Decimal to Sexagesimal Base-10 to Base-60 B10 to B60 by Newsome

Total Page:16

File Type:pdf, Size:1020Kb

Decimal to Sexagesimal Base-10 to Base-60 B10 to B60 by Newsome Assignment 2a: Reading B Decimal to Sexagesimal Base-10 to Base-60 B10 to B60 by Newsome Our Decimal Number System: How We Construct Our Numbers [The positional notation system in Base-10] Modern Decimal Decimal Parts Number 103 + 102 + 101 + 100 Decimal equivalent [base-10] 1000 + 100 + 10 + 1 1523 1(1000) + 5(100) + 2(10) + 3(1) 1000 + 500 + 20 + 3 4085 4(1000) + 0(100) + 8(10) + 5(1) 4000 + 0 + 80 + 5 Let's count. 1 2 3 4 5 6 7 8 9 10 What we did was count up to 9 and then start over again at 1, which was moved one place to the left, to make 10. One in the tens position and 0 in the ones position. Because our system is Base-10, we run out of unique symbols after the 10th symbol. Implied in our system is zero. To be consistent we should really start counting with 0. 0 1 2 3 4 5 6 7 8 9 ...then continue... 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 ... etc... By counting this way (starting with 0) we list all ten unique symbols of our base-10 system. [Technically the "10" is using two of the unique symbols: the "1" and the "0." It is a compound, not an element, per se.] Historically, zero is a tricky fellow. People didn't work with a symbol denoting nothing for most of written human history. It's only in the last several hundred years that a symbol for zero has been consistantly used. The historical introduction of zero gets a lot of play in the history of mathematics. It's not that premodern people didn't understand the idea of nothing, but they, like us, naturally started counting with 1. Nobody counts how many Tootsie Rolls they have by saying (or thinking), "Zero Tootsie Rolls, one Tootsie Rolls, two Tootsie Rolls, etc." To count nothing is not counting. It's..... well.... nothing. We (modern human beings) typically utilize a decimal number system, Base-10. [Latin: Decimus = tenth] The Roman Numerals are also base-10... more or less. But their system doesn't have a consistant place system... meaning that the position of a symbol of a Roman Numeral doesn't tell you much. E.g. MMCMLVIII vs. 2958 If I asked, "What does the fourth symbol from the right mean in either of the numbers written above?" For the Roman Numeral you'd answer, "The fourth symbol from the right means five." "Five what?" ..... "I dunno. Just five." In the Hindu-Arabic number you'd say, "The fourth symbol from the right means two thousand." The Hindu-Arabic numeral includes more information encoded into its position within the number, whereas the Roman Numeral doesn't have this feature. A particular position in a Roman Numeral doesn't tell you much. Now count up 1 from the previous example. MMCMLIX vs. 2959 "The fourth Roman Numeral from the right is now one thousand." That's a radical change in that fourth position. It was five, now it's one thousand. The fourth Hindu-Arabic numeral is still 2000. One big benefit of the positional notation system is that big numbers are big and small numbers are small. 88 is physically much smaller than 23,457,341. It is 2 symbols compared with 8 symbols. At a glance we can see which number is bigger. In Roman Numerals you have to put some thought into determining which of the following two numbers is greater than the other: LXXXVIII vs. M. We can easily modify the Roman Numerals to be more like ours. We just need to define a notational system to indicate a place, a position. Let's propose that the colon, ":", indicates a base-10 positional system... like so... Here's how it would look imposed onto our number system. Modern With ":" to indicate place. What the place system does. 1(1000) + 5(100) + 2(10) + 3(1) = 1523 1:5:2:3 1000 + 500 + 20 + 3 Similarly, we could easily fit Roman Numerals into this system. Roman With ":" to indicate place. What the place system does. 1(1000) + 5(100) + 2(10) + 3(1) = MDXXIII M:D:XX:III 1000 + 500 + 20 + 3 It's just punctuation. We're using punctuation to group the numbers together into powers of 10 (1s, 10s, 100s, 1000s) By imposing this colon system, Roman and Hindu-Arabic numerals can function the same way. Their positions between colons indicate what powers of 10 they modify. It would be no problem to write any number in this way. E.g. MMCMLIX would become MM:CM:L:IX = 2:9:5:9 All we've done is impose an additional layer of organization onto the Roman Numerals. This organization allows us to identify specific positions in exactly the same manner as the Hindu-Arabic numbers. The reason we need the colons is because many Roman Numerals require multiple symbols to represent what Hindu-Arabic numerals do with one symbol. E.g. IX = 9 or III = 3. Roman Numerals are annoyingly inconsistant in length. I II III IV V VI VII VIII IX X 1 symbol 2 symbols 3 symbols 2 symbols 1 symbol 2 symbols 3 symbols 4 symbols 2 symbols 1 symbol Pros and Cons To count to 10 the Hindu-Arabic system requires that you learn 10 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. ...whereas the Roman Numerals only require that you learn 3 symbols: I, V, and X. The Roman symbols are much easier to memorize. Once you learn all 10 Hindu-Arabic symbols the manipulation of numbers is relatively easy. The Roman Numeral symbols are fewer, easier to memorize, but manipulating them is harder. You may have noticed a slight discrepancy. Q: How do you write 308 in Roman Numerals? A: CCCVIII Q: How do you write 308 in our colon-positional notation system? A: CCC: ? :VIII. There is no zero in the Roman Numerals. In order to make a positional system work with the Roman Numerals we need to invent a new symbol. We need to invent a zero. We need something to put inbetween the colons to show that there are no 10s, just ones and hundreds. How about we invent a symbol for Roman Numeral zero. How about @. Now 308 can be written as III:@:VIII. The 10s position has nothing in it– zero 10s. Problem solved. This problem was similarly solved when the cifre, or 0, was introduced. If people were going to use a positional notatation system, they needed a symbol for nothing. That symbol is 0. Dance Time This song couldn't have existed without this radical addition to the numerical lexicon. No 0, no song. or another link with different graphics: PE-logo. Now listen to this episode of In Our Time [BBC] A brief history of zero. IOT_ Zero.mp3 [42'] After listening, return to this reading. Recall our LobsterPeople exercise from class 1b. Count up from zero, in a base-4 system. Read it out loud a couple of times. 0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 100, 101, 102, etc. After a couple of times, you start to feel the rhythm... every 4 counts things change. If you recall, doing mathematical operations in B4 (Base-4) was hard. Remember trying to multiply ∆ × π = ? It's not technically any harder than B10, but it is really hard to think in B4. We have been using B10 for so long it seems totally natural... innate. It's not. It's learned. It's a social construction. The Maya used B20. Most premodern astronomers used B6, B60 and/or B12. Computers scientists use B2, and B4, and B8, and B16, and B32, and B64, etc. Here is a multiplication table for B10. Here is a multiplication table for B4. It covers what is outlined in green on the B10 table, but it's written in the symbolic form of B4. Your assingment is to make a base-6 (B6) system. This is an assignment without a provided worksheet. It will be up to you to design and produce it. You could freehand it, or do it in a word processor, or in a spreadsheet. [Then upload it to your folder with the proper file name: "LastName.1b.Base-6.xxx".] The result should be about one page long and should include the following: 1) Introduce what you are doing and provide commentary all along the way. Write some prose. 2) Include a count up to the equivalent of 3610 in B6, starting with 0. E.g. 0, 1, 2, 3, 4, 5, 10, 11, 12, etc. Above your B6 count, put the equivalent in B10. Here's what I mean in the form of an example using B4... If you recall, counting up to 1610 in B4 looked like this: B10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 B4 0 1 2 3 10 11 12 13 20 21 22 23 30 31 32 33 100 Your job is to do the same within a B6 system. It's a lot more numbers, so figure out a way to present this information in an attractive and useful manner. 3) Make a multiplication table for B6 like the ones shown above for B10 and B4. Notice that 0 is not included in these tables.
Recommended publications
  • Positional Notation Or Trigonometry [2, 13]
    The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.
    [Show full text]
  • The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
    Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g.
    [Show full text]
  • Abstract of Counting Systems of Papua New Guinea and Oceania
    Abstract of http://www.uog.ac.pg/glec/thesis/ch1web/ABSTRACT.htm Abstract of Counting Systems of Papua New Guinea and Oceania by Glendon A. Lean In modern technological societies we take the existence of numbers and the act of counting for granted: they occur in most everyday activities. They are regarded as being sufficiently important to warrant their occupying a substantial part of the primary school curriculum. Most of us, however, would find it difficult to answer with any authority several basic questions about number and counting. For example, how and when did numbers arise in human cultures: are they relatively recent inventions or are they an ancient feature of language? Is counting an important part of all cultures or only of some? Do all cultures count in essentially the same ways? In English, for example, we use what is known as a base 10 counting system and this is true of other European languages. Indeed our view of counting and number tends to be very much a Eurocentric one and yet the large majority the languages spoken in the world - about 4500 - are not European in nature but are the languages of the indigenous peoples of the Pacific, Africa, and the Americas. If we take these into account we obtain a quite different picture of counting systems from that of the Eurocentric view. This study, which attempts to answer these questions, is the culmination of more than twenty years on the counting systems of the indigenous and largely unwritten languages of the Pacific region and it involved extensive fieldwork as well as the consultation of published and rare unpublished sources.
    [Show full text]
  • Positional Notation Consider 101 1015 = ? Binary: Base 2
    1/21/2019 CS 362: Computer Design Positional Notation Lecture 3: Number System Review • The meaning of a digit depends on its position in a number. • A number, written as the sequence of digits dndn‐1…d2d1d0 in base b represents the value d * bn + d * bn‐1 + ... + d * b2 + d * b1 + d * b0 Cynthia Taylor n n‐1 2 1 0 University of Illinois at Chicago • For a base b, digits will range from 0 to b‐1 September 5th, 2017 Consider 101 1015 = ? • In base 10, it represents the number 101 (one A. 26 hundred one) = B. 51 • In base 2, 1012 = C. 126 • In base 8, 1018 = D. 130 101‐3=? Binary: Base 2 A. ‐10 • Used by computers B. 8 • A number, written as the sequence of digits dndn‐1…d2d1d0 where d is in {0,1}, represents C. 10 the value n n‐1 2 1 0 dn * 2 + dn‐1 * 2 + ... + d2 * 2 + d1 * 2 + d0 * 2 D. ‐30 1 1/21/2019 Binary to Decimal Decimal to Binary • Use polynomial expansion • Repeatedly divide by 2, recording the remainders. • The remainders form the binary digits of the number. 101102 = • Converting 25 to binary 3410=?2 Hexadecimal: Base 16 A. 010001 • Like binary, but shorter! • Each digit is a “nibble”, or half a byte • Indicated by prefacing number with 0x B. 010010 • A number, written as the sequence of digits dndn‐ C. 100010 1…d2d1d0 where d is in {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}, represents the value D.
    [Show full text]
  • 2 1 2 = 30 60 and 1
    Math 153 Spring 2010 R. Schultz SOLUTIONS TO EXERCISES FROM math153exercises01.pdf As usual, \Burton" refers to the Seventh Edition of the course text by Burton (the page numbers for the Sixth Edition may be off slightly). Problems from Burton, p. 28 3. The fraction 1=6 is equal to 10=60 and therefore the sexagesimal expression is 0;10. To find the expansion for 1=9 we need to solve 1=9 = x=60. By elementary algebra this means 2 9x = 60 or x = 6 3 . Thus 6 2 1 6 40 1 x = + = + 60 3 · 60 60 60 · 60 which yields the sexagsimal expression 0; 10; 40 for 1/9. Finding the expression for 1/5 just amounts to writing this as 12/60, so the form here is 0;12. 1 1 30 To find 1=24 we again write 1=24 = x=60 and solve for x to get x = 2 2 . Now 2 = 60 and therefore we can proceed as in the second example to conclude that the sexagesimal form for 1/24 is 0;2,30. 1 One proceeds similarly for 1/40, solving 1=40 = x=60 to get x = 1 2 . Much as in the preceding discussion this yields the form 0;1,30. Finally, the same method leads to the equation 5=12 = x=60, which implies that 5/12 has the sexagesimal form 0;25. 4. We shall only rewrite these in standard base 10 fractional notation. The answers are in the back of Burton. (a) The sexagesimal number 1,23,45 is equal to 1 3600 + 23 60 + 45.
    [Show full text]
  • Number Systems and Number Representation Aarti Gupta
    Number Systems and Number Representation Aarti Gupta 1 For Your Amusement Question: Why do computer programmers confuse Christmas and Halloween? Answer: Because 25 Dec = 31 Oct -- http://www.electronicsweekly.com 2 Goals of this Lecture Help you learn (or refresh your memory) about: • The binary, hexadecimal, and octal number systems • Finite representation of unsigned integers • Finite representation of signed integers • Finite representation of rational numbers (if time) Why? • A power programmer must know number systems and data representation to fully understand C’s primitive data types Primitive values and the operations on them 3 Agenda Number Systems Finite representation of unsigned integers Finite representation of signed integers Finite representation of rational numbers (if time) 4 The Decimal Number System Name • “decem” (Latin) => ten Characteristics • Ten symbols • 0 1 2 3 4 5 6 7 8 9 • Positional • 2945 ≠ 2495 • 2945 = (2*103) + (9*102) + (4*101) + (5*100) (Most) people use the decimal number system Why? 5 The Binary Number System Name • “binarius” (Latin) => two Characteristics • Two symbols • 0 1 • Positional • 1010B ≠ 1100B Most (digital) computers use the binary number system Why? Terminology • Bit: a binary digit • Byte: (typically) 8 bits 6 Decimal-Binary Equivalence Decimal Binary Decimal Binary 0 0 16 10000 1 1 17 10001 2 10 18 10010 3 11 19 10011 4 100 20 10100 5 101 21 10101 6 110 22 10110 7 111 23 10111 8 1000 24 11000 9 1001 25 11001 10 1010 26 11010 11 1011 27 11011 12 1100 28 11100 13 1101 29 11101 14 1110 30 11110 15 1111 31 11111 ..
    [Show full text]
  • About Numbers How These Basic Tools Appeared and Evolved in Diverse Cultures by Allen Klinger, Ph.D., New York Iota ’57
    About Numbers How these Basic Tools Appeared and Evolved in Diverse Cultures By Allen Klinger, Ph.D., New York Iota ’57 ANY BIRDS AND Representation of quantity by the AUTHOR’S NOTE insects possess a The original version of this article principle of one-to-one correspondence 1 “number sense.” “If is on the web at http://web.cs.ucla. was undoubtedly accompanied, and per- … a bird’s nest con- edu/~klinger/number.pdf haps preceded, by creation of number- mtains four eggs, one may be safely taken; words. These can be divided into two It was written when I was a fresh- but if two are removed, the bird becomes man. The humanities course had an main categories: those that arose before aware of the fact and generally deserts.”2 assignment to write a paper on an- the concept of number unrelated to The fact that many forms of life “sense” thropology. The instructor approved concrete objects, and those that arose number or symmetry may connect to the topic “number in early man.” after it. historic evolution of quantity in differ- At a reunion in 1997, I met a An extreme instance of the devel- classmate from 1954, who remem- ent human societies. We begin with the bered my paper from the same year. opment of number-words before the distinction between cardinal (counting) As a pack rat, somehow I found the abstract concept of number is that of the numbers and ordinal ones (that show original. Tsimshian language of a tribe in British position as in 1st or 2nd).
    [Show full text]
  • Babylonian Numerals the Units
    Babylonian numerals the units. For example the decimal 12345 represents 1 104 + 2 103 + 3 102 + 4 10 + 5. Babylonian index History Topics Index If one thinks about it this is perhaps illogical for we read from left to right so when we read the first digit we do not know its value until we have read the complete number to find out how many powers of 10 The Babylonian civilisation in Mesopotamia replaced the Sumerian civilisation and the Akkadian are associated with this first place. The Babylonian sexagesimal positional system places numbers with civilisation. We give a little historical background to these events in our article Babylonian mathematics. the same convention, so the right most position is for the units up to 59, the position one to the left is for Certainly in terms of their number system the Babylonians inherited ideas from the Sumerians and from 60 n where 1 n 59, etc. Now we adopt a notation where we separate the numerals by commas so, the Akkadians. From the number systems of these earlier peoples came the base of 60, that is the for example, 1,57,46,40 represents the sexagesimal number sexagesimal system. Yet neither the Sumerian nor the Akkadian system was a positional system and this advance by the Babylonians was undoubtedly their greatest achievement in terms of developing the 1 603 + 57 602 + 46 60 + 40 number system. Some would argue that it was their biggest achievement in mathematics. which, in decimal notation is 424000. Often when told that the Babylonian number system was base 60 people's first reaction is: what a lot of special number symbols they must have had to learn.
    [Show full text]
  • The Sumerian Ternary System and the Concept of Number António José Gonçalves De Freitas Centro De Estudos Humanísticos Universidade Do Minho Portugal
    Paper delivered at 1st CLE Colloquium for Philosophy and Formal Sciences Campinas, 21-23 March 2013 Accepted for publication in the Proceedings of the Conference DRAFT &1 The Sumerian ternary system and the concept of number António José Gonçalves de Freitas Centro de Estudos Humanísticos Universidade do Minho Portugal Abstract It is well known that Sumerians and Babylonians used a numeration system of base 12 and 60. We still have influence of that system in our nowadays counting of the hours of a day, twelve plus twelve, each hour has 60 minute and each minute 60 seconds. Also the circle has 360 degrees. What is not so well known is that the Sumerians in an earlier period used a ternary system of numeration; the first notice about that system is in Thureau- Dangin (1928). Later Diakonoff (1983) described it in good details and recently, Balke (2010) studied the system and described it with more precision. Still the use of this system and the concept of number involved are open questions. I will answer to those problems making a formalization of the system and showing how it could be related to a cosmogonic design. DRAFT &2 1. Numeral systems. DRAFT &3 ��� 1 11 21 31 41 51 � �� ��� �� �� � ��� 2 12 22 32 41 52 � �� ��� �� �� � � �� ��� � 3 13 23 33 42 53 � �� � � � � � �� ��� � 4 14 24 34 43 54 � �� � � � � � �� ��� � 5 15 25 35 44 55 � �� � � � � � �� ��� � 6 16 26 36 45 56 � �� �DRAFT� � � � �� ��� � 7 17 27 37 46 57 � �� � � � � &4 � �� � 8 18 28 38 47 58 � �� �� � � � � �� � � 9 19 29 39 48 59 � �� � � � � 10 20 30 ��� 40 50 � �� � � The main Babylonian and Sumerian counting system was a sexagesimal system.
    [Show full text]
  • The Sumerians , the Sexagesimal System and the Babylonian Legacy
    THE SUMERIANS , THE SEXAGESIMAL SYSTEM AND THE BABYLONIAN LEGACY TO ASTRONOMY by Paul Coffre The Sexagesimal System The Sumerians who lived in Mesopotamia (nowadays Iraq) 5000 years ago, developed a sexagesimal ComputaDon system. The sexagesimal system is a base 60 ComputaDon system. Why? Why not base 10 (deCimal), base 2 (Computers), base 12 (EgypDans), base 20 (Mayans)? The sexagesimal system is sDll in use today aLer 5000 years: CloCks, Coordinates of maps, Trigonometry… Why was the number 60 so valued in Mesopotamia? 60 is Countable on the fingers of both hands, 60 is a highly Composite number, 60 has an astronomiCal signifiCanCe. Strange enough that 60 is the first number between two prime numbers (59 and 61) For more details go to: hTps://en.wikipedia.org/wiki/Sexagesimal If this finger-CounDng method was the reason for the Mesopotamian sexagesimal system, why was its sub-base 10 instead of 12? It is inConsistent that the CounDng system is 12 × 5 = 60, while the deCimal notaDon system is 10 × 6 = 60. Note that Egypt uses this duodeCimal finger-CounDng method (base 12). The AnCient EgypDans had a deCimal system and did not acCept a sexagesimal system. They did not need to Count to 60, but they divided day and night into 12 hours each and they needed only to Count 12. Therefore we Can safely assume that this finger-CounDng method was originally developed to Count 12 and later Convert- ed to Count 60 and that Sumerians developed the sexagesimal notaDon independent of this CounDng method and then was passed on the Babylonians.
    [Show full text]
  • 2Decimal and Sexagesimal System
    I.E.S. “Andrés de Vandelvira” - Sección Europea Mathematics 2 Decimal and sexagesimal system Keywords Regular numbers repeating decimals period irrational number rounding number line sexagesimal system 1 Decimal numbers Remember that to express numbers that are not whole numbers we use decimal numbers as 75.324 in which every digit has a value which is divided by ten when we move to the right. So 7 is seventy units 5 is five units 3 is three tenths of a unit 2 two hundredths of the unit 4 is four thousandths of a unit And we continue like that if there are more digits. This is the decimal system that is commonly use nowadays except, sometimes, for time and angles. We read these numbers naming the whole part then “point” and then the decimals digits one by one Example The number 75.324 is read as seventy five, point, three, two, four When the numbers express money or length can be read on a different way, for example 5.24€ is read as five point twenty four euros or five euros and twenty five cents or the number 5.36 m can be read as five point thirty six metres. 2 Types of decimal numbers As a result of some operations we can get different types of decimal numbers: Regular numbers: Are decimal numbers with a limited quantity of decimal digits and from them all could be zeros. 2-1 I.E.S. “Andrés de Vandelvira” - Sección Europea Mathematics 14 Example = 8.2 we find an exact division 5 Repeating decimals: There is a group of digits that are repeated forever.
    [Show full text]
  • Number Systems Number Systems Positional Notation
    8/5/2019 Number Systems Decimal (Base 10) 10 digits (0,1,2,3,4,5,6,7,8,9) Binary (Base 2) 2 digits (0,1) Digits are often called bits (binary digits) Hexadecimal (Base 16) 16 digits (0-9,A,B,C,D,E,F) Often referred to as Hex 8/5/2019 CSE, Rajshahi University Number Systems Positional Notation Each digit is weighted by the base(r) to the positional power N = dn-1dn-2 …d0.d1d2…dm n-1 n-1 0 = (dn-1x r ) + (dn-2x r ) + … + (d0 1x r ) + 1 2 m (d1x r ) + (d2 x r ) + … (dm x r ) • Example : 872.6410 2 1 0 (8 x 10 ) + (7 x 10 ) + (2 x 10 ) -1 -2 + (6 x 10 ) + (4 x 10 ) • Example: 1011.12 = ? • Example :12A16 = ? 8/5/2019 CSE, Rajshahi University 8/5/2019 CSE, Rajshahi University 1 8/5/2019 Positional Notation Positional Notation (Solutions to Example Problems) (Solutions to Example Problems) 1011.12 3 2 1 0 -1 2 1 0 -1 -2 = 1x2 + 0x2 + 1x2 + 1x2 + 1x2 872.6410 = 8x10 + 7x10 + 2x10 + 6x10 + 4 x10 = 8 + 0 + 2 + 1 + .5 . 800 + 70 + 2 + .6 + .04 = 11.510 8/5/2019 CSE, Rajshahi University 8/5/2019 CSE, Rajshahi University Positional Notation Powers of Bases (Solutions to Example Problems) 2-3= .125 2-2= .25 2-1= .5 160 = 1 20 = 1 161 = 16 = 24 21 = 2 162 = 256 = 28 2 1 0 12A16 = 1x16 + 2x16 + Ax16 22 = 4 163 = 4096 = 212 23 = 8 = 256 + 32 + 10 24 = 16 25 = 32 = 29810 26 = 64 27 = 128 28 = 256 210 = 1024 = 1Kb 29 = 512 220 = 1,048,576 = 1Mb 210 = 1024 230 = 1,073,741,824 = 1Gb 211 = 2048 212 = 4096 8/5/2019 CSE, Rajshahi University 8/5/2019 CSE, Rajshahi University 2 8/5/2019 Determining What Base is being Used Conversion from Base R to Decimal Subscripts Use Positional Notation 87410 10112 AB916 AB9(16) Prefix Symbols %11011011 = ?10 (None) 874 %1011 $AB9 Postfix Symbols $3A94 = ?10 AB9H If I am only working with one base there is no need to add a symbol.
    [Show full text]