Actinide Transmutation in Nuclear Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Actinide Transmutation in Nuclear Reactors INIS-mf—15130 Actinide Transmutation in Nuclear Reactors Jan Hendrik BULTMAN 2 7 Ne 0 2 Actinide Transmutation in Nuclear Reactors KS001922772 R: FI DE008071279 PROEFSCHRIFT *DE008071279* ter verkrijging van de graad van doctor aan de Technische Universiteit Delft. op gezag van de Rector Magnificus Prof. ir. K.F. Wakker, in het openbaar te verdedigen ten overstaan van een commissie, door het College van Dekanen aangewezen, op dinsdag 17 januari 1995 te 13.30 uur door Jan Hendrik BULTMAN doctorandus in de natuurkunde aeboren te Renkum Dit proefschrift is goedgekeurd door de promotor: Prof. dr. ir. H. van Dam Toegevoegd promotor: Dr. ir. J.E. Hoogcnboom. The work described in this thesis has been performed at the Netherlands Energy Research Foundation (ECN), Petten. CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK. DEN HAAG Bultman. Jan Hendrik Actinide Transmutation in Nuclear Reactors Jan Hendrik Bultman.- Petten: Netherlands Energy Research Foundation (ECN) Thesis Delft University of Technology. -111. With rcf. - With summary in Dutch. ISBN 90-9007889-4 NUGI812 Subject headings: Nuclear Reactors, Nuclear Waste, Transmutation Copyright ©1995 by J.H. Bultman I Voorwoord Kernafval speelt in menige discussie over kernenergie een grote roL In discussies tussen mij en mijn ouders leidde dit tot onoverbrugbare meningsverschillen. ECN heeft mij de mogelijkheid gegeven wat dieper op deze materie in te gaan en naar een oplossing van dit probleem te zoeken. Het resultaat van deze zoekactie ligt voor u. in de vorm van ccn proefschrift Dit heb ik niet alleen gedaan. Dr. Harm Gruppelaar heeft de zoekactie ingeleid en vanaf het begin heeft Dr. Ir. Ton Janssen mij op het goede pad gehouden, later bijgestaan door Dr. Ir. Jan Leen Kloosterman. Jan Leen heeft aan de wieg gestaan, zoals zoveel ECN'ers, van mijn vierde hoofdstuk. Professor Dr. Ir. H. Van Dam en Dr. Ir. J.E. Hoogenboom bedank ik voor hun inbreng en kritiek op mijn proefschrift. Hun werkcolleges hebben mij gevormd tot een zeer speciale reactorfysicus, namelijk één die alle opgaven van Duderstadt heeft volbracht. Ik dank het ECN voor de financiering van dit project. Dit werk is een bijdrage aan het ECN-onderzoeksproject voor de energievoorziening van de toekomst, ENGINE. Een andere financier is de Gemeenschappelijke Kernenergiecentrale Nederland (GKN) te Dodcwaard. Zij heeft een stage van acht maanden mogelijk gemaakt bij General Electric Nuclear Energy te San José, Californië. I would like to thank my friends at General Electric Nuclear Energy of the Ad­ vanced Reactor Program; Dr. Jim Quinn and Dr. Pat Magee for giving me encouragement and freedom to operate; Dr. Christine Cockey and Dr. Tang Wu for teaching me to work with their codes and computers. Chris, Tang, Sarah, and Alan, thank you so much for acquainting me the principles of TGIF! Tenslotte, bedank ik mijn vrienden, collega's, famillieledcn en ouders voor hun steun. Deze missie had ik nooit kunnen volbrengen zonder de toewijding van Willy en Beth. Jan Bultman Contents Summary vii Samenvatting x Nomenclature xii List of Symbols xiii List of Definitions xiv List of Abbreviations xviii 1 Introduction 1 1.1 Nuclear Energy and Waste 1 1.2 Motivation to Perform this Work 4 1.3 What this Thesis Covers 6 2 Nuclear Waste and Nuclear Waste Reduction 9 2.1 Introduction 9 2.2 Waste Parameters 10 2.3 Waste Production and Reduction Factors 13 2.3.1 Fuel and Waste Amounts and Flows 13 2.3.2 Definitions to Evaluate Waste Production and Reduction 16 2.4 On Reducing LWR Waste by Recycling in LWRs 17 2.4.1 Introduction 17 2.4.2 Calculational Method 19 iii CONTENTS 2.4.3 Plutonium Recycling in LWRs 20 2.4.4 Transuranics Recycling in LWRs 22 2.4.5 Uranium Recycling in LWRs 24 2.4.6 Transunmics Waste Produced by Equilibrium LWRs .. 26 2.5 Energy Scenarios and Waste Production 26 2.5.1 Energy Scenarios 28 2.5.2 Reactor Designs 29 2.5.3 Waste and Energy Production 31 2.6 Physics Aspects of Burner Design 36 2.6.1 Burner Design Objective 36 2.6.2 Waste and Enrichment 37 2.6.3 Transmutation Efficiency of a Transuranics Fueled Reactor 39 2.7 Conclusions 41 LWR Waste Reduction with ALMR Burners 43 3.1 Introduction 43 3.2 The ALMR system 45 3.3 Design Approach 48 3.4 Calculational Methods 51 3.4.1 Multiproup Cross Section Generation 52 3.4.2 Flux Solution and Bumup Calculations 54 3.4.3 Reactivity Control Requirement and Control Rod Worth Calculation 55 3.4.4 Void Worth and Reactivity Parameters 55 3.5 Influence of Design Parameters on Actinide Burning 57 3.5.1 Introduction 57 3.5.2 Partial Derivatives of the Performance Parameters to the Design Parameters 58 3.5.3 Correlations between the Coefficients for Cycle Length and Number of Batches 61 3.5.4 Burner Optimization within Performance Constraints . 62 3.6 Metallic and Oxide Fueled ALMR Burners 69 CONTENTS v 3.6.1 Optimization Process and Core Description 69 3.6.2 Comparison of the Metallic and Oxide Fueled Burners . 71 3.6.3 Reactivity Control 73 3.6.4 Void Worth and Reactivity Parameters of the Optimized Burner Designs 74 3.6.5 Safety Parameters 79 3.7 Conclusions 86 4 Molten Salt TVansmuter 89 4.1 Introduction 89 4.2 History of the Molten Salt Reactor Development 92 4.3 Systems Description 93 4.3.1 Core 93 4.3.2 Reprocessing 94 4.3.3 Materials 94 4.3.4 Cooling 96 4.4 Calculational Methods 96 4.4.1 Neutron Balance 96 4.4.2 Calculation of Fission Product Densities 97 4.4.3 Calculation of the Actinide Densities 98 4.4.4 Core Calculation 100 4.4.5 Calculation of Reactivity Coefficients 100 4.5 Design of the Molten Salt Transmuter 100 4.5.1 Role of Fission Products 100 4.5.2 Flux Dependence 102 4.5.3 Fuel Volume Fraction Dependence 107 4.5.4 Transuranics Salt Fraction Dependence Ill 4.5.5 Startup of the Molten Salt Transmuter 114 4.5.6 Discussion of the Results 114 4.6 Influence of Uncertainty in Actinide Cross Sections 115 4.6.1 Adjoint Calculational Method 115 vi CONTENTS 4.6.2 Method Verification 117 4.63 Reactivity and Core Size - 118 4.7 Conclusions 121 5 Final Conclusions and Recommendations 123 REFERENCES 130 A EQUI: Calculation of Equilibrium Actinide Densities 131 A.1 Calculational Method . 131 A.2 Cross Section and Decay Data 134 A.3 Program Description 135 A.4 Verification of EQUI 137 A.4.1 Nuclide Densities 137 A.5 Conclusions 139 Curriculum Vitae 140 v/f Summary The reduction of the transuranics part of nuclear waste is discussed in this thesis. Only the transuranics and not the fission products are discussed, because they represent the highest environmental hazard in the long term. A huge amount of 1,000 ronne of transuranics is already produced worldwide, and annually about SO tonne of transuranics is added. This material can be used for nuclear energy production, for instance, as fuel for Advanced Liquid Metal Reactors (ALMRs). but to reduce this amount will be rather difficult as only 1.2 kg/MWe-y can be fissioned maximally. To stabilize the amount of transuranics, one has to operate about 70 GWe in burners: that is an increase of about 20% in installed nuclear power worldwide. One can reduce the production of transuranics by recycling in the reactor which produces them. As is shown in chapter two of this thesis, only the plutonium iso­ topes can be recycled in Light Water Reactors (LWRs), because recycling of other transuranics will lead to a high production of short-lived and spontaneously fission­ ing actinides. These actinides make the reprocessing of fuel, which is necessary when recycling is applied, impossible with current techniques. The production of transuranics can be reduced by maximally a factor of four by recycling plutonium isotopes in LWRs. Another approach to reduce transuranics is the use of special burners. In chapter two, we show that nuclear energy can be produced without an increase of the transuranics amount currently produced. For low reprocessing losses in the order of 0.1 9c energy can be produced in this way for many centuries. The physics of transuranics transmutation is rather simple: reduce the production rate of transuranics by removing uranium from the fuel. Also, the time to reduce a certain amount of transuranics should be small, which can be accomplished by a high specific power. All other design criteria are related to issues of safety and technology. This is an important conclusion; it shows that previous studies' focus on burning capability, which can be raised to 1.2 kg/MWe-y at the most, was irrelevant. One has to take safety and technological issues in consideration, which might reduce the burning capability. Two important issues result from reactor operation without uranium. First, fis­ sioned material is not replaced by fissile material formed by neutron capture in the fertile uranium. This leads to a large reactivity loss during a cycle. This loss should be compensated e.g. by control rods, which is in contradiction with modern safety philosophies. Second, the Doppler coefficient which may result from the broadening of neutron absorption resonances will be very different, changing the reactivity feedback. Unsafe reactor operation results when the reactivity feedback is positive or negative but small in absolute value. VI» The production of the short-lived and spontaneously fissioning actinides Tesults from recycling transuranics. Production is limited when a fast spectrum reactor is used. Therefore, this type of reactor is discussed in chapter three of this the­ sis.
Recommended publications
  • Table 2.Iii.1. Fissionable Isotopes1
    FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector.
    [Show full text]
  • Nuclear Transmutation Strategies for Management of Long-Lived Fission
    PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 — journal of September 2015 physics pp. 517–523 Nuclear transmutation strategies for management of long-lived fission products S KAILAS1,2,∗, M HEMALATHA2 and A SAXENA1 1Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India 2UM–DAE Centre for Excellence in Basic Sciences, Mumbai 400 098, India ∗Corresponding author. E-mail: [email protected] DOI: 10.1007/s12043-015-1063-z; ePublication: 27 August 2015 Abstract. Management of long-lived nuclear waste produced in a reactor is essential for long- term sustenance of nuclear energy programme. A number of strategies are being explored for the effective transmutation of long-lived nuclear waste in general, and long-lived fission products (LLFP), in particular. Some of the options available for the transmutation of LLFP are discussed. Keywords. Nuclear transmutation; long-lived fission products; (n, γ ) cross-section; EMPIRE. PACS Nos 28.41.Kw; 25.40.Fq; 24.60.Dr 1. Introduction It is recognized that for long-term energy security, nuclear energy is an inevitable option [1]. For a sustainable nuclear energy programme, the management of long-lived nuclear waste is very critical. Radioactive nuclei like Pu, minor actinides like Np, Am and Cm and long-lived fission products like 79Se, 93Zr, 99Tc, 107Pd, 126Sn, 129I and 135Cs constitute the main waste burden from a power reactor. In this paper, we shall discuss the management strategies for nuclear waste in general, and long-lived fission products, in particular. 2. Management of nuclear waste The radioactive nuclei which are produced in a power reactor and which remain in the spent fuel of the reactor form a major portion of nuclear waste.
    [Show full text]
  • Plasma–Material Interactions in Current Tokamaks and Their Implications for Next Step Fusion Reactors
    Plasma–material interactions in current tokamaks and their implications for next step fusion reactors G. Federicia ITER Garching Joint Work Site, Garching, Germany C.H. Skinnerb Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, USA J.N. Brooksc Argonne National Laboratory, Argonne, Illinois, USA J.P. Coad JET Joint Undertaking, Abingdon, United Kingdom C. Grisolia Tore Supra, CEA Cadarache, St.-Paul-lez-Durance, France A.A. Haaszd University of Toronto, Institute for Aerospace Studies, Toronto, Ontario, Canada A. Hassaneine Argonne National Laboratory, Argonne, Illinois, USA V. Philipps Institut f¨ur Plasmaphysik, Forschungzentrum J¨ulich, J¨ulich, Germany C.S. Pitcherf MIT Plasma Science and Fusion Center, Cambridge, Massachusetts, USA J. Roth Max-Planck-Institut f¨ur Plasmaphysik, Garching, Germany W.R. Wamplerg Sandia National Laboratories, Albuquerque, New Mexico, USA D.G. Whyteh University of California, San Diego, La Jolla, California, USA Nuclear Fusion, Vol. 41, No. 12R c 2001, IAEA, Vienna 1967 Contents 1. Introduction/background ........................................................................1968 1.1. Introduction....................................................................................1968 1.2. Plasma edge parameters and plasma–material interactions . 1969 1.3. History of plasma facing materials . 1973 2. Plasma edge and plasma–material interaction issues in next step tokamaks . 1977 2.1. Introduction....................................................................................1977 2.2. Progress towards a next step fusion device. .1977 2.3. Most prominent plasma–material interaction issues for a next step fusion device . 1980 2.4. Selection criteria for plasma facing materials. .1995 2.5. Overview of design features of plasma facing components for next step tokamaks. .1998 3. Review of physical processes and underlying theory ..........................................2002 3.1. Introduction....................................................................................2002 3.2.
    [Show full text]
  • Combating Illicit Trafficking in Nuclear and Other Radioactive Material Radioactive Other Traffickingand Illicit Nuclear Combating in 6 No
    8.8 mm IAEA Nuclear Security Series No. 6 Technical Guidance Reference Manual IAEA Nuclear Security Series No. 6 in Combating Nuclear Illicit and Trafficking other Radioactive Material Combating Illicit Trafficking in Nuclear and other Radioactive Material This publication is intended for individuals and organizations that may be called upon to deal with the detection of and response to criminal or unauthorized acts involving nuclear or other radioactive material. It will also be useful for legislators, law enforcement agencies, government officials, technical experts, lawyers, diplomats and users of nuclear technology. In addition, the manual emphasizes the international initiatives for improving the security of nuclear and other radioactive material, and considers a variety of elements that are recognized as being essential for dealing with incidents of criminal or unauthorized acts involving such material. Jointly sponsored by the EUROPOL WCO INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–109807–8 ISSN 1816–9317 07-45231_P1309_CovI+IV.indd 1 2008-01-16 16:03:26 COMBATING ILLICIT TRAFFICKING IN NUCLEAR AND OTHER RADIOACTIVE MATERIAL REFERENCE MANUAL The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA NUCLEAR SECURITY SERIES No. 6 TECHNICAL GUIDANCE COMBATING ILLICIT TRAFFICKING IN NUCLEAR AND OTHER RADIOACTIVE MATERIAL REFERENCE MANUAL JOINTLY SPONSORED BY THE EUROPEAN POLICE OFFICE, INTERNATIONAL ATOMIC ENERGY AGENCY, INTERNATIONAL POLICE ORGANIZATION, AND WORLD CUSTOMS ORGANIZATION INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2007 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris).
    [Show full text]
  • A Fissile Material Cut-Off Treaty N I T E D Understanding the Critical Issues N A
    U N I D I R A F i s s i l e M a A mandate to negotiate a treaty banning the production of fissile material t e r i for nuclear weapons has been under discussion in the Conference of a l Disarmament (CD) in Geneva since 1994. On 29 May 2009 the Conference C u on Disarmament agreed a mandate to begin those negotiations. Shortly t - o afterwards, UNIDIR, with the support of the Government of Switzerland, f f T launched a project to support this process. r e a t This publication is a compilation of various products of the project, y : that hopefully will help to illuminate the critical issues that will need to U n be addressed in the negotiation of a treaty that stands to make a vital d e r contribution to the cause of nuclear disarmament and non-proliferation. s t a n d i n g t h e C r i t i c a l I s s u e s UNITED NATIONS INSTITUTE FOR DISARMAMENT RESEARCH U A Fissile Material Cut-off Treaty N I T E D Understanding the Critical Issues N A Designed and printed by the Publishing Service, United Nations, Geneva T I GE.10-00850 – April 2010 – 2,400 O N UNIDIR/2010/4 S UNIDIR/2010/4 A Fissile Material Cut-off Treaty Understanding the Critical Issues UNIDIR United Nations Institute for Disarmament Research Geneva, Switzerland New York and Geneva, 2010 Cover image courtesy of the Offi ce of Environmental Management, US Department of Energy.
    [Show full text]
  • A New Methodology for Determining Fissile Mass in Individual Accounting Items with the Use of Gamma-Ray Spectrometry*
    BNL-67176 A NEW METHODOLOGY FOR DETERMINING FISSILE MASS IN INDIVIDUAL ACCOUNTING ITEMS WITH THE USE OF GAMMA-RAY SPECTROMETRY* Walter R. Kane, Peter E. Vanier, Peter B. Zuhoski, and James R. Lemley Brookhaven National Laboratory Building 197C, P. O. Box 5000, Upton, NY 11973-5000 USA 631/344-3841 FAX 631/344-7533 Abstract In the safeguards, arms control, and nonproliferation regimes measurements are required which give the quantity of fissile material in an accounting item, e.g., a standard container of plutonium or uranium oxide. Because of the complexity of modeling the absorption of gamma rays in high-Z materials, gamma-ray spectrometry is not customarily used for this purpose. Gamma-ray measurements can be used to determine the fissile mass when two conditions are met: 1. The material is in a standard container, and 2. The material is finely divided, or a solid item with a reproducible shape. The methodology consists of: A. Measurement of the emitted gamma rays, and B. Measurement of the transmission through the item of the high-energy gamma rays of Co-60 and Th-228. We have demonstrated that items containing nuclear materials possess a characteristic "fingerprint" of gamma rays which depends not only on the nuclear properties, but also on the mass, density, shape, etc.. The material's spectrum confirms its integrity, homogeneity, and volume as well. While there is attenuation of radiation from the interior, the residual radiation confirms the homogeneity of the material throughout the volume. Transmission measurements, where the attenuation depends almost entirely on Compton scattering, determine the material mass.
    [Show full text]
  • Global Fissile Material Report 2006 a Table of Contents
    IPF M Global Fis sile Material Report Developing the technical basis for policy initiatives to secure and irreversibly reduce stocks of nuclear weapons and fissile materials 2006 Over the past six decades, our understanding of the nuclear danger has expanded from the threat posed by the vast nuclear arsenals created by the super- powers in the Cold War to encompass the prolifera- tion of nuclear weapons to additional states and now also to terrorist groups. To reduce this danger, it is essential to secure and to sharply reduce all stocks of highly enriched uranium and separated plutonium, the key materials in nuclear weapons, and to limit any further production. The mission of the IPFM is to advance the technical basis for cooperative international policy initiatives to achieve these goals. A report published by Global Fissile The International Panel on Fissile Materials (IPFM) www.fissilematerials.org Program on Science and Global Security Princeton University Material Report 2006 221 Nassau Street, 2nd Floor Princeton, NJ 08542, USA First report of the International Panel on Fissile Materials First report of the International Panel on Fissile Materials Developing the Technical Basis for Policy Initiatives to Secure and Irreversibly Reduce Stocks of Nuclear Weapons and Fissile Materials www.fissilematerials.org Global Fissile Material Report 2006 a Table of Contents About the IPFM 1 Summary 2 I. Background 5 1 Fissile Materials and Nuclear Weapons 6 2 Nuclear-Weapon and Fissile-Material Stocks 12 3 Production and Disposition of Fissile
    [Show full text]
  • Episode 527: Nuclear Transmutation
    9/28/2018 Episode 527: Nuclear transmutation Institute of Physics Search Home Electricity Mechanics Vibrations and waves Fields Atoms and nuclei Energy Astronomy You are here > Atoms and nuclei > Nuclear fission > Episode 527: Nuclear transmutation Nuclear fission Episode 527: Nuclear transmutation Episode 526: Preparation for nuclear fission topic Students need to move beyond the idea that nuclear changes are represented solely by alpha, beta and gamma decay. There are other decay processes, and there are other events that occur when a nucleus absorbs a particle and becomes unstable. Episode 527: Nuclear transmutation Episode 528: Controlling fission Summary Discussion: Transmutation of elements (15 minutes) Student questions: Balancing equations (30 minutes) Discussion: Induced fission (10 minutes) Demonstration: The nucleus as a liquid drop (10 minutes) Discussion: Fission products and radioactive waste (10 minutes) Worked example: A fission reaction (10 minutes) Discussion and demonstrations: Controlled chain reactions (15 minutes) Discussion: The possibility of fission (10 minutes) Student questions: Fission calculations (20 minutes) Discussion: Transmutation of elements Start by rehearsing some assumed knowledge. What is the nucleus made of? (Protons and neutrons, collectively know as nucleons.) What two natural processes change one element into another? (a and b decay). This is transmutation. Using a Periodic Table, explain that a decay moves two places down the periodic table. What about b- decay? (Moves one place up the periodic table.) Introduce the idea of b+ decay. (Moves one place down the periodic table.) Write general equations for these processes. There is another way in which an element may be transmuted; for example, the production of radioactive 14C used in radio- carbon dating in the atmosphere by the neutrons in cosmic rays.
    [Show full text]
  • 12Vac5-481 Virginia Radiation Protection Regulations
    12VAC5-481 VIRGINIA RADIATION PROTECTION REGULATIONS PART I GENERAL PROVISIONS Section 10 Definitions Section 20 Scope Section 30 Deliberate misconduct Section 40 Reserved Section 50 Reserved Section 60 Reserved Section 70 Reserved Section 80 Reserved Section 90 Exemptions from regulatory requirements Section 100 Records Section 110 Inspections and enforcement Section 120 [Reserved] Section 130 Impounding Section 140 Prohibited uses Section 150 Communications Section 160 Effective date Section 170 Removal of notices posted by agency prohibited Section 180 Tests Section 190 Additional regulatory requirements Section 200 [Repealed] Section 210 Types of hearings Section 220 Hearing as a matter of right Section 230 Appeal Section 240 Units of exposure and dose Section 250 Units of radioactivity PART II REGISTRATION OF RADIATION MACHINE FACILITIES AND SERVICES Section 260 Purpose and scope Section 270 Exemptions Section 280 Shielding plan review Section 290 Registration of radiation machine facilities Section 300 Issuance of registration certificate Section 310 Renewal of registration and approval not implied Section 320 Expiration of registration certificate Section 330 Report of changes Section 340 Private inspector qualifications Section 350 Assembler or transfer obligation Section 360 Reciprocal recognition of out-of-state radiation machines Section 370 Certification of X-ray systems PART III LICENSING OF RADIOACTIVE MATERIAL Section 380 Purpose and scope Section 390 Source material Section 400 Radioactive material other than source material
    [Show full text]
  • Highly Enriched Uranium: Striking a Balance
    OFFICIAL USE ONLY - DRAFT GLOSSARY OF TERMS APPENDIX F GLOSSARY OF TERMS Accountability: That part of the safeguards and security program that encompasses the measurement and inventory verification systems, records, and reports to account for nuclear materials. Assay: Measurement that establishes the total quantity of the isotope of an element and the total quantity of that element. Atom: The basic component of all matter. Atoms are the smallest part of an element that have all of the chemical properties of that element. Atoms consist of a nucleus of protons and neutrons surrounded by electrons. Atomic energy: All forms of energy released in the course of nuclear fission or nuclear transformation. Atomic weapon: Any device utilizing atomic energy, exclusive of the means for transportation or propelling the device (where such means is a separable and divisible part of the device), the principal purpose of which is for use as, or for development of, a weapon, a weapon prototype, or a weapon test device. Blending: The intentional mixing of two different assays of the same material in order to achieve a desired third assay. Book inventory: The quantity of nuclear material present at a given time as reflected by accounting records. Burnup: A measure of consumption of fissionable material in reactor fuel. Burnup can be expressed as (a) the percentage of fissionable atoms that have undergone fission or capture, or (b) the amount of energy produced per unit weight of fuel in the reactor. Chain reaction: A self-sustaining series of nuclear fission reactions. Neutrons produced by fission cause more fission. Chain reactions are essential to the functioning of nuclear reactors and weapons.
    [Show full text]
  • Global Fissile Material Report 2015 Nuclear Weapon and Fissile Material Stockpiles and Production
    Global Fissile Material Report 2015 Nuclear Weapon and Fissile Material Stockpiles and Production Eighth annual report of the International Panel on Fissile Materials Eighth annual report of the International Panel on Fissile Materials Global Fissile Material Report 2015 Nuclear Weapon and Fissile Material Stockpiles and Production 2015 International Panel on Fissile Materials This work is licensed under the Creative Commons Attribution-Noncommercial License To view a copy of this license, visit www.creativecommons.org/licenses/by-nc/3.0 On the cover: the map shows existing uranium enrichment and plutonium separation (reprocessing) facilities. Table of Contents About the IPFM 1 Summary 2 Nuclear Weapons 4 Highly Enriched Uranium 10 Military HEU 13 Civilian Use of HEU 17 Civilian Uranium Enrichment Plants 19 Separated Plutonium 23 Weapons Plutonium 25 Civilian Plutonium 29 Nuclear Weapons, Fissile Materials and Transparency 34 Appendix 1. Fissile Materials and Nuclear Weapons 40 Appendix 2. Uranium Enrichment Plants 48 Appendix 3. Reprocessing Plants 49 Appendix 4. Civilian Plutonium Stockpile Declarations 50 Endnotes 51 About the IPFM The International Panel on Fissile Materials (IPFM) was founded in January 2006. It is an independent group of arms-control and nonproliferation experts from seventeen countries, including both nuclear weapon and non-nuclear weapon states. The mission of the IPFM is to analyze the technical basis for practical and achievable policy initiatives to secure, consolidate, and reduce stockpiles of highly enriched urani- um and plutonium. These fissile materials are the key ingredients in nuclear weapons, and their control is critical to nuclear disarmament, halting the proliferation of nuclear weapons, and ensuring that terrorists do not acquire nuclear weapons.
    [Show full text]
  • 29. Nuclear Fusion-A Colossal Energy Source
    International Journal of Scientific and Technical Advancements ISSN: 2454-1532 Nuclear Fusion-A Colossal Energy Source Snehashis Das1, Shamik Chattaraj2, Anjana Sengupta3, Kaustav Mallick4 1, 2, 3, 4Electrical Engineering, Technique Polytechnic Institute, Hooghly, West Bengal, India-712102 Email address: [email protected] Abstract— With the fast depletion of all other conventional forms of energy resources, it became very much essential to opt for alternative that will be abundant enough to last for quite an effective period of time. Lately, a lot of experimentation and projects are being undertaken to implement nuclear fusion to serve the above purpose. We are familiar with the term nuclear fission i.e. heavier elements breaking down into smaller particles releasing energy; whereas Nuclear Fusion is a phenomenon reverse of fission i.e. lighter elements unites to form heavier elements with release of energy of much greater magnitude compared to fission. In the process of fusion, the Coulomb’s Forces are much lesser compared to the binding energy of the resulting nuclei. The very first baby step towards research on fusion began in the year 1929. Building upon the nuclear transmutation experiments by Ernest Rutherford, carried out several years earlier, the laboratory fusion of hydrogen isotopes was first accomplished by Mark Oliphant in 1932. Later on, during Manhattan Project (1940), the concept of fusion was thought for the first time for military purpose, and many other followed after. Research for civil purpose began only in 1950s through thermonuclear fusion. Two projects, the National Ignition Facility and ITER were proposed for the purpose. Designs such as ICF & TOKAMAK are the mega sized reactors upon which world are looking forward to.
    [Show full text]