Xanthophyll Cycle Pigment and Antioxidant Profiles of Winter-Red (Anthocyanic) and Winter-Green (Acyanic) Angiosperm Evergreen S

Total Page:16

File Type:pdf, Size:1020Kb

Xanthophyll Cycle Pigment and Antioxidant Profiles of Winter-Red (Anthocyanic) and Winter-Green (Acyanic) Angiosperm Evergreen S Journal of Experimental Botany, Vol. 63, No. 5, pp. 1895–1905, 2012 doi:10.1093/jxb/err362 Advance Access publication 7 December, 2011 RESEARCH PAPER Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species Nicole M. Hughes1,*, Kent O. Burkey2, Jeannine Cavender-Bares3 and William K. Smith4 1 High Point University, Department of Biology, University Station 3591, High Point, North Carolina 27262, USA 2 USDA-ARS, Plant Science Research Unit, 3127 Ligon Street, Raleigh, North Carolina 27607, USA 3 University of Minnesota, Department of Ecology, Evolution and Behavior, Saint Paul, Minnesota 55108, USA 4 Wake Forest University, Department of Biology, PO Box 7325 Reynolda Station, Winston-Salem, North Carolina 271069-7325, USA * To whom correspondence should be addressed. E-mail: [email protected] Downloaded from Received 12 August 2011; Revised 13 October 2011; Accepted 19 October 2011 Abstract http://jxb.oxfordjournals.org/ Leaves of many angiosperm evergreen species change colour from green to red during winter, corresponding with the synthesis of anthocyanin pigments. The ecophysiological function of winter colour change (if any), and why it occurs in some species and not others, are not yet understood. It was hypothesized that anthocyanins play a compensatory photoprotective role in species with limited capacity for energy dissipation. Seasonal xanthophyll pigment content, chlorophyll fluorescence, leaf nitrogen, and low molecular weight antioxidants (LMWA) of five winter-red and five winter-green angiosperm evergreen species were compared. Our results showed no difference 21 in seasonal xanthophyll pigment content (V+A+Z g leaf dry mass) or LMWA between winter-red and winter-green by guest on March 21, 2012 species, indicating red-leafed species are not deficient in their capacity for non-photochemical energy dissipation via these mechanisms. Winter-red and winter-green species also did not differ in percentage leaf nitrogen, corroborating previous studies showing no difference in seasonal photosynthesis under saturating irradiance. Consistent with a photoprotective function of anthocyanin, winter-red species had significantly lower xanthophyll content per unit chlorophyll and less sustained photoinhibition than winter-green species (i.e. higher pre-dawn Fv/Fm and a lower proportion of de-epoxidized xanthophylls retained overnight). Red-leafed species also maintained a higher maximum quantum yield efficiency of PSII at midday (F’v/F’m) during winter, and showed characteristics of shade acclimation (positive correlation between anthocyanin and chlorophyll content, and negative correlation with chlorophyll a/b). These results suggest that the capacity for photon energy dissipation (photochemical and non- photochemical) is not limited in red-leafed species, and that anthocyanins more likely function as an alternative photoprotective strategy to increased VAZ/Chl during winter. Key words: Anthocyanin, antioxidant, ascorbate, chlorophyll, evergreen, photoinhibition, photoprotection, red leaves, winter, xanthophyll. Abbreviations: Asat, maximum photosynthesis under saturating irradiance; AO, ascorbate oxidase; APX, ascorbate peroxidase; Chl, chlorophyll; DPPH, a,a-diphenyl- b-picrylhydrazyl; DTT, dithiothreitol; DTPA, diethylenetriaminepentaacetic acid; Fm, maximal chl fluorescence emitted when reaction centres are fully reduced in the dark- ’ acclimated state; Fm, maximal chl fluorescence emitted when reaction centres are fully reduced in the light-acclimated state; Fo, minimum chl fluorescence emitted in the ’ dark-acclimated state; Fo, minimum chl fluorescence emitted in the light-acclimated state; Fv, variable fluorescence in the dark-acclimated state—calculated as (Fm–Fo); ’ ’ ’ Fv, variable fluorescence in the light-adapted state—calculated as (Fm-Fo; Fv/Fm, maximum quantum yield efficiency of PSII in the dark-adapted state—calculated as ’ ’ ’ ’ ’ (Fm–Fo)/Fm); Fv/Fm, maximum quantum yield efficiency of PSII in the light-adapted state—calculated as (Fm–Fo)/Fm); LHC, light harvesting complex; LMWA, low molecular ’ ’ weight antioxidants; NPQ, non-photochemical quenching—calculated as (Fm–Fm)/Fm); PAR, photosynthetically active radiation; PSII, photosystem II; ROS, reactive oxygen species; VAZ, violaxanthin+antheraxanthin+zeaxanthin; AZ/VAZ, (antheraxanthin+zeaxanthin)/(violaxanthin+antheraxanthin+zeaxanthin). ª The Author [2011]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved. For Permissions, please e-mail: [email protected] 1896 | Hughes et al. Introduction Gould, 2004; Archetti et al., 2009; Hughes, 2011). Their presence results in a conspicuous red to purple colouration Photoprotection during winter of leaves, and has been reported in leaves under high light Evergreen plants have evolved a broad range of physiolog- in combination with cold stress (Close et al., 2002; Hughes ical adaptations enabling extended photosynthetic carbon and Smith, 2007a, b; Kytridis et al., 2008), drought stress gain during the winter months (for reviews see Tranquillini, (Spyropoulos and Mavormmatis, 1978; Sherwin and 1964; Nilsen, 1992;O¨ quist and Huner, 2003; Adams et al., Farrant, 1998; Yang et al., 2000), and photosynthetically- 2004). Adaptations that allow photosynthetic tissues to vulnerable stages of leaf ontogeny (Feild et al., 2001; Lee avoid and/or dissipate excess light energy during the cold, et al., 2003; Karageorgou and Manetas, 2006; Hughes et al., winter months are especially important for reducing photo- 2007). In vivo, the anthocyanic layer intercepts up to 43% oxidative damage (Krause, 1994). Briefly, low temperatures incoming photosynthetically active radiation (PAR), pri- inhibit the carboxylation reactions of the Calvin–Benson marily in the 500–600 nm waveband (Pietrini and Massacci, cycle but do not affect photon capture and electron trans- 1998). This ‘sunscreen’ effect has been shown to reduce port; this imbalance in energy absorption versus photo- photoinhibition of photosynthesis in subjacent cells (Feild chemical-processing results in a greater proportion of closed et al., 2001; Hughes et al., 2005; Liakopoulos et al., 2006; reaction centres, increased energy and electron transfer to Hughes and Smith, 2007b). Increasing evidence also sug- molecular oxygen by chlorophyll, production of radical gests anthocyanins function as in vivo antioxidants, neutral- izing hydrogen peroxide that crosses the vacuolar tonoplast oxygen species (ROS), and ultimately photo-oxidative (Gould et al., 2002; Kytridis and Manetas, 2006). Given the damage (Baker, 1994; Hu¨ner et al., 1998; Mittler, 2002). increased vulnerability to photo-oxidative damage inherent Downloaded from Therefore, evergreen species with diminished capacity for in winter photosynthesis, it is not surprising that many carbon fixation during winter must up-regulate photo- angiosperm evergreen species synthesize anthocyanins in protective mechanisms to alleviate the potentially harmful winter leaves. Why, then, do only some species exhibit this imbalance between the capture and processing of photon winter colour change, while others do not? energy (Verhoeven et al., 1999; Adams et al., 2002, 2004). http://jxb.oxfordjournals.org/ Non-radiative energy dissipation is a strategy used by all plants in which excess excitation energy is diverted away Winter redness versus greenness from P in photosystem II (PSII) and dissipated as heat. 680 Previous studies attempting to define a common stress factor This can be accomplished via several mechanisms—the that unifies species undergoing winter-reddening have thus physical dissociation of the light harvesting complex (LHC) far been unsuccessful (see Hughes, 2011, for a review). from photosystem II (PSII), de-activation of the D1 protein Hughes and Smith (2007a) tested whether a limited capacity in PSII, and the xanthophyll cycle (Bjo¨rkman and Demmig- for winter photosynthesis could be linked to winter redden- Adams, 1994; Ottander et al., 1995; Adams et al., 2001, ing, as reduced energy sinks might render plants more by guest on March 21, 2012 2002; Rosenqvist and van Kooten, 2003). Because these vulnerable to increased light stress, thus warranting addi- processes are competitive with photochemistry, they are tional protection from anthocyanin pigments. However, no collectively termed non-photochemical quenching (NPQ). difference in seasonal photosynthetic carbon gain (i.e. As might be expected, evergreen plants commonly increase photosynthetic gas exchange under saturating irradiance) all components of NPQ during winter, with the greatest was observed between winter-red and winter-green species in increases in plants exposed to the highest irradiances (Logan the Appalachian mountains, USA, and, the highest winter et al., 1998; Cavender-Bares et al., 1999, 2005; Verhoeven photosynthesis reported in the study was in a winter-red et al., 1999, 2005; Close et al., 2003; Adams et al., 2004). species (Lonicera japonica). Hughes et al. (2010) examined Antioxidants represent a second line of defence by which the possible relationship between winter anthocyanin pro- plants may curtail photo-oxidative damage once ROS have duction and drought tolerance, as low leaf water potentials formed (Grace and Logan, 1996; Kytridis and Manetas, are known to induce anthocyanin synthesis (Spyropoulos and 2006). Up-regulation of antioxidants (e.g. Mehler-peroxidase Mavormmatis, 1978; Sherwin and Farrant, 1998; Yang
Recommended publications
  • Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain?
    foods Review Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain? Justyna Widomska 1,*, Mariusz Zareba 2 and Witold Karol Subczynski 3 Received: 14 December 2015; Accepted: 5 January 2016; Published: 12 January 2016 Academic Editor: Billy R. Hammond 1 Department of Biophysics, Medical University of Lublin, 20-090 Lublin, Poland 2 Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] 3 Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; [email protected] * Correspondence: [email protected]; Tel.: +48-81-479-7169 Abstract: Epidemiological studies demonstrate that a high dietary intake of carotenoids may offer protection against age-related macular degeneration, cancer and cardiovascular and neurodegenerative diseases. Humans cannot synthesize carotenoids and depend on their dietary intake. Major carotenoids that have been found in human plasma can be divided into two groups, carotenes (nonpolar molecules, such as β-carotene, α-carotene or lycopene) and xanthophylls (polar carotenoids that include an oxygen atom in their structure, such as lutein, zeaxanthin and β-cryptoxanthin). Only two dietary carotenoids, namely lutein and zeaxanthin (macular xanthophylls), are selectively accumulated in the human retina. A third carotenoid, meso-zeaxanthin, is formed directly in the human retina from lutein. Additionally, xanthophylls account for about 70% of total carotenoids in all brain regions. Some specific properties of these polar carotenoids must explain why they, among other available carotenoids, were selected during evolution to protect the retina and brain. It is also likely that the selective uptake and deposition of macular xanthophylls in the retina and brain are enhanced by specific xanthophyll-binding proteins.
    [Show full text]
  • Genetics and Molecular Biology of Carotenoid Pigment Biosynthesis
    SERIAL REVIEW CAROTENOIDS 2 Genetics and molecular biology of carotenoid pigment biosynthesis GREGORY A. ARMSTRONG,’1 AND JOHN E. HEARSTt 5frtitute for Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland; and tDePai.tment of Chemistry, University of California, and Structural Biology Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA The two major functions of carotenoids in photosyn- carotenoid biosynthesis from a molecular genetic thetic microorganisms and plants are the absorption of standpoint.-Armstrong, G. A., Hearst, J. E. Genet- energy for use in photosynthesis and the protection of ics and molecular biology of carotenoid pigment chlorophyll from photodamage. The synthesis of vari- biosynthesis. F14SEBJ. 10, 228-237 (1996) ous carotenoids, therefore, is a crucial metabolic proc- ess underlying these functions. In this second review, Key Words: phytoene lycopene cyclization cyclic xanthophylLs the nature of these biosynthetic pathways is discussed xanlhophyll glycosides’ 3-carotene provitamin A in detail. In their elucidation, molecular biological techniques as well as conventional enzymology have CAROTENOIDS REPRESENT ONE OF THE most fascinating, played key roles. The reasons for some of the ci.s-t Tans abundant, and widely distributed classes of natural pig- isomerizations in the pathway are obscure, however, ments. Photosynthetic organisms from anoxygenic photo- and much still needs to be learned about the regula- synthetic bacteria through cyanobacteria, algae, and tion of carotenoid biosynthesis. Recent important find- higher plants, as well as numerous nonphotosynthetic ings, as summarized in this review, have laid the bacteria and fungi, produce carotenoids (1). Among groundwork for such studies. higher plants, these pigments advertise themselves in flowers, fruits, and storage roots exemplified by the yel- -James Olson, Coordinating Editor low, orange, and red pigments of daffodils, carrots and to- matoes, respectively.
    [Show full text]
  • Altered Xanthophyll Compositions Adversely Affect Chlorophyll Accumulation and Nonphotochemical Quenching in Arabidopsis Mutants
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13324–13329, October 1998 Plant Biology Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants BARRY J. POGSON*, KRISHNA K. NIYOGI†,OLLE BJO¨RKMAN‡, AND DEAN DELLAPENNA§¶ *Department of Plant Biology, Arizona State University, Tempe, AZ 85287-1601; †Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102; ‡Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305-4101; and §Department of Biochemistry, University of Nevada, Reno, NV 89557-0014 Contributed by Olle Bjo¨rkman, September 4, 1998 ABSTRACT Collectively, the xanthophyll class of carote- thin, are enriched in the LHCs, where they contribute to noids perform a variety of critical roles in light harvesting assembly, light harvesting, and photoprotection (2–8). antenna assembly and function. The xanthophyll composition A summary of the carotenoid biosynthetic pathway of higher of higher plant photosystems (lutein, violaxanthin, and neox- plants and relevant chemical structures is shown in Fig. 1. anthin) is remarkably conserved, suggesting important func- Lycopene is cyclized twice by the enzyme lycopene b-cyclase tional roles for each. We have taken a molecular genetic to form b-carotene. The two beta rings of b-carotene are approach in Arabidopsis toward defining the respective roles of subjected to identical hydroxylation reactions to yield zeaxan- individual xanthophylls in vivo by using a series of mutant thin, which in turn is epoxidated once to form antheraxanthin lines that selectively eliminate and substitute a range of and twice to form violaxanthin. Neoxanthin is derived from xanthophylls. The mutations, lut1 and lut2 (lut 5 lutein violaxanthin by an additional rearrangement (9).
    [Show full text]
  • Carotene and Xanthophyll Production in Tomato Strains and Their Progenies
    Food Sci. Techno/., Int., 2 (3), 150 153, 1996 Tech n ica l pa per Relationship of Carotene and Xanthophyll Production in Tomato Strains and Their Progenies Saishi HIROTA,1 Kelichi WATANABE,2 Tetsuya ARINOBuland Hideo TSUYUKI* 1 Co!lege of Agricu/ture and Veterinary Medicine, Nihon University, 1866, Kameino, Fujisawa-sh~ Kanagawa 252, Japan 2 Junior College, Nihon University, 1866, Kameino, Fujisawa-shi, Kanaga vva 252, Japan Received October 19, 1995 Gene B and gene Del involved in the biosynthesis of carotenoids, particularly xanthophylls such as tunaxanthin, Iutein and zeaxanthin, which are contained in the fruits of various tomato strains and their hybrids were studied. It is known that gene B blocks the biosynthesis of lycopene and transforms lycopene to P-carotene via ~-zeacarotene and 7-carotene. This study revealed that gene B is also involved in the biosynthesis of zeaxanthin, a xanthophyll of the ~-ionone end group, and increases the production of lutein. Gene Del is also known to block the biosynthesis of lycopene and produce 6-carotene, a-carotene and e-carotene. It was revealed by the present study that gene Del also markedly increases the biosynthesis of lutein, a xanthophyll of the e-ionone end group. Further, tunaxanthin which was previously undetected in tomatoes was observed for the first time. This study has thus confirmed that gene Del induces its production. Keywords: tomato, xanthophylls, tunaxanthin, Iutein, zeaxanthin There have been many reports on the biosynthesis of Methods Preparation, purification and extraction of carotenoids in tomatoes in which hereditary factors are the pigment were carried out by the method of Hirota et a/.
    [Show full text]
  • Abscisic Acid Induced Protection Against Photoinhibition of PSII Correlates with Enhanced Activity of the Xanthophyll Cycle
    FEBS 15944 FEBS Letters 371 (1995) 61-64 Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle A.G. Ivanov a'*, M. Krol b, D. Maxwell b, N.P.A. Huner b alnstitute of Biophysics, Bulgarian Academy of Sciences, Aead. (7. Bonchev Street, bl. 21, 1113 Sofia, Bulgaria bDepartment of Plant Sciences, University of Western Ontario, London, Ont. N6A 5B7, Canada Received 22 June 1995; revised version received 24 July 1995 applied ABA on the light-dependent zeaxanthin formation, the Abstract The exogenous application of abscisic acid (ABA) to related capacity for non-photochemical chlorophyll fluores- barley seedlings resulted in partial protection of the PSII photo- cence quenching and the possible involvement of ABA in the chemistry against photoinhibition at low temperature, the effect protection of PSII photochemistry from excessive radiation at being most pronounced at 10 -s M ABA. This was accompanied low temperatures. by higher photochemical quenching (qP) in ABA-treated leaves. A considerable increase (122%) in the amount of total carotenoids 2. Materials and methods and xanthophylls (antheraxanthin, violaxanthin and zeaxanthin) was also found in the seedlings subjected to ABA. The activity Seeds of barley (Hordeum vulgare L. var. cadette) were germinated of the xanthophyll cycle measured by the epoxidation state of for 3 days and grown in aqueous solutions of ABA (10 -5 M and 10-6 M) xanthophyUs under high-light treatment was higher in ABA- as in [23]. ABA treatments lasted 7 days. The solutions were changed treated plants compared with the control. This corresponds to a daily.
    [Show full text]
  • Why Has Nature Chosen Lutein and Zeaxanthin to Protect the Retina?
    perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a o l Widomska and Subczynski, J Clin Exp Ophthalmol m l a o n l r o 2014, 5:1 g u y o J Ophthalmology 10.4172/2155-9570.1000326 ISSN: 2155-9570 DOI: Review Article Open Access Why has Nature Chosen Lutein and Zeaxanthin to Protect the Retina? Justyna Widomska1 and Witold K Subczynski2* 1Department of Biophysics, Medical University of Lublin, Lublin, Poland 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA *Corresponding author: Witold K Subczynski, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Tel: 414-955-4038; Fax: 414-955-6512; E-mail: [email protected] Received date: Dec 20, 2013, Accepted date: Feb 14, 2014, Published date: Feb 21, 2014 Copyright: © 2014 Widomska J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Age-related macular degeneration (AMD) is associated with a low level of macular carotenoids in the eye retina. Only two carotenoids, namely lutein and zeaxanthin are selectively accumulated in the human eye retina from blood plasma where more than twenty other carotenoids are available. The third carotenoid which is found in the human retina, meso-zeaxanthin is formed directly in the retina from lutein. All these carotenoids, named also macular xanthophylls, play key roles in eye health and retinal disease.
    [Show full text]
  • Level of Xanthophyll, Lutein and Zeaxanthin in Selected Thai Fruits Determined by HPLC
    2012 International Conference on Nutrition and Food Sciences IPCBEE vol. 39 (2012) © (2012) IACSIT Press, Singapore Level of Xanthophyll, Lutein and Zeaxanthin in Selected Thai Fruits Determined by HPLC Nittaya Khonsarn 1 and Siriporn Lawan 2 1Department of biotechnology, Faculty of Technology, Mahasarakham University, Thailand 2 Department of Food technology, Faculty of Technology, Mahasarakham University, Thailand Abstract. In this study 12 selected Thai summer fruits were determined xanthophyll, lutein and zeaxanthin content by high performance liquid chromatography (HPLC). The result shown that there were xanthophyll in 11 kinds of selected fruits except banana. The highest of average xanthophyll level was found in cantaloupe (1.31±0.07 mg/100g edible portion), meanwhile barbados cherry was the second (1.18±0.03 mg/100g edible portion). Among fruits analysed, lutein content was the highest in papaya (23.74±0.46 mg/100g edible portion), follow by cantaloupe (21.82±1.60 mg/100g edible portion). Whereas lutein was not detected in star gooseberry, java apple, dragon fruit, guava, salak plum, water melon, banana and satol. Cantaloupe was the highest source of zeaxanthin (1.72±0.07 mg/100g edible portion), zeaxanthin was not however detected in star gooseberry, java apple, dragon fruit, salak plum, banana and satol. These results are suggested that some kinds of summer fruits including papaya and cantaloupe, have potential as rich sources of xanthophyll, lutein and zeaxanthin for consumer health. Keywords: Xanthophyll, Lutein, Zeaxanthin, Thai Fruit, HPLC. 1. Introduction Xanthophyll, lutein and zeaxanthin are some kinds of carotenoid that not only play important role in organic pigments in fruits and vegetables but also important in the prevention of various diseases associated with oxidative stress.
    [Show full text]
  • Concentrations of Phenolic Acids, Flavonoids and Carotenoids And
    agriculture Article Concentrations of Phenolic Acids, Flavonoids and Carotenoids and the Antioxidant Activity of the Grain, Flour and Bran of Triticum polonicum as Compared with Three Cultivated Wheat Species El˙zbietaSuchowilska 1, Teresa Bie ´nkowska 1, Kinga Stuper-Szablewska 2 and Marian Wiwart 1,* 1 Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-724 Olsztyn, Poland; [email protected] (E.S.); [email protected] (T.B.) 2 Faculty of Wood Technology, Department of Chemistry, Poznan University of Life Sciences, 60-624 Poznan, Poland; [email protected] * Correspondence: [email protected] Received: 18 October 2020; Accepted: 27 November 2020; Published: 29 November 2020 Abstract: The experiment was performed on 66 breeding lines of Triticum polonicum, four T. durum cultivars, four T. aestivum cultivars, and one T. turanicum cultivar (Kamut® wheat). Wheat grain, bran, and flour were analyzed to determine the concentrations of carotenoids, free and bound phenolic acids, and flavonoids, as well as antioxidant activity in the ABTS+ assay. The total concentrations of lutein, zeaxanthin, and β-carotene in grain and milling fractions were determined 1 at 3.17, 2.49, and 3.16 mg kg− in T. polonicum (in grain, flour, and bran, respectively), and at 4.84, 1 3.56, and 4.30 mg kg− in T. durum, respectively. Polish wheat grain was characterized by high 1 concentrations of p-coumaric acid and syringic acid (9.4 and 41.0 mg kg− , respectively) and a low 1 ® content of 4-hydroxybenzoic acid (65.2 mg kg− ).
    [Show full text]
  • Genetic Modification of Tomato with the Tobacco Lycopene Β-Cyclase Gene Produces High Β-Carotene and Lycopene Fruit
    Z. Naturforsch. 2016; 71(9-10)c: 295–301 Louise Ralley, Wolfgang Schucha, Paul D. Fraser and Peter M. Bramley* Genetic modification of tomato with the tobacco lycopene β-cyclase gene produces high β-carotene and lycopene fruit DOI 10.1515/znc-2016-0102 and alleviation of vitamin A deficiency by β-carotene, Received May 18, 2016; revised July 4, 2016; accepted July 6, 2016 which is pro-vitamin A [4]. Deficiency of vitamin A causes xerophthalmia, blindness and premature death, espe- Abstract: Transgenic Solanum lycopersicum plants cially in children aged 1–4 [5]. Since humans cannot expressing an additional copy of the lycopene β-cyclase synthesise carotenoids de novo, these health-promoting gene (LCYB) from Nicotiana tabacum, under the control compounds must be taken in sufficient quantities in the of the Arabidopsis polyubiquitin promoter (UBQ3), have diet. Consequently, increasing their levels in fruit and been generated. Expression of LCYB was increased some vegetables is beneficial to health. Tomato products are 10-fold in ripening fruit compared to vegetative tissues. the most common source of dietary lycopene. Although The ripe fruit showed an orange pigmentation, due to ripe tomato fruit contains β-carotene, the amount is rela- increased levels (up to 5-fold) of β-carotene, with negli- tively low [1]. Therefore, approaches to elevate β-carotene gible changes to other carotenoids, including lycopene. levels, with no reduction in lycopene, are a goal of Phenotypic changes in carotenoids were found in vegeta- plant breeders. One strategy that has been employed to tive tissues, but levels of biosynthetically related isopre- increase levels of health promoting carotenoids in fruits noids such as tocopherols, ubiquinone and plastoquinone and vegetables for human and animal consumption is were barely altered.
    [Show full text]
  • Pigment Palette by Dr
    Tree Leaf Color Series WSFNR08-34 Sept. 2008 Pigment Palette by Dr. Kim D. Coder, Warnell School of Forestry & Natural Resources, University of Georgia Autumn tree colors grace our landscapes. The palette of potential colors is as diverse as the natural world. The climate-induced senescence process that trees use to pass into their Winter rest period can present many colors to the eye. The colored pigments produced by trees can be generally divided into the green drapes of tree life, bright oil paints, subtle water colors, and sullen earth tones. Unveiling Overpowering greens of summer foliage come from chlorophyll pigments. Green colors can hide and dilute other colors. As chlorophyll contents decline in fall, other pigments are revealed or produced in tree leaves. As different pigments are fading, being produced, or changing inside leaves, a host of dynamic color changes result. Taken altogether, the various coloring agents can yield an almost infinite combination of leaf colors. The primary colorants of fall tree leaves are carotenoid and flavonoid pigments mixed over a variable brown background. There are many tree colors. The bright, long lasting oil paints-like colors are carotene pigments produc- ing intense red, orange, and yellow. A chemical associate of the carotenes are xanthophylls which produce yellow and tan colors. The short-lived, highly variable watercolor-like colors are anthocyanin pigments produc- ing soft red, pink, purple and blue. Tannins are common water soluble colorants that produce medium and dark browns. The base color of tree leaf components are light brown. In some tree leaves there are pale cream colors and blueing agents which impact color expression.
    [Show full text]
  • A Remotely Sensed Pigment Index Reveals Photosynthetic Phenology in Evergreen Conifers
    A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers John A. Gamona,b,c,1, K. Fred Huemmrichd, Christopher Y. S. Wonge,f, Ingo Ensmingere,f,g, Steven Garrityh, David Y. Hollingeri, Asko Noormetsj, and Josep Peñuelask,l aCenter for Advanced Land Management Information Technologies, School of Natural Resources, University of Nebraska–Lincoln, Lincoln, NE 68583; bDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3; cDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; dNASA Goddard Space Flight Center, University of Maryland, Baltimore County, Greenbelt, MD 20771; eDepartment of Biology, University of Toronto, Mississauga, ON, Canada L5L1C6; fGraduate Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 1A1; gGraduate Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5; hDecagon Devices, Inc., Pullman, WA 99163; iUS Forest Service, Northern Research Station, Durham, NH 03824; jDepartment of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695; kConsejo Superior de Investigaciones Cientificas (CSIC), Global Ecology Unit, Center for Ecological Research and Forestry Applications (CREAF)-CSIC-Campus de Bellaterra, Bellaterra 08193, Catalonia, Spain; and lCREAF, Cerdanyola del Vallès 08193, Catalonia, Spain Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved September 29, 2016 (received for review April 17, 2016) In evergreen conifers, where the foliage amount changes little with photosynthetic activity has been temperature-limited (3, 7). By season, accurate detection of the underlying “photosynthetic phe- contrast, warmer growing seasons are also more likely to cause nology” from satellite remote sensing has been difficult, presenting drought, restricting ecosystem carbon uptake and enhancing eco- challenges for global models of ecosystem carbon uptake.
    [Show full text]
  • Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution
    plants Review Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution Bárbara A. Rebelo 1,2 , Sara Farrona 3, M. Rita Ventura 2 and Rita Abranches 1,* 1 Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; [email protected] 2 Bioorganic Chemistry Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; [email protected] 3 Plant and AgriBiosciences Centre, Ryan Institute, NUI Galway, H19 TK33 Galway, Ireland; [email protected] * Correspondence: [email protected] Received: 14 July 2020; Accepted: 13 August 2020; Published: 15 August 2020 Abstract: Carotenoids are a class of pigments with a biological role in light capture and antioxidant activities. High value ketocarotenoids, such as astaxanthin and canthaxanthin, are highly appealing for applications in human nutraceutical, cosmetic, and animal feed industries due to their color- and health-related properties. In this review, recent advances in metabolic engineering and synthetic biology towards the production of ketocarotenoids, in particular the red-orange canthaxanthin, are highlighted. Also reviewed and discussed are the properties of canthaxanthin, its natural producers, and various strategies for its chemical synthesis. We review the de novo synthesis of canthaxanthin and the functional β-carotene ketolase enzyme across organisms, supported by a protein-sequence-based phylogenetic analysis. Various possible modifications of the carotenoid biosynthesis pathway and the present sustainable cost-effective alternative platforms for ketocarotenoids biosynthesis are also discussed. Keywords: canthaxanthin; metabolic engineering; carotenoid biosynthesis pathway; plant secondary metabolite; chemical synthesis 1.
    [Show full text]