature ........................................................................................................................................ xxi Declaration of authorship .............................................................................................................. xxiii Acknowledgements ........................................................................................................................... xxv Chapter 1 Introduction ....................................................................................................................... 1 1.1 Engineering the building blocks for quantum photonics ................................... 2 1.1.1 Quantum-enabled technologies ................................................................................ 3 1.1.2 Photonics for quantum technologies ...................................................................... 3 1.2 Photonics quantum networks ........................................................................................ 4 1.2.1 Integrated quantum photonics .................................................................................. 4 1.2.2 Towards networks of large optical quantum states ........................................ 5 1.3 Thesis synopsis ..................................................................................................................... 6 Chapter 2 Direct UV writing for an integrated waveguide platform .............................. 9 2.1 Introduction ........................................................................................................................... 9 2.2 Planar waveguides ............................................................................................................ 10 2.2.1 Ray propagation in waveguides ............................................................................. 10 2.2.2 Optical modes in waveguides ................................................................................. 13 2.2.3 Waveguide modelling ................................................................................................. 15 v vi Contents 2.2.4 Factors of merit ............................................................................................................. 17 2.3 Flame hydrolysis deposition for slab waveguide engineering ...................... 18 2.3.1 Base wafer ....................................................................................................................... 18 2.3.2 Layer deposition ........................................................................................................... 19 2.3.3 Layer sintering .............................................................................................................. 22 2.3.4 Layer material properties ......................................................................................... 24 2.3.5 Process flow overview ............................................................................................... 24 2.4 Direct UV writing ............................................................................................................... 25 2.4.1 Photosensitivity ............................................................................................................ 25 2.4.2 Waveguide formation ................................................................................................. 28 2.4.3 DUW waveguide description ................................................................................... 29 2.5 Integrated grating fabrication through direct UV writing ............................... 30 2.5.1 Photo-induced grating ............................................................................................... 31 2.5.2 Grating design ................................................................................................................ 35 2.5.3 Simultaneous fabrication of waveguides and gratings ................................ 37 2.5.4 DUW platform capability for integrated gratings .......................................... 42 2.6 Grating-based device characterisation .................................................................... 43 2.6.1 General considerations for experimental setups ........................................... 44 2.6.2 In-situ characterisation of waveguide properties .......................................... 45 2.7 Chip and end facet preparation ................................................................................... 45 2.7.1 Surface roughness characterisation ..................................................................... 45 2.7.2 End facet preparation methods ............................................................................. 47 2.7.3 End facet processing overview ............................................................................... 50 2.8 Conclusions and further work ..................................................................................... 51 Chapter 3 Tilted gratings for integrated polarising devices ........................................... 53 Contents vii 3.1 Photonics integrated circuits for polarisation control ..................................... 53 3.2 Design of polarisers with 45⁰ tilted gratings ........................................................ 54 3.3 Modelling of 45⁰ tilted gratings .................................................................................. 56 3.3.1 Background ..................................................................................................................... 56 3.3.2 .................................................. 57 3.3.3 TheoreticalFigures of merit description ................................ of 45⁰ tilted................................ gratings ............................................. 62 3.4 Fabrication of integrated polarisers by DUW ....................................................... 63 3.4.1 DUW interferometer board design and fabrication ...................................... 63 3.4.2 Tilted grating engineering ........................................................................................ 64 3.4.3 Fabrication of proof-of-concept devices ............................................................ 65 3.5 Device characterisation .................................................................................................. 66 3.5.1 Fibre-based characterisation setup ..................................................................... 66 3.5.2 Grating-induced polarisation extinction ratio ................................................. 67 3.5.3 Grating bandwidth characterisation .................................................................... 69 3.6 Fabrication and characterisation enhancement .................................................. 70 3.6.1 Adaptations of bandwidth characterisation