Evaluation of Log P, Pka, and Log D Predictions from the SAMPL7 Blind Challenge

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Log P, Pka, and Log D Predictions from the SAMPL7 Blind Challenge Journal of Computer-Aided Molecular Design (2021) 35:771–802 https://doi.org/10.1007/s10822-021-00397-3 Evaluation of log P, pKa, and log D predictions from the SAMPL7 blind challenge Teresa Danielle Bergazin1 · Nicolas Tielker6 · Yingying Zhang3 · Junjun Mao4 · M. R. Gunner3,4 · Karol Francisco5 · Carlo Ballatore5 · Stefan M. Kast6 · David L. Mobley1,2 Received: 21 April 2021 / Accepted: 5 June 2021 / Published online: 24 June 2021 © The Author(s) 2021 Abstract The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges focuses the computational modeling community on areas in need of improvement for rational drug design. The SAMPL7 physical property challenge dealt with prediction of octanol-water partition coefcients and pKa for 22 compounds. The dataset was composed of a series of N-acylsulfonamides and related bioisosteres. 17 research groups participated in the log P challenge, submitting 33 blind submissions total. For the pKa challenge, 7 diferent groups participated, submitting 9 blind submissions in total. Overall, the accuracy of octanol-water log P predictions in the SAMPL7 challenge was lower than octanol-water log P predictions in SAMPL6, likely due to a more diverse dataset. Compared to the SAMPL6 pKa challenge, accuracy remains unchanged in SAMPL7. Interestingly, here, though macroscopic pKa values were often predicted with reasonable accuracy, there was dramatically more disagreement among participants as to which microscopic transitions produced these values (with methods often disagreeing even as to the sign of the free energy change associated with certain transitions), indicating far more work needs to be done on pKa prediction methods. Keywords log P · SAMPL · Free energy calculations · pKa Abbreviations SAMPL Statistical Assessment of the Modeling of Pro- teins and Ligands log P log10 of the organic solvent-water partition coef- fcient ( Kow ) of neutral species D Disclaimers The content is solely the responsibility of the authors log log10 of organic solvent-water distribution coef- and does not necessarily represent the ofcial views of the fcient ( Dow) National Institutes of Health. pKa −log10 of the acid dissociation equilibrium constant * David L. Mobley [email protected] SEM Standard error of the mean RMSE Root mean squared error 1 Department of Pharmaceutical Sciences, University MAE Mean absolute error of California, Irvine, Irvine, CA 92697, USA Kendall’s rank correlation coefcient (Tau) 2 Department of Chemistry, University of California, Irvine, R2 Coefcient of determination (R-Squared) Irvine, CA 92697, USA QM Quantum mechanics 3 Department of Physics, The Graduate Center, City University MM Molecular mechanics of New York, New York 10016, USA DL Database lookup 4 Department of Physics, City College of New York, LFER Linear free energy relationship New York 10031, USA QSPR Quantitative structure-property relationship 5 Skaggs School of Pharmacy and Pharmaceutical ML Machine learning Sciences, University of California, San Diego, Ja Jolla, LEC Linear empirical correction CA 92093-0756, USA 6 Physikalische Chemie III, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany Vol.:(0123456789)1 3 772 Journal of Computer-Aided Molecular Design (2021) 35:771–802 Introduction on specifc areas in need of improvement, SAMPL helps drive progress in computational modeling. Computational modeling aims to enable molecular design, Here, we report on a SAMPL7 physical property chal- property prediction, prediction of biomolecular interac- lenge that focused on octanol-water partition coefcients tions, and provide a detailed understanding of chemical (log P) and pKa for the series of molecules shown in and biological mechanisms. Methods for making these Fig. 1. The pKa of a molecule, or the negative logarithm types of predictions can sufer from poor or unpredictable of the acid-base dissociation constant, is related to the performance, thus hindering their predictive power. With- equilibrium constant for the dissociation of a particular out a large scale evaluation of methods, it can be difcult acid into its conjugate base and a free proton. The pKa to know what method would yield the most accurate pre- also corresponds to the pH at which the corresponding dictions for a system of interest. Large scale comparative acid and its conjugate base each are populated equally in evaluations of methods are rare and difcult to perform solution. Given that the pKa corresponds to a transition because no individual group has expertise in or access to between specifc protonation states, a given molecule may all relevant methods. Thus, methodological studies typi- have multiple pKa values. cally focus on introducing new methods, without extensive The pKa is an important physical property to take into comparisons to other methods. account in drug development. The pKa value is used to The Statistical Assessment of Modeling of Proteins indicate the strength of an acid. A lower pKa value indi- and Ligands (SAMPL) challenges tackle modeling areas cates a stronger acid, indicating the acid more fully disso- in need of improvement, focusing the community on one ciates in water. Molecules with multiple ionizable centers accuracy-limiting problem at a time. In SAMPL chal- have multiple pKa values, and knowledge of the pKa of lenges, participants predict a target property such as solva- each of the ionizable moieties allows for the percentage tion free energy, given a target set of molecules. Then the of ionised/neutral species to be calculated at a given pH corresponding experimental data remains inaccessible to (if activity coefcients are known/assumed). pKa plays a the public until the challenge ofcially closes. By focusing particularly important role in drug development because the ionization state of molecules at physiological pH O O O O O O O O O O O O O O O O O S S N S S O S S N N N N H H H H H N H SM25 SM26 SM27 SM28 SM29 SM30 O S S S O O O O O O O O O O S S S S S S O O O O N N N N N N S S H H H H N N H H SM31 SM32 SM33 SM34 SM35 SM36 O O O O O O O O O O O S N O O S S S O N S O S O O O O O O S NH NH N N S S S H N N N N H H H SM37 SM38 SM39 SM40 SM41 SM42 O O O O O O O O N N N N O S N N S N S N S N NH NH NH N NH N N SM43 SM44 SM45 SM46 Fig. 1 Structures of the 22 molecules used for the SAMPL7 physical ment, except for compounds SM27, SM28, SM30-SM34, SM36- property blind prediction challenge. Log of the partition coefcient SM39 which had log D7.4 values determined via shake-fask assay. between n-octanol and water was determined via potentiometric titra- PAMPA assay data includes efective permeability, membrane reten- tions using a Sirius T3 instrument. pKa values were determined by tion, and log of the apparent permeability coefcient. Permeabilities potentiometric titrations using a Sirius T3 instrument. Log of the dis- for compounds SM33, SM35, and SM39 were not determined. Com- tribution coefcient between n-octanol and aqueous bufer at pH 7.4 pounds SM35, SM36 and SM37 are single cis confguration isomers. were determined via potentiometric titrations using a Sirius T3 instru- All other compounds are not chiral 1 3 Journal of Computer-Aided Molecular Design (2021) 35:771–802 773 can have important ramifcations in terms of drug-target drug-target and of-target interactions through hydropho- interactions (e.g., ionic interactions) and/or by infuencing bic interactions, and relatively high lipophilicity results in other key determinants of drug absorption, distribution, reduced aqueous solubility and increased likelihood of meta- metabolism and excretion (ADME) [1], such as lipophilic- bolic instability [5]. ity, solubility, membrane permeability and plasma protein Prediction of partitioning and distribution has some rel- binding [2]. evance to drug distribution. Particularly, partitioning and Accurate pKa predictions play a critical role in molecu- distribution experiments involve a biphasic system with lar design and discovery as well since pKa comes up in so separated aqueous and organic phases, such as water and many contexts. For example, inaccurate protonation state octanol, so such experiments have some of the features predictions impair the accuracy of predicted distribution of the interface between blood or cytoplasm and the cell coefcients such as those from free energy calculations. membrane [6, 7] and thus improved predictive power for Similarly, binding calculations can be afected by a change partitioning and distribution may pay of with an improved in protonation state [3]. If a ligand in a protein-ligand sys- understanding of such in vivo events. tem has a diferent protonation state in the binding pocket Methods to predict log P/log D may also use (and test) compared to when the molecule is in the aqueous phase, some of the same techniques which can be applied to bind- then this needs to be taken into account in the thermo- ing predictions. Both types of calculations can use solvation dynamic cycle when computing protein-ligand binding free energies and partitioning between environments (though afnities. this could be avoided by computing the transfer free energy). Multiprotic molecules, and those with multiple tauto- Such solute partitioning models are simple test systems for meric states, have two types of pKa, microscopic and mac- the transfer free energy of a molecule to a hydrophobic roscopic. The microscopic pKa applies to a specifc transi- environment of a protein binding pocket, without having to tion or equilibrium between microstates, i.e. for a transition account for additional specifc interactions which are present between a specifc tautomer at one formal charge and that in biomolecular binding sites.
Recommended publications
  • Substrate Selectivity Profiling of the Human Monoamine Transporters
    DISSERTATION Titel der Dissertation Substrate Selectivity Profiling of the Human Monoamine Transporters Verfasst von Amir Seddik, B.Sc., M.Sc. angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr. rer. nat.) Wien, 2015 Studienkennzahl lt. Studienblatt: A 796 610 449 Dissertationsgebiet lt. Studienblatt: Pharmazie, DK: Molecular Drug Targets Betreut von: Univ.-Prof. Mag. Dr. Gerhard F. Ecker A. Seddik - Substrate Selectivity Profiling of the Human Monoamine Transporters A. Seddik - Substrate Selectivity Profiling of the Human Monoamine Transporters Acknowledgement Hereby I would like to express my sincere gratitude to Prof. Gerhard F. Ecker, who has integrated me into the scientific community by letting me join his research group. I am thankful for his training during all these years, which has formed me into a very independent researcher. I thank him for his time and support and I admire his ambitions and interest for integrating students on European and international level. It has been an honor to work at the pharmaceutical department of the University of Vienna in this beautiful city. Gerhard, thank you for the great time. My gratitude goes out to Michael Freissmuth and my co-supervisor Harald H. Sitte with whom we had very successful collaborations and I thank them for giving me the opportunity to learn the experimental methods. I acknowledge the support from the MolTag program, to which I have applied for in the first place. The consortium has proven that collaboration between groups of different expertise is educative and beneficial to publish in world-class journals. I thank Steffen Hering, Gerhard Ecker, Marko Mihovilovic, Margot Ernst, Doris Stenitzer and Sophia Khom for devoting their time to the management of the project.
    [Show full text]
  • Evaluating Small Molecule Microscopic and Macroscopic Pka
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341792; this version posted October 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Overview of the SAMPL6 pK a Challenge: 2 Evaluating small molecule microscopic and 3 macroscopic pK a predictions 4 Mehtap Işık (ORCID: 0000-0002-6789-952X)1,2*, Ariën S. Rustenburg (ORCID: 0000-0002-3422-0613)1,3, Andrea 5 Rizzi (ORCID: 0000-0001-7693-2013)1,4, M. R. Gunner (ORCID: 0000-0003-1120-5776)6, David L. Mobley (ORCID: 6 0000-0002-1083-5533)5, John D. Chodera (ORCID: 0000-0003-0542-119X)1 7 1Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 8 New York, NY 10065, United States; 2Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Graduate 9 School of Medical Sciences, Cornell University, New York, NY 10065, United States; 3Graduate Program in 10 Physiology, Biophysics, and Systems Biology, Weill Cornell Medical College, New York, NY 10065, United States; 11 4Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Graduate School of Medical 12 Sciences, Cornell University, New York, NY 10065, United States; 5Department of Pharmaceutical Sciences and 13 Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States; 6Department of 14 Physics, City College of New York, New York NY 10031 15 *For correspondence: 16 [email protected] (MI) 17 18 Abstract 19 K The prediction of acid dissociation constants (p a) is a prerequisite for predicting many other properties of a small molecule, 20 such as its protein-ligand binding affinity, distribution coefficient (log D), membrane permeability, and solubility.
    [Show full text]
  • In Silico Molecular Modelling and Design of Heme-Containing Peroxidases for Industrial Applications
    In silico molecular modelling and design of heme-containing peroxidases for industrial applications Marina Cañellas Fontanilles Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial 3.0. Spain License. Marina Cañellas Fontanilles molecular modelling and design of heme-containing peroxidases for industrial applications applications industrial for peroxidases molecular modelling and design of heme-containing In silico In silico molecular modelling and design of heme-containing peroxidases for industrial applications Marina Cañellas Fontanilles UNIVERSITAT DE BARCELONA Facultat de Farmàcia i Ciències de l’Alimentació Programa de Doctorat en Biotecnologia In silico molecular modelling and design of heme-containing peroxidases for industrial applications Memòria presentada per Marina Cañellas Fontanilles per optar al títol de doctor per la Universitat de Barcelona Dirigida per: Dr. Victor Guallar Tasies Dr. Maria Fátima Lucas Tutora: Dr. Josefa Badia Palacín Marina Cañellas Fontanilles Barcelona, 2018 “Voici mon secret: L’essentiel est invisible pour les yeux.” “And now here is my secret: what is essential is invisible to the eye.” Antoine de Saint-Exupéry, Le Petit Prince Table of Contents ACKNOWLEDGEMENTS ............................................................................ i LIST OF
    [Show full text]
  • Bringing Open Source to Drug Discovery
    Bringing Open Source to Drug Discovery Chris Swain Cambridge MedChem Consulting Standing on the shoulders of giants • There are a huge number of people involved in writing open source software • It is impossible to acknowledge them all individually • The slide deck will be available for download and includes 25 slides of details and download links – Copy on my website www.cambridgemedchemconsulting.com Why us Open Source software? • Allows access to source code – You can customise the code to suit your needs – If developer ceases trading the code can continue to be developed – Outside scrutiny improves stability and security What Resources are available • Toolkits • Databases • Web Services • Workflows • Applications • Scripts Toolkits • OpenBabel (htttp://openbabel.org) is a chemical toolbox – Ready-to-use programs, and complete programmer's toolkit – Read, write and convert over 110 chemical file formats – Filter and search molecular files using SMARTS and other methods, KNIME add-on – Supports molecular modeling, cheminformatics, bioinformatics – Organic chemistry, inorganic chemistry, solid-state materials, nuclear chemistry – Written in C++ but accessible from Python, Ruby, Perl, Shell scripts… Toolkits • OpenBabel • R • CDK • OpenCL • RDkit • SciPy • Indigo • NumPy • ChemmineR • Pandas • Helium • Flot • FROWNS • GNU Octave • Perlmol • OpenMPI Toolkits • RDKit (http://www.rdkit.org) – A collection of cheminformatics and machine-learning software written in C++ and Python. – Knime nodes – The core algorithms and data structures are written in C ++. Wrappers are provided to use the toolkit from either Python or Java. – Additionally, the RDKit distribution includes a PostgreSQL-based cartridge that allows molecules to be stored in relational database and retrieved via substructure and similarity searches.
    [Show full text]
  • Estrogenic Activity of Lignin-Derivable Alternatives to Bisphenol a Assessed Via Molecular Docking Cite This: RSC Adv.,2021,11, 22149 Simulations†
    RSC Advances View Article Online PAPER View Journal | View Issue Estrogenic activity of lignin-derivable alternatives to bisphenol A assessed via molecular docking Cite this: RSC Adv.,2021,11, 22149 simulations† Alice Amitrano, ‡a Jignesh S. Mahajan, ‡b LaShanda T. J. Korley abc and Thomas H. Epps, III *abc Lignin-derivable bisphenols are potential alternatives to bisphenol A (BPA), a suspected endocrine disruptor; however, a greater understanding of structure–activity relationships (SARs) associated with such lignin- derivable building blocks is necessary to move replacement efforts forward. This study focuses on the prediction of bisphenol estrogenic activity (EA) to inform the design of potentially safer BPA alternatives. To achieve this goal, the binding affinities to estrogen receptor alpha (ERa) of lignin-derivable bisphenols were calculated via molecular docking simulations and correlated to median effective concentration (EC50) values using an empirical correlation curve created from known EC50 values and binding affinities Creative Commons Attribution-NonCommercial 3.0 Unported Licence. of commercial (bis)phenols. Based on the correlation curve, lignin-derivable bisphenols with binding affinities weaker than À6.0 kcal molÀ1 were expected to exhibit no EA, and further analysis suggested that having two methoxy groups on an aromatic ring of the bio-derivable bisphenol was largely responsible for the reduction in binding to ERa. Such dimethoxy aromatics are readily sourced from the depolymerization of hardwood biomass. Additionally, bulkier
    [Show full text]
  • Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-Cov-2 Main Protease †
    Proceeding Paper Synthesis of Novel Acylhydrazone-Oxazole Hybrids and Docking Studies of SARS-CoV-2 Main Protease † Verónica G. García-Ramírez 1, Abel Suarez-Castro 1,*, Ma. Guadalupe Villa-Lopez 1, Erik Díaz-Cervantes 2, Luis Chacón-García 1 and Carlos J. Cortes-García 1,* 1 Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58033 Morelia, Michoacán, Mexico; [email protected] (V.G.G.-R.); [email protected] (M.G.V.-L.); [email protected] (L.C.-G.) 2 Departamento de Alimentos, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, C.P. 37975 Tierra Blanca, Guanajuato, Mexico; [email protected] * Correspondence: [email protected] (A.S.-C.); [email protected] (C.J.C.-G.) † Presented at the 24th International Electronic Conference on Synthetic Organic Chemistry, 15 November–15 December 2020; Available online: https://ecsoc-24.sciforum.net/. Abstract: A novel synthetic strategy to obtain acylhydrazone-oxazole hybrids in three-step reactions in moderate to good yields is reported. The key step reaction consists in a Van Leusen reaction using a bifunctional component of both an aldehyde and a functional group. The target molecules were evaluated via in-silico by molecular docking with the main protease enzyme of SARS-Cov-2, where two acyl hydralazine-oxazoles yielded good predicted free energy values in comparison to the co- crystalized ligand. Keywords: oxazoles; acylhydrazones; Van Leusen reaction; docking studies; SARS-CoV-2 Citation: García-Ramírez, V.G.; Suarez-Castro, A.; Villa-Lopez, M.G.; Díaz-Cervantes, E.; Chacón-García, L.; Cortes-García, C.J.
    [Show full text]
  • Subramanian Udel 006
    OPERANDO LIQUID-CELL ELECTRON MICROSCOPY OF THE ELECTROCHEMICAL POLYMERIZATION OF BEAM-SENSITIVE CONJUGATED POLYMERS by Vivek Subramanian A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering Fall 2020 © 2020 Vivek Subramanian All Rights Reserved OPERANDO LIQUID-CELL ELECTRON MICROSCOPY OF THE ELECTROCHEMICAL POLYMERIZATION OF BEAM-SENSITIVE CONJUGATED POLYMERS by Vivek Subramanian Approved: __________________________________________________________ Darrin J. Pochan, Ph.D. Chair of the Department of Materials Science and Engineering Approved: __________________________________________________________ Levi T. Thompson, Ph.D. Dean of the College of Engineering Approved: Louis F. Rossi, Ph.D. Vice Provost for Graduate & Professional Education and Dean of the Graduate College I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: David C. Martin, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: __________________________________________________________ Darrin J. Pochan, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: ________________________________________________________ Chaoying Ni, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Bringing Open Source to Drug Discovery
    Bringing Open Source to Drug Discovery Chris Swain Cambridge MedChem Consulting Standing on the shoulders of giants • There are a huge number of people involved in writing open source software • It is impossible to acknowledge them all individually • The slide deck will be available for download and includes 25 slides of details and download links – Copy on my website www.cambridgemedchemconsulting.com Why us Open Source software? • Allows access to source code – You can customise the code to suit your needs – If developer ceases trading the code can continue to be developed – Outside scrutiny improves stability and security What Resources are available • Toolkits • Databases • Web Services • Workflows • Applications • Scripts Toolkits • OpenBabel • R • CDK • OpenCL • RDkit • SciPy • Indigo • NumPy • ChemmineR • Pandas • Helium • Flot • FROWNS • GNU Octave • Perlmol • OpenMPI Toolkits • OpenBabel (htttp://openbabel.org) is a chemical toolbox – Ready-to-use programs, and complete programmer's toolkit – Read, write and convert over 110 chemical file formats – Filter and search molecular files using SMARTS and other methods, KNIME add-on – Supports molecular modeling, cheminformatics, bioinformatics – Organic chemistry, inorganic chemistry, solid-state materials, nuclear chemistry – Written in C++ but accessible from Python, Ruby, Perl, Shell scripts… Toolkits • RDKit (http://www.rdkit.org) – A collection of cheminformatics and machine-learning software written in C++ and Python. – Knime nodes – The core algorithms and data structures are written in C ++. Wrappers are provided to use the toolkit from either Python or Java. – Additionally, the RDKit distribution includes a PostgreSQL-based cartridge that allows molecules to be stored in relational database and retrieved via substructure and similarity searches.
    [Show full text]
  • Best Practices for Alchemical Free Energy Calculations [Article V 1.0]
    A LiveCoMS Best PrACTICES Guide Best PrACTICES FOR Alchemical FrEE EnerGY Calculations [Article V 1.0] Antonia S. J. S. MeY1*, Bryce K. Allen7, Hannah E. Bruce Macdonald2, John D. ChoderA2*, Maximilian Kuhn1,10, Julien Michel1, David L. MobleY3*, LeVI N. Naden11, Samarjeet PrASAD4, AndrEA Rizzi2,8, JenkE Scheen1, Michael R. Shirts6*, Gary TRESADERN9, Huafeng Xu7 1EaStCHEM School OF Chemistry, David BrEWSTER Road, Joseph Black Building, The King’S Buildings, Edinburgh, EH9 3FJ, UK; 2Computational AND Systems Biology PrOGRam, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, NeW YORK NY, USA; 3Departments OF Pharmaceutical Sciences AND Chemistry, University OF California, Irvine, USA; 4National INSTITUTES OF Health, Bethesda, MD, USA; 6University OF ColorADO Boulder, Boulder, CO, USA; 7Silicon Therapeutics, Boston, MA, USA; 8Tri-INSTITUTIONAL TRAINING PrOGRAM IN Computational Biology AND Medicine, NeW York, NY, USA; 9Computational Chemistry, Janssen ResearCH & Development, TURNHOUTSEWEG 30, Beerse B-2340,Belgium; 10Cresset, Cambridgeshire, UK; 11Molecular Sciences SoftwarE Institute, BlacksburG VA, USA This LiveCoMS DOCUMENT IS AbstrACT Alchemical FREE ENERGY CALCULATIONS ARE A USEFUL TOOL FOR PREDICTING FREE ENERGY DIffer- MAINTAINED ONLINE ON ENCES ASSOCIATED WITH THE TRANSFER OF MOLECULES FROM ONE ENVIRONMENT TO another. The HALLMARK GitHub AT https: //github.com/michellab/ OF THESE METHODS IS THE USE OF "bridging" POTENTIAL ENERGY FUNCTIONS REPRESENTING ALCHEMICAL inter- alchemical-best-PRACTICES; MEDIATE STATES THAT CANNOT EXIST AS REAL CHEMICAL species. The DATA COLLECTED FROM THESE BRIDGING TO PROVIDE feedback, ALCHEMICAL THERMODYNAMIC STATES ALLOWS THE EffiCIENT COMPUTATION OF TRANSFER FREE ENERGIES (or suggestions, OR HELP IMPROVE it, PLEASE VISIT THE DIffERENCES IN TRANSFER FREE ENERgies) WITH ORDERS OF MAGNITUDE LESS SIMULATION TIME THAN SIMULATING GitHub REPOSITORY AND THE TRANSFER PROCESS DIRECTLY.
    [Show full text]
  • WHAT INFLUENCE WOULD a CLOUD BASED SEMANTIC LABORATORY NOTEBOOK HAVE on the DIGITISATION and MANAGEMENT of SCIENTIFIC RESEARCH? by Samantha Kanza
    UNIVERSITY OF SOUTHAMPTON Faculty of Physical Sciences and Engineering School of Electronics and Computer Science What Influence would a Cloud Based Semantic Laboratory Notebook have on the Digitisation and Management of Scientific Research? by Samantha Kanza Thesis for the degree of Doctor of Philosophy 25th April 2018 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE Doctor of Philosophy WHAT INFLUENCE WOULD A CLOUD BASED SEMANTIC LABORATORY NOTEBOOK HAVE ON THE DIGITISATION AND MANAGEMENT OF SCIENTIFIC RESEARCH? by Samantha Kanza Electronic laboratory notebooks (ELNs) have been studied by the chemistry research community over the last two decades as a step towards a paper-free laboratory; sim- ilar work has also taken place in other laboratory science domains. However, despite the many available ELN platforms, their uptake in both the academic and commercial worlds remains limited. This thesis describes an investigation into the current ELN landscape, and its relationship with the requirements of laboratory scientists. Market and literature research was conducted around available ELN offerings to characterise their commonly incorporated features. Previous studies of laboratory scientists examined note-taking and record-keeping behaviours in laboratory environments; to complement and extend this, a series of user studies were conducted as part of this thesis, drawing upon the techniques of user-centred design, ethnography, and collaboration with domain experts. These user studies, combined with the characterisation of existing ELN features, in- formed the requirements and design of a proposed ELN environment which aims to bridge the gap between scientists' current practice using paper lab notebooks, and the necessity of publishing their results electronically, at any stage of the experiment life cycle.
    [Show full text]
  • Downloadable Software, Databases, and Web-Based Platforms
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection Permalink https://escholarship.org/uc/item/4px4399n Author Faulkner, David Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection by David Michael Faulkner A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular Toxicology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christopher D. Vulpe, Co-Chair Associate Professor Jen-Chywan Wang, Co-Chair Associate Professor Daniel K. Nomura Professor John Arnold Fall 2017 Abstract Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection by David Michael Faulkner Doctor of Philosophy in Molecular Toxicology University of California, Berkeley Professor Christopher D. Vulpe, Co-Chair Associate Professor Jen-Chywan Wang, Co-Chair Despite their ubiquity in modern life, industrial chemicals are poorly regulated in the United States. Statutory law defines industrial chemicals as chemicals that are not foods, drugs, cosmetics, nor pesticides, but may be used in consumer products, and this distinction places them under the purview of the Toxic Substances Control Act (TSCA), which received a substantial update when the US congress passed a revision of the act in 2016. The revised law, the Frank R. Lautenberg Chemical Safety for the 21st Century Act addresses many but not all of TSCA’s failings, and rightfully emphasizes the development and adoption of high throughput screens, in vitro, and alternative assays to improve the process for registering new chemicals and to address the tens of thousands of untested chemicals currently in the TSCA inventory.
    [Show full text]
  • (Caesalpinia Sappan L.) SEBAGAI PENGHAMBAT XANTIN OKSIDASE PADA HIPERURISEMIA
    LAPORAN PENELITIAN STUDI DINAMIKA MOLEKULAR SAPPAN KALKON DARI KAYU SECANG (Caesalpinia sappan L.) SEBAGAI PENGHAMBAT XANTIN OKSIDASE PADA HIPERURISEMIA Tim Pengusul Ketua Peneliti : Rizky Arcinthya Rachmania, M.Si. (0305018603) Anggota Peneliti : Apt. Hariyanti, M.Si., (0311097705) PROGRAM STUDI FARMASI FAKULTAS FARMASI DAN SAINS UNIVERSITAS MUHAMMADIYAH PROF. DR. HAMKA 2020 ABSTRAK Hiperurisemia adalah kondisi dimana terjadi peningkatan kadar asam urat diatas normal sehingga dapat menyebabkan penumpukan kristal asam urat di jaringan. Xantin oksidase merupakan enzim yang berperan dalam mengkatalisis oksidasi hipoxantin menjadi xantin dan asam urat. Obat tradisional yang digunakan secara empiris untuk menurunkan asam urat adalah kayu secang. Sappankalkon pada kayu secang telah diketahui memiliki afinitas terhadap enzim yag meghamba produki asam urat yaitu xantin oksidase secara penambatan molekul, namun belum diketahui kestabilan kalkon dalam berinteraksi dengan xantin oksidase. Tujuan dari penelitian ini adalah untuk mengetahui kestabilan sappan kalkon terhadap enzim xantin oksidase. Metode pengujian kestabilan menggunakan simulasi dinamika molekular dengan software GROMACS dengan waktu pergerakan atom 10 ns. Hasil dari pengujian parameter simulasi dinamika molekular yaitu RMSD, RMSF dan energi potensial menunjukkan bahwa sappan kalkon menunjukkan afinitas terhadap xantin oksidase yang lebih stabil dibandingkan allopurinol. Kesimpulan dari penelitian ini yaitu sappan kalkon dapat digunakan sebagai kandidat obat untuk digunakan sebagai
    [Show full text]