Amanda Leighanne Davis [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
ACETYL COA CARBOXYLASE 1 IN PROSTATE CANCER AS A CHEMOTHERAPEUTIC TARGET BY AMANDA L. DAVIS A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY Cancer Biology December, 2017 Winston-Salem, North Carolina Approved By: Steven Kridel, Ph.D., Advisor W. Todd Lowther, Ph.D., Chair Timothy Pardee, M.D., Ph.D. Ravi Singh, Ph.D. Ann Tallant, Ph.D. DEDICATION This work is dedicated in loving memory of my grandmother, Peggy Ann Cribbs. ii TABLE OF CONTENTS List of Figures and Tables ......................................................................... vi List of Abbreviations .................................................................................. ix Abstract .................................................................................................. xvii CHAPTER I GENERAL INTRODUCTION 1.1 Prostate cancer ................................................................................2 1.1.1 Current epidemiology ..............................................................2 1.1.2 Evolution of prostate cancer treatment ...................................3 1.2 Cellular metabolism .........................................................................8 1.2.1 Glycolysis ................................................................................9 1.2.2 Pentose phosphate pathway ................................................. 12 1.2.3 Glutaminolysis....................................................................... 13 1.2.4 Tricarboxylic acid cycle ......................................................... 15 1.3 Fatty acid metabolism .................................................................... 15 1.3.1 Sources of fatty acids ............................................................ 16 1.3.1.1 Dietary derived fatty acids ....................................... 16 1.3.1.2 De novo fatty acid synthesis .................................... 20 1.3.2 Fatty acid oxidation ............................................................... 23 1.3.3 Storage and release of fatty acids......................................... 27 1.4 The acetyl-CoA carboxylases ........................................................ 29 1.4.1 ACC1 and ACC2 ................................................................... 30 1.4.2 Regulation of ACC ................................................................ 32 iii 1.4.3 Biotin dependence ................................................................ 35 1.4.4 Sources of acetyl-CoA .......................................................... 37 1.4.5 Fates of malonyl-CoA ........................................................... 41 1.4.6 Fates of de novo derived fatty acids ..................................... 42 1.4.7 ACC in cancer ....................................................................... 44 1.4.8 ACC inhibitors ....................................................................... 48 1.5 Metabolism and chemoresistance ................................................. 51 1.5.1 Current research ................................................................... 52 1.5.2 Metabolism and chemoresistance in prostate cancer ........... 53 1.6 Overview ........................................................................................ 54 1.7 References .................................................................................... 55 CHAPTER II ACETYL COA CARBOXYLASE 1 INHIBITION DISRUPTS PROSTATE CANCER METABOLISM AND REDUCES TUMOR BURDEN IN A MURINE PROSTATE CANCER MODEL 2.1 Abstract .......................................................................................... 93 2.2 Introduction .................................................................................... 95 2.3 Materials and Methods................................................................... 97 2.4 Results ......................................................................................... 106 2.5 Discussion ................................................................................... 114 2.6 Figures ......................................................................................... 122 2.7 References .................................................................................. 142 iv CHAPTER III COMBINATION TREATMENTWITH SMALL MOLECULE ACETYL-COA CARBOXYLASE INHIBITOR CP-640186 AND PACLITAXEL IS SYNERGISTIC AND DISRUPTS METABOLIC FUNCTION IN TAXANE-RESISTANT PROSTATE CANCER CELLS 3.1 Abstract ........................................................................................ 151 3.2 Introduction .................................................................................. 152 3.3 Materials and Methods................................................................. 154 3.4 Results ......................................................................................... 159 3.5 Discussion ................................................................................... 164 3.6 Figures ......................................................................................... 167 3.7 References .................................................................................. 179 CHAPTER IV GENERAL DISCUSSION 4.1 Targeting fatty acid metabolism in cancer .................................... 188 4.1.1 Inhibiting ACC to target fatty acid synthesis ........................ 188 4.1.2 Other methods of targeting fatty acid synthesis .................. 190 4.2 Concluding remarks and future directions.................................... 191 4.3 References .................................................................................. 194 Curriculum Vitae ..................................................................................... 196 v LIST OF FIGURES AND TABLES Chapter I Figure 1. Development and treatment of PCa............................................4 Figure 2. Major cellular metabolic pathways ............................................ 10 Table 1. Enzymatic reactions of cellular metabolic pathways .................. 11 Table 2. Names, abbreviations, and structures of select fatty acids ......... 17 Chapter II Figure 1: Elevated ACACA expression is associated with decreased survival in several cancers. ..................................................................................... 122 Figure 2: ACACA expression is correlated with advanced PCa and ACC1 is required for survival and proliferation in PCa cell lines. .......................... 123 Figure 3: Pharmacological inhibition of ACC activity alters fatty acid profile in PCa cells. ............................................................................................... 125 Figure 4: Mice with prostate-specific genetic inactivation of ACC1 (ACC1L/L) are phenotypically normal. ............................................................................ 126 Figure 5: Prostate-specific genetic inactivation of ACC1 reduces tumor burden in 12 week old C57BL/6J mice. .............................................................. 127 Figure 6: Gross anatomy and morphology of 12-week-old murine prostates. ............................................................................................................... 128 Figure 7: Fatty acid profile of the anterior prostate lobes collected from 12-week old mice. ................................................................................................. 129 vi Figure 8: Prostate-specific genetic inactivation of ACC1 does not reduce tumor burden in 24 week old C57BL/6J mice. .................................................. 130 Figure 9: Gross anatomy and morphology of 24-week-old murine prostates. ............................................................................................................... 131 Figure 10: Fatty acid profile of the anterior prostate lobes collected from 24- week old mice. ........................................................................................ 132 Figure 11: Pharmacological inhibition of ACC does not reduce glycolytic function of PC3 cells. .............................................................................. 133 Figure 12: siRNA mediated knockdown of ACC1 impairs mitochondrial function in PCa cells............................................................................................. 135 Figure 13: Pharmacological inhibition of ACC reduces mitochondrial function in PCa cells ................................................................................................ 137 Figure 14: PCa cells utilize both endogenous and exogenous fatty acids for mitochondrial function. ............................................................................ 138 Figure 15: Pharmacological inhibition of ACC prevents PCa cells from utilizing endogenous and/or exogenous fatty acids for fatty acid oxidation. ........ 140 Chapter III Figure 1: EC50 concentrations of CP-640186 and paclitaxel in parental and taxane-resistant PCa cells ...................................................................... 167 Figure 2: Paclitaxel resistant (TxR) PCa cell lines show enhanced sensitivity to CP-640186 ............................................................................................. 168 vii Figure 3: CP-640186 treatment reduces proliferation and increases cell death in taxane resistant PCa cells ...................................................................... 169 Figure 4: Combination treatment with paclitaxel and CP-640186