Substrate Selectivity Profiling of the Human Monoamine Transporters

Total Page:16

File Type:pdf, Size:1020Kb

Substrate Selectivity Profiling of the Human Monoamine Transporters DISSERTATION Titel der Dissertation Substrate Selectivity Profiling of the Human Monoamine Transporters Verfasst von Amir Seddik, B.Sc., M.Sc. angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr. rer. nat.) Wien, 2015 Studienkennzahl lt. Studienblatt: A 796 610 449 Dissertationsgebiet lt. Studienblatt: Pharmazie, DK: Molecular Drug Targets Betreut von: Univ.-Prof. Mag. Dr. Gerhard F. Ecker A. Seddik - Substrate Selectivity Profiling of the Human Monoamine Transporters A. Seddik - Substrate Selectivity Profiling of the Human Monoamine Transporters Acknowledgement Hereby I would like to express my sincere gratitude to Prof. Gerhard F. Ecker, who has integrated me into the scientific community by letting me join his research group. I am thankful for his training during all these years, which has formed me into a very independent researcher. I thank him for his time and support and I admire his ambitions and interest for integrating students on European and international level. It has been an honor to work at the pharmaceutical department of the University of Vienna in this beautiful city. Gerhard, thank you for the great time. My gratitude goes out to Michael Freissmuth and my co-supervisor Harald H. Sitte with whom we had very successful collaborations and I thank them for giving me the opportunity to learn the experimental methods. I acknowledge the support from the MolTag program, to which I have applied for in the first place. The consortium has proven that collaboration between groups of different expertise is educative and beneficial to publish in world-class journals. I thank Steffen Hering, Gerhard Ecker, Marko Mihovilovic, Margot Ernst, Doris Stenitzer and Sophia Khom for devoting their time to the management of the project. I thank the scientific advisory board for the critical feedback during the retreats. My gratitude goes out to Thomas Stockner; the molecular dynamics simulations on the transporter systems would not have been possible without him. Many thanks go out to Nico Vermeulen and Daan Geerke in Amsterdam, for their hospitality during my internship. Foremost I am grateful to Daan for his patience and interest in my work, while giving me the opportunity to learn about the fundamentals of biomolecular simulation. I would like to thank Chris Oostenbrink for organizing the exciting ABC seminars and giving me the honor to present there, and thank Thierry Langer for the stimulating feedback on my presentation. Especially I will miss the warm-hearted Pharmacoinformatics colleagues: I thank Barbara Zdrazil for supervising and introducing me into the field of computational drug-design. Many thanks go out to so many people that I have worked together with and that were around: Lars, Nathan, Thomas Haschka, Marta, Melanie, Chonticha, René, Andreas, Freya, Daniela Digles, Yogesh, Ishrat, Andrea, Daria, Floriane, Doris, Eva, Eleni, Michael, Taymara, Alina, Theresa, Dennis, Alexandra, Bernhard, Sankalp, Priska, Lydia, Eugenia, Noor, Katharina Prokes, Katharina Bulyha, Marian, Victoria, Natesh, Petra, Anika, Katharina Krammler and Daniela Past. Thank you for the great time I had and for always being there for me. I wish everyone the best of luck in their career. Certainly I will miss the educational and fun time I had in Amsterdam, thanks to Luigi, Ruben, Marc, Koen and Rosa, who I wish great luck with their further projects. Of course I will miss the members of the Währingerstrasse, who devote their life to science and with whom I enjoyed the fruitful discussions, Walter, Sonja, Kusumika, Marion, Oliver, Felix, Ali, Tina, Thomas Steinkellner and many others I thank for the supervision and the great time in the wet-lab. I have learned a lot in a short amount of time thanks to them. My love goes out to my father who unfortunately passed away during my Master’s. I thank my mother, Selma and my family for always being there when I visited the Netherlands. My love goes out to Laura who has survived living with a PhD student. 3 A. Seddik - Substrate Selectivity Profiling of the Human Monoamine Transporters 4 A. Seddik - Substrate Selectivity Profiling of the Human Monoamine Transporters INDEX Acknowledgement 3 List of Abbreviations 6 Abstract 7 I Background 9 Motivation 10 A Biological Background 11 a Monoamine Transporter Function and Classification 11 b Monoamine Transporter Structure 12 c Pharmacochemistry of Monoamine Transporter substrates 14 B Methods in Computational Drug design 17 a Homology Modelling 17 b Docking 18 c Molecular Dynamics 21 d Free Energy Calculations 22 e Quantitative Structure-Activity Relationship (QSAR) studies 24 C Experimental Methods 26 a Site-directed mutagenesis 26 b Transient transfection 27 c Uptake inhibitory measurements 27 Bibliography 28 II Results and Discussion 31 A Probing the Selectivity of Monoamine Transporter Substrates by Means of 32 Molecular Modeling B Combined Hansch analysis and Docking of Cathinone Designer Drug Analogs in 38 the Serotonin Transporter C Molecular Dynamics studies on (4-iodo)-methcathinone binding to DAT and 52 ‘SERT’-ized DAT D ‘Second-Generation’ Mephedrone Analogs, 4-MEC and 4-MePPP, Differentially 65 Affect Monoamine Transporter Function E Aminorex, a metabolite of the cocaine adulterant levamisole, exerts 77 amphetamine like actions at monoamine transporters F Synthesis and in Silico Evaluation of Novel Compounds for PET-Based 88 Investigations of the Norepinephrine Transporter Concluding Remarks 108 Appendix 110 Curriculum Vitae 115 5 A. Seddik - Substrate Selectivity Profiling of the Human Monoamine Transporters List of Abbreviations 4-MEC 4-Methyl-N-ethylcathinone MOE Molecular Operating Environment + 4-MePPP 4'-Methyl-α-pyrrolidinopropiophenone MPP Methylpyridinium 5-HT 5-hydroxytryptamine MR Molar refractivity 5-HTR 5-hydroxytryptamine receptor MSA Multiple Sequence Alignment + Aa Aquifex aeolicus Na Sodium ion ADHD Attention-Deficit Hyperactivity Disorder NaOH Sodium Hydroxide APC Amino-acid/Polyamine/Organocation NCBI National Center for Biotechnology Information Arg Arginine NE Norepinephrine Asp Aspartate NET Norepinephrine Transporter BAT Biogenic Amine Transporter NMR Nuclear Magnetic Resonance BBB Blood-Brain-Barrier NSS Neurotransmitter/Sodium Symporter BLAST Basic Local Alignment Search Tool OG Octyl glucoside CDCl 3 Deuterated Chloroform OPLS Optimized Potentials for Liquid Simulations Cl- Chloride PEA Phenylethylamine COPII Coat Protein II PB Poisson-Boltzmann COS CV-1 Origin SV40 PCR Polymerase-chain reaction DA Dopamine PDB Protein Data Bank DAT Dopamine Transporter PDL poly-d-lysine DMEM Dulbecco's Modified Eagle's medium PET Positron Emission Tomography DMF Dimethylformamide PLP Piecewise Linear Potential DMSO Dimethyl Sulphoxide PLS Partial-Least Squares DNA Deoxyribonucleic Acid PME Particle Mesh Ewald summation dNTP Deoxyribonucleophosphate POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine DOPE Discrete Optimized Protein Energy POVME Pocket Volume Measurer Dpn Diplococcus pneumoniae PP Phenylpiperazine EBI European Bioinformatics Institute QM Quantum mechanics EL Extracellular loop QQ Electrostatics GA Genetic Algorithm QSAR Quantitative Structure-Activity Relationship GAT Gamma-amino-butyric acid Transporter RCSB Research Collaboratory for Structural Bioinformatics GB Generalized Born RMSD Root-mean-square Deviation Glu Glutamate SA Surface area GlyT Glycine Transporter SAR Structure-Activity Relationship GOLD Genetic Optimization for Ligand Docking SDS Sodium Dodecyl sulfate GRIND Grid Independent Descriptors SERT Serotonin Transporter HB Hydrogen Bond SFF (S)-fenfluramine HCl Hydrogen Chloride SLC Solute Carrier HEK Human Embryonic Kidney SMILES Simplified Molecular-input line-Entry System HeLa Henrietta Lacks SNRI Selective Norepinephrine Reuptake Inhibitor HEPES 2-[4-(2-OH-Et)piperazin-1-yl]ethanesulfonic acid SSRI Selective Serotonin Reuptake Inhibitor IFD Induced-Fit Docking SPC Single point charge IMAP 2-(methylaminol-l-(4-iodophenyl)propan-l-one SVL Scientific Vector Language KCl Potassium Chloride TCA Tricyclic Antidepressant keV kilo electron volt TI Thermodyna mic Integration LeuT Leucine Transporter Tris tris(hydroxymethyl)aminomethane LB Lysogeny Broth vdW Van der Waals LC-MS Liquid Chromatography/Mass VMD Visual Molecular Dynamics LINCS LinearSpectrometr Constraint Solver VSA van der Waals Surface Area LJ Lennard-Jones WT Wild-type Lys Lysine MAT Monoamine Transporter MCAT Methcathinone MD Molecular Dynamics MDMA 3,4-methylenedioxymethamphetamine MEPH Mephedrone MLR Multiple Linear Regression MM Molecular mechanics 6 A. Seddik - Substrate Selectivity Profiling of the Human Monoamine Transporters Abstract The serotonin, dopamine and norepinephrine transporter proteins (SERT, DAT, NET, respectively) are collectively named as the monoamine transporters (MATs) and are involved in a variety of psychiatric disorders such as depression, anxiety, addiction and attention-deficit hyperactivity disorder. The high sequence identity and functional similarity to each other, despite their involvement in different behaviors and disorders, have made them a central topic in life sciences research during the last decades. Small molecules that bind to the MATs can be divided into inhibitors and substrates, whose selectivity for the latter has been thoroughly studied during this thesis, using computational and biochemical methods. The binding modes of endogenous substrates such as dopamine, norepinephrine and serotonin have been suggested previously, but the binding and selectivity of exogenous compounds not extensively.
Recommended publications
  • Evaluating Small Molecule Microscopic and Macroscopic Pka
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341792; this version posted October 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Overview of the SAMPL6 pK a Challenge: 2 Evaluating small molecule microscopic and 3 macroscopic pK a predictions 4 Mehtap Işık (ORCID: 0000-0002-6789-952X)1,2*, Ariën S. Rustenburg (ORCID: 0000-0002-3422-0613)1,3, Andrea 5 Rizzi (ORCID: 0000-0001-7693-2013)1,4, M. R. Gunner (ORCID: 0000-0003-1120-5776)6, David L. Mobley (ORCID: 6 0000-0002-1083-5533)5, John D. Chodera (ORCID: 0000-0003-0542-119X)1 7 1Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 8 New York, NY 10065, United States; 2Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Graduate 9 School of Medical Sciences, Cornell University, New York, NY 10065, United States; 3Graduate Program in 10 Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY 10065, United States; 11 4Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Graduate School of Medical 12 Sciences, Cornell University, New York, NY 10065, United States; 5Department of Pharmaceutical Sciences and 13 Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States; 6Department of 14 Physics, City College of New York, New York NY 10031 15 *For correspondence: 16 [email protected] (MI) 17 18 Abstract 19 K The prediction of acid dissociation constants (p a) is a prerequisite for predicting many other properties of a small molecule, 20 such as its protein-ligand binding affinity, distribution coefficient (log D), membrane permeability, and solubility.
    [Show full text]
  • In Silico Molecular Modelling and Design of Heme-Containing Peroxidases for Industrial Applications
    In silico molecular modelling and design of heme-containing peroxidases for industrial applications Marina Cañellas Fontanilles Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial 3.0. Spain License. Marina Cañellas Fontanilles molecular modelling and design of heme-containing peroxidases for industrial applications applications industrial for peroxidases molecular modelling and design of heme-containing In silico In silico molecular modelling and design of heme-containing peroxidases for industrial applications Marina Cañellas Fontanilles UNIVERSITAT DE BARCELONA Facultat de Farmàcia i Ciències de l’Alimentació Programa de Doctorat en Biotecnologia In silico molecular modelling and design of heme-containing peroxidases for industrial applications Memòria presentada per Marina Cañellas Fontanilles per optar al títol de doctor per la Universitat de Barcelona Dirigida per: Dr. Victor Guallar Tasies Dr. Maria Fátima Lucas Tutora: Dr. Josefa Badia Palacín Marina Cañellas Fontanilles Barcelona, 2018 “Voici mon secret: L’essentiel est invisible pour les yeux.” “And now here is my secret: what is essential is invisible to the eye.” Antoine de Saint-Exupéry, Le Petit Prince Table of Contents ACKNOWLEDGEMENTS ............................................................................ i LIST OF
    [Show full text]
  • Evaluation of Log P, Pka, and Log D Predictions from the SAMPL7 Blind Challenge
    Journal of Computer-Aided Molecular Design (2021) 35:771–802 https://doi.org/10.1007/s10822-021-00397-3 Evaluation of log P, pKa, and log D predictions from the SAMPL7 blind challenge Teresa Danielle Bergazin1 · Nicolas Tielker6 · Yingying Zhang3 · Junjun Mao4 · M. R. Gunner3,4 · Karol Francisco5 · Carlo Ballatore5 · Stefan M. Kast6 · David L. Mobley1,2 Received: 21 April 2021 / Accepted: 5 June 2021 / Published online: 24 June 2021 © The Author(s) 2021 Abstract The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges focuses the computational modeling community on areas in need of improvement for rational drug design. The SAMPL7 physical property challenge dealt with prediction of octanol-water partition coefcients and pKa for 22 compounds. The dataset was composed of a series of N-acylsulfonamides and related bioisosteres. 17 research groups participated in the log P challenge, submitting 33 blind submissions total. For the pKa challenge, 7 diferent groups participated, submitting 9 blind submissions in total. Overall, the accuracy of octanol-water log P predictions in the SAMPL7 challenge was lower than octanol-water log P predictions in SAMPL6, likely due to a more diverse dataset. Compared to the SAMPL6 pKa challenge, accuracy remains unchanged in SAMPL7. Interestingly, here, though macroscopic pKa values were often predicted with reasonable accuracy, there was dramatically more disagreement among participants as to which microscopic transitions produced these values (with methods often disagreeing even as
    [Show full text]
  • Bringing Open Source to Drug Discovery
    Bringing Open Source to Drug Discovery Chris Swain Cambridge MedChem Consulting Standing on the shoulders of giants • There are a huge number of people involved in writing open source software • It is impossible to acknowledge them all individually • The slide deck will be available for download and includes 25 slides of details and download links – Copy on my website www.cambridgemedchemconsulting.com Why us Open Source software? • Allows access to source code – You can customise the code to suit your needs – If developer ceases trading the code can continue to be developed – Outside scrutiny improves stability and security What Resources are available • Toolkits • Databases • Web Services • Workflows • Applications • Scripts Toolkits • OpenBabel (htttp://openbabel.org) is a chemical toolbox – Ready-to-use programs, and complete programmer's toolkit – Read, write and convert over 110 chemical file formats – Filter and search molecular files using SMARTS and other methods, KNIME add-on – Supports molecular modeling, cheminformatics, bioinformatics – Organic chemistry, inorganic chemistry, solid-state materials, nuclear chemistry – Written in C++ but accessible from Python, Ruby, Perl, Shell scripts… Toolkits • OpenBabel • R • CDK • OpenCL • RDkit • SciPy • Indigo • NumPy • ChemmineR • Pandas • Helium • Flot • FROWNS • GNU Octave • Perlmol • OpenMPI Toolkits • RDKit (http://www.rdkit.org) – A collection of cheminformatics and machine-learning software written in C++ and Python. – Knime nodes – The core algorithms and data structures are written in C ++. Wrappers are provided to use the toolkit from either Python or Java. – Additionally, the RDKit distribution includes a PostgreSQL-based cartridge that allows molecules to be stored in relational database and retrieved via substructure and similarity searches.
    [Show full text]
  • Estrogenic Activity of Lignin-Derivable Alternatives to Bisphenol a Assessed Via Molecular Docking Cite This: RSC Adv.,2021,11, 22149 Simulations†
    RSC Advances View Article Online PAPER View Journal | View Issue Estrogenic activity of lignin-derivable alternatives to bisphenol A assessed via molecular docking Cite this: RSC Adv.,2021,11, 22149 simulations† Alice Amitrano, ‡a Jignesh S. Mahajan, ‡b LaShanda T. J. Korley abc and Thomas H. Epps, III *abc Lignin-derivable bisphenols are potential alternatives to bisphenol A (BPA), a suspected endocrine disruptor; however, a greater understanding of structure–activity relationships (SARs) associated with such lignin- derivable building blocks is necessary to move replacement efforts forward. This study focuses on the prediction of bisphenol estrogenic activity (EA) to inform the design of potentially safer BPA alternatives. To achieve this goal, the binding affinities to estrogen receptor alpha (ERa) of lignin-derivable bisphenols were calculated via molecular docking simulations and correlated to median effective concentration (EC50) values using an empirical correlation curve created from known EC50 values and binding affinities Creative Commons Attribution-NonCommercial 3.0 Unported Licence. of commercial (bis)phenols. Based on the correlation curve, lignin-derivable bisphenols with binding affinities weaker than À6.0 kcal molÀ1 were expected to exhibit no EA, and further analysis suggested that having two methoxy groups on an aromatic ring of the bio-derivable bisphenol was largely responsible for the reduction in binding to ERa. Such dimethoxy aromatics are readily sourced from the depolymerization of hardwood biomass. Additionally, bulkier
    [Show full text]
  • Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-Cov-2 Main Protease †
    Proceeding Paper Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-CoV-2 Main Protease † Verónica G. García-Ramírez 1, Abel Suarez-Castro 1,*, Ma. Guadalupe Villa-Lopez 1, Erik Díaz-Cervantes 2, Luis Chacón-García 1 and Carlos J. Cortes-García 1,* 1 Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58033 Morelia, Michoacán, Mexico; [email protected] (V.G.G.-R.); [email protected] (M.G.V.-L.); [email protected] (L.C.-G.) 2 Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, C.P. 37975 Tierra Blanca, Guanajuato, Mexico; [email protected] * Correspondence: [email protected] (A.S.-C.); [email protected] (C.J.C.-G.) † Presented at the 24th International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2020; Available online: https://ecsoc-24.sciforum.net/. Abstract: A novel synthetic strategy to obtain acylhydrazone-oxazole hybrids in three-step reactions in moderate to good yields is reported. The key step reaction consists in a Van Leusen reaction using a bifunctional component of both an aldehyde and a functional group. The target molecules were evaluated via in-silico by molecular docking with the main protease enzyme of SARS-Cov-2, where two acyl hydralazine-oxazoles yielded good predicted free energy values in comparison to the co- crystalized ligand. Keywords: oxazoles; acylhydrazones; Van Leusen reaction; docking studies; SARS-CoV-2 Citation: García-Ramírez, V.G.; Suarez-Castro, A.; Villa-Lopez, M.G.; Díaz-Cervantes, E.; Chacón-García, L.; Cortes-García, C.J.
    [Show full text]
  • Subramanian Udel 006
    OPERANDO LIQUID-CELL ELECTRON MICROSCOPY OF THE ELECTROCHEMICAL POLYMERIZATION OF BEAM-SENSITIVE CONJUGATED POLYMERS by Vivek Subramanian A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering Fall 2020 © 2020 Vivek Subramanian All Rights Reserved OPERANDO LIQUID-CELL ELECTRON MICROSCOPY OF THE ELECTROCHEMICAL POLYMERIZATION OF BEAM-SENSITIVE CONJUGATED POLYMERS by Vivek Subramanian Approved: __________________________________________________________ Darrin J. Pochan, Ph.D. Chair of the Department of Materials Science and Engineering Approved: __________________________________________________________ Levi T. Thompson, Ph.D. Dean of the College of Engineering Approved: Louis F. Rossi, Ph.D. Vice Provost for Graduate & Professional Education and Dean of the Graduate College I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: David C. Martin, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Darrin J. Pochan, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ________________________________________________________ Chaoying Ni, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Bringing Open Source to Drug Discovery
    Bringing Open Source to Drug Discovery Chris Swain Cambridge MedChem Consulting Standing on the shoulders of giants • There are a huge number of people involved in writing open source software • It is impossible to acknowledge them all individually • The slide deck will be available for download and includes 25 slides of details and download links – Copy on my website www.cambridgemedchemconsulting.com Why us Open Source software? • Allows access to source code – You can customise the code to suit your needs – If developer ceases trading the code can continue to be developed – Outside scrutiny improves stability and security What Resources are available • Toolkits • Databases • Web Services • Workflows • Applications • Scripts Toolkits • OpenBabel • R • CDK • OpenCL • RDkit • SciPy • Indigo • NumPy • ChemmineR • Pandas • Helium • Flot • FROWNS • GNU Octave • Perlmol • OpenMPI Toolkits • OpenBabel (htttp://openbabel.org) is a chemical toolbox – Ready-to-use programs, and complete programmer's toolkit – Read, write and convert over 110 chemical file formats – Filter and search molecular files using SMARTS and other methods, KNIME add-on – Supports molecular modeling, cheminformatics, bioinformatics – Organic chemistry, inorganic chemistry, solid-state materials, nuclear chemistry – Written in C++ but accessible from Python, Ruby, Perl, Shell scripts… Toolkits • RDKit (http://www.rdkit.org) – A collection of cheminformatics and machine-learning software written in C++ and Python. – Knime nodes – The core algorithms and data structures are written in C ++. Wrappers are provided to use the toolkit from either Python or Java. – Additionally, the RDKit distribution includes a PostgreSQL-based cartridge that allows molecules to be stored in relational database and retrieved via substructure and similarity searches.
    [Show full text]
  • Best Practices for Alchemical Free Energy Calculations [Article V 1.0]
    A LiveCoMS Best PrACTICES Guide Best PrACTICES FOR Alchemical FrEE EnerGY Calculations [Article V 1.0] Antonia S. J. S. MeY1*, Bryce K. Allen7, Hannah E. Bruce Macdonald2, John D. ChoderA2*, Maximilian Kuhn1,10, Julien Michel1, David L. MobleY3*, LeVI N. Naden11, Samarjeet PrASAD4, AndrEA Rizzi2,8, JenkE Scheen1, Michael R. Shirts6*, Gary TRESADERN9, Huafeng Xu7 1EaStCHEM School OF Chemistry, David BrEWSTER Road, Joseph Black Building, The King’S Buildings, Edinburgh, EH9 3FJ, UK; 2Computational AND Systems Biology PrOGRam, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NeW YORK NY, USA; 3Departments OF Pharmaceutical Sciences AND Chemistry, University OF California, Irvine, USA; 4National INSTITUTES OF Health, Bethesda, MD, USA; 6University OF ColorADO Boulder, Boulder, CO, USA; 7Silicon Therapeutics, Boston, MA, USA; 8Tri-INSTITUTIONAL TRAINING PrOGRAM IN Computational Biology AND Medicine, NeW York, NY, USA; 9Computational Chemistry, Janssen ResearCH & Development, TURNHOUTSEWEG 30, Beerse B-2340,Belgium; 10Cresset, Cambridgeshire, UK; 11Molecular Sciences SoftwarE Institute, BlacksburG VA, USA This LiveCoMS DOCUMENT IS AbstrACT Alchemical FREE ENERGY CALCULATIONS ARE A USEFUL TOOL FOR PREDICTING FREE ENERGY DIffer- MAINTAINED ONLINE ON ENCES ASSOCIATED WITH THE TRANSFER OF MOLECULES FROM ONE ENVIRONMENT TO another. The HALLMARK GitHub AT https: //github.com/michellab/ OF THESE METHODS IS THE USE OF "bridging" POTENTIAL ENERGY FUNCTIONS REPRESENTING ALCHEMICAL inter- alchemical-best-PRACTICES; MEDIATE STATES THAT CANNOT EXIST AS REAL CHEMICAL species. The DATA COLLECTED FROM THESE BRIDGING TO PROVIDE feedback, ALCHEMICAL THERMODYNAMIC STATES ALLOWS THE EffiCIENT COMPUTATION OF TRANSFER FREE ENERGIES (or suggestions, OR HELP IMPROVE it, PLEASE VISIT THE DIffERENCES IN TRANSFER FREE ENERgies) WITH ORDERS OF MAGNITUDE LESS SIMULATION TIME THAN SIMULATING GitHub REPOSITORY AND THE TRANSFER PROCESS DIRECTLY.
    [Show full text]
  • WHAT INFLUENCE WOULD a CLOUD BASED SEMANTIC LABORATORY NOTEBOOK HAVE on the DIGITISATION and MANAGEMENT of SCIENTIFIC RESEARCH? by Samantha Kanza
    UNIVERSITY OF SOUTHAMPTON Faculty of Physical Sciences and Engineering School of Electronics and Computer Science What Influence would a Cloud Based Semantic Laboratory Notebook have on the Digitisation and Management of Scientific Research? by Samantha Kanza Thesis for the degree of Doctor of Philosophy 25th April 2018 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE Doctor of Philosophy WHAT INFLUENCE WOULD A CLOUD BASED SEMANTIC LABORATORY NOTEBOOK HAVE ON THE DIGITISATION AND MANAGEMENT OF SCIENTIFIC RESEARCH? by Samantha Kanza Electronic laboratory notebooks (ELNs) have been studied by the chemistry research community over the last two decades as a step towards a paper-free laboratory; sim- ilar work has also taken place in other laboratory science domains. However, despite the many available ELN platforms, their uptake in both the academic and commercial worlds remains limited. This thesis describes an investigation into the current ELN landscape, and its relationship with the requirements of laboratory scientists. Market and literature research was conducted around available ELN offerings to characterise their commonly incorporated features. Previous studies of laboratory scientists examined note-taking and record-keeping behaviours in laboratory environments; to complement and extend this, a series of user studies were conducted as part of this thesis, drawing upon the techniques of user-centred design, ethnography, and collaboration with domain experts. These user studies, combined with the characterisation of existing ELN features, in- formed the requirements and design of a proposed ELN environment which aims to bridge the gap between scientists' current practice using paper lab notebooks, and the necessity of publishing their results electronically, at any stage of the experiment life cycle.
    [Show full text]
  • Downloadable Software, Databases, and Web-Based Platforms
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection Permalink https://escholarship.org/uc/item/4px4399n Author Faulkner, David Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection by David Michael Faulkner A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular Toxicology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christopher D. Vulpe, Co-Chair Associate Professor Jen-Chywan Wang, Co-Chair Associate Professor Daniel K. Nomura Professor John Arnold Fall 2017 Abstract Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection by David Michael Faulkner Doctor of Philosophy in Molecular Toxicology University of California, Berkeley Professor Christopher D. Vulpe, Co-Chair Associate Professor Jen-Chywan Wang, Co-Chair Despite their ubiquity in modern life, industrial chemicals are poorly regulated in the United States. Statutory law defines industrial chemicals as chemicals that are not foods, drugs, cosmetics, nor pesticides, but may be used in consumer products, and this distinction places them under the purview of the Toxic Substances Control Act (TSCA), which received a substantial update when the US congress passed a revision of the act in 2016. The revised law, the Frank R. Lautenberg Chemical Safety for the 21st Century Act addresses many but not all of TSCA’s failings, and rightfully emphasizes the development and adoption of high throughput screens, in vitro, and alternative assays to improve the process for registering new chemicals and to address the tens of thousands of untested chemicals currently in the TSCA inventory.
    [Show full text]
  • (Caesalpinia Sappan L.) SEBAGAI PENGHAMBAT XANTIN OKSIDASE PADA HIPERURISEMIA
    LAPORAN PENELITIAN STUDI DINAMIKA MOLEKULAR SAPPAN KALKON DARI KAYU SECANG (Caesalpinia sappan L.) SEBAGAI PENGHAMBAT XANTIN OKSIDASE PADA HIPERURISEMIA Tim Pengusul Ketua Peneliti : Rizky Arcinthya Rachmania, M.Si. (0305018603) Anggota Peneliti : Apt. Hariyanti, M.Si., (0311097705) PROGRAM STUDI FARMASI FAKULTAS FARMASI DAN SAINS UNIVERSITAS MUHAMMADIYAH PROF. DR. HAMKA 2020 ABSTRAK Hiperurisemia adalah kondisi dimana terjadi peningkatan kadar asam urat diatas normal sehingga dapat menyebabkan penumpukan kristal asam urat di jaringan. Xantin oksidase merupakan enzim yang berperan dalam mengkatalisis oksidasi hipoxantin menjadi xantin dan asam urat. Obat tradisional yang digunakan secara empiris untuk menurunkan asam urat adalah kayu secang. Sappankalkon pada kayu secang telah diketahui memiliki afinitas terhadap enzim yag meghamba produki asam urat yaitu xantin oksidase secara penambatan molekul, namun belum diketahui kestabilan kalkon dalam berinteraksi dengan xantin oksidase. Tujuan dari penelitian ini adalah untuk mengetahui kestabilan sappan kalkon terhadap enzim xantin oksidase. Metode pengujian kestabilan menggunakan simulasi dinamika molekular dengan software GROMACS dengan waktu pergerakan atom 10 ns. Hasil dari pengujian parameter simulasi dinamika molekular yaitu RMSD, RMSF dan energi potensial menunjukkan bahwa sappan kalkon menunjukkan afinitas terhadap xantin oksidase yang lebih stabil dibandingkan allopurinol. Kesimpulan dari penelitian ini yaitu sappan kalkon dapat digunakan sebagai kandidat obat untuk digunakan sebagai
    [Show full text]