Global Fissile Material Report 2006 a Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Global Fissile Material Report 2006 a Table of Contents IPF M Global Fis sile Material Report Developing the technical basis for policy initiatives to secure and irreversibly reduce stocks of nuclear weapons and fissile materials 2006 Over the past six decades, our understanding of the nuclear danger has expanded from the threat posed by the vast nuclear arsenals created by the super- powers in the Cold War to encompass the prolifera- tion of nuclear weapons to additional states and now also to terrorist groups. To reduce this danger, it is essential to secure and to sharply reduce all stocks of highly enriched uranium and separated plutonium, the key materials in nuclear weapons, and to limit any further production. The mission of the IPFM is to advance the technical basis for cooperative international policy initiatives to achieve these goals. A report published by Global Fissile The International Panel on Fissile Materials (IPFM) www.fissilematerials.org Program on Science and Global Security Princeton University Material Report 2006 221 Nassau Street, 2nd Floor Princeton, NJ 08542, USA First report of the International Panel on Fissile Materials First report of the International Panel on Fissile Materials Developing the Technical Basis for Policy Initiatives to Secure and Irreversibly Reduce Stocks of Nuclear Weapons and Fissile Materials www.fissilematerials.org Global Fissile Material Report 2006 a Table of Contents About the IPFM 1 Summary 2 I. Background 5 1 Fissile Materials and Nuclear Weapons 6 2 Nuclear-Weapon and Fissile-Material Stocks 12 3 Production and Disposition of Fissile Materials 21 4 Agreements and Institutions 32 to Control Fissile Materials II. New Initiatives to Control Fissile Materials 39 5 A Fissile Material Cutoff Treaty 40 6 Declarations of Fissile Material Stocks 51 7 Limiting National Fissile-Material Production Capabilities 57 8 Global Cleanout of Highly Enriched Uranium 67 Endnotes 72 Glossary 86 Appendix A 93 IPFM Members and Princeton’s Program on Science and Global Security Global Fissile Material Report 2006 c About the IPFM The International Panel on Fissile Materials (IPFM) was founded in January 2006. It is an independent group of arms-control and nonproliferation experts from both nuclear weapon and non-nuclear weapon states. The mission of the IPFM is to analyze the technical basis for practical and achiev- able policy initiatives to secure, consolidate, and reduce stockpiles of highly en- riched uranium and plutonium. These fissile materials are the key ingredients in nuclear weapons, and their control is critical to nuclear weapons disarmament, to halting the proliferation of nuclear weapons, and to ensuring that terrorists do not acquire nuclear weapons. Both military and civilian stocks of fissile materials have to be addressed. The nu- clear weapon states still have enough fissile materials in their weapon stockpiles for tens of thousands of nuclear weapons. On the civilian side, enough plutonium has been separated to make a similarly large number of weapons. Highly enriched ura- nium is used in civilian reactor fuel in more than one hundred locations. The total amount used for this purpose is sufficient to make about one thousand Hiroshima- type bombs, a design well within the potential capabilities of terrorist groups. The Panel is co-chaired by Professor José Goldemberg of the University of São Paulo, Brazil and Professor Frank von Hippel of Princeton University. Its founding members include nuclear experts from fifteen countries: Brazil, China, Germany, India, Japan, South Korea, Mexico, Netherlands, Norway, Pakistan, Russia, South Africa, Sweden, the United Kingdom and the United States. This group of countries includes six nuclear weapon states and nine non-weapon states. Short biographies of the panel members can be found in the Appendix. IPFM research and reports are shared with international organizations, national governments and nongovernmental groups. It has full panel meetings twice a year in capitols around the world in addition to specialist workshops. These meetings and workshops are often in conjunction with international conferences at which IPFM panels and experts make presentations. Princeton University’s Program on Science and Global Security provides adminis- trative and research support for the IPFM. IPFM’s initial support is provided by a five-year grant to Princeton University from the John D. and Catherine T. MacArthur Foundation of Chicago. Global Fissile Material Report 2006 1 Summary Over the past six decades, our understanding of the nuclear danger has expand- ed from the threat posed by the vast nuclear arsenals created by the superpowers in the Cold War to encompass the proliferation of nuclear weapons to addition- al states, and now also to terrorist groups. To reduce these dangers it is essential to secure and to sharply reduce all stocks of highly enriched uranium and sepa- rated plutonium, the key materials in nuclear weapons, and to limit any further production. The current global stockpiles of fissile materials are huge: 1400-2000 metric tons* of highly enriched uranium (HEU) and about 500 tons of plutonium – enough for several tens of thousands of nuclear weapons. It is urgent to reduce these stocks to very low levels at a very limited number of locations. Chapters 1–3 in Part I of this report explain what fissile materials are, their use in nuclear weapons, how they are produced and disposed, and provide estimates of current national stockpiles and production rates. Chapter 4 provides a brief over- view of the agreements and institutions that have been set up to control the pro- duction and use of fissile materials. Part II (chapters 5-8) describes four goals toward which we believe significant prog- ress can be made in the near future: • A cutoff on production of fissile materials for weapons, and placement under inter- national safeguards of all civil stocks of fissile material, and stocks that are excess to military requirements; • Declarations by Russia and the United States (and eventually by the other nuclear weapon states) of their total fissile-material stockpiles; • Measures to limit the proliferation of national uranium centrifuge enrichment and reprocessing plants; and • Total or near-total elimination of the use of highly enriched uranium as a civilian reactor fuel. A Fissile Material Cutoff Treaty (FMCT) would impose upon the nuclear weapon states (including India, Pakistan, Israel, and North Korea) the obligation not to produce fissile materials for weapons. This obligation has already been accepted by the non-nuclear weapon states, and would help to ensure that reductions in the nuclear weapons arsenals are irreversible. Declarations – or at least an exchange of information between Russia and the United States on their overall fissile-material stockpiles – would provide a basis for further balanced reductions in their nuclear 2 Global Fissile Material Report 2006 * In this report, tons should be understood to refer to metric tons. arsenals. Containing the proliferation of national fissile material production facili- ties would reduce concerns about an increasing number of countries obtaining a nuclear-weapon option along with such facilities. Finally, eliminating HEU in civil- ian-reactor fuel would greatly reduce the danger of HEU falling into the hands of potential nuclear terrorists. Fissile Material Cutoff Treaty Negotiations on an FMCT have been blocked in the Conference on Disarmament (CD) for a decade by a lack of agreement on whether or not the negotiations will proceed in parallel with discussions of possible treaties to bar nuclear threats against non-nuclear states, to prevent an arms race in outer space, and to achieve nuclear disarmament. The United States opposes such linkages and the rules require that the CD can proceed only by consensus. If this problem can be overcome – either in the CD or by creating another negotiat- ing forum – the negotiators will have to deal with, among other issues, the scope of the treaty and how it would be verified. The weapon states would like to see the scope confined to a ban on the future pro- duction of fissile materials for weapons. Many non-weapon states would also like to include a ban on the use for weapons of materials that have been produced for civilian use or have been declared excess for military use. The issue of verification has been complicated by the Bush Administration’s 2004 decision to oppose international verification of an FMCT. Effective verification is politically and technically feasible, however, and would be valuable. If previously produced civilian materials and materials declared excess for military use were in- cluded within the scope of an FMCT, then the verification arrangements for the civilian nuclear activities in the nuclear weapon states could be the same as in the non-weapon states. Verification that known uranium-enrichment and reprocess- ing facilities had been either shut down or converted to weapon use would also be straightforward. Verification of the absence of fissile materials production at other sites could be done using “managed access” procedures similar to those that have already been accepted under the Chemical Weapons Convention (CWC), which allows ad hoc arrangements to protect unrelated sensitive information when in- ternational inspectors check on concerns that a facility might be housing illicit chemical-weapons production. We also discuss, in a preliminary way, possible ar- rangements to provide international assurance that HEU declared for naval-reactor fuel use was not being diverted to weapon use. Stockpile declarations Russia and the United States have reduced the number of weapons in their nuclear arsenals to about one-third of their Cold-War peaks, and they have declared sub- stantial amounts of HEU and plutonium excess to their military needs. But they still retain hundreds of tons more fissile materials in their weapons stockpiles than they need and cannot credibly call on other states to make reductions until they have made deeper cuts themselves. Such reductions are unlikely, however, unless the United States and Russia have better knowledge of the sizes of each others’ fissile materials stockpiles.
Recommended publications
  • Table 2.Iii.1. Fissionable Isotopes1
    FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector.
    [Show full text]
  • FACT SHEET Office of Public Affairs
    FACT SHEET Office of Public Affairs Phone: 301-415-8200 Email: [email protected] Uranium Recovery Background The production of fuel for nuclear power plants starts with taking uranium ore from the ground and then purifying and processing it through a series of steps. Uranium recovery focuses on extracting natural uranium ore from the earth and concentrating (or milling) that ore. These recovery operations produce a product, called "yellowcake," which is then transported to a succession of fuel cycle facilities where the yellowcake is transformed into fuel for nuclear power reactors. In addition to yellowcake, uranium recovery operations generate waste products, called byproduct materials, that contain low levels of radioactivity. The NRC does not regulate uranium mining or mining exploration, but does have authority over milling of mined materials and in situ processes used to recover uranium, as well as mill tailings. Today’s conventional uranium mills and in situ recovery (ISR) facilities are operating safely and in a manner that is protective of the environment. The NRC regulates these facilities in close coordination with other Federal agencies and State and Tribal governments and provides technical support and guidance to those Agreement States that have authority over uranium recovery activities. Discussion The NRC becomes involved in uranium recovery operations when the ore is processed and physically or chemically altered. This happens either in a conventional, heap leach uranium mill, or ISR. For that reason, the NRC regulates ISR facilities as well as uranium mills and the disposal of liquid and solid wastes from uranium recovery operations (including mill tailings).
    [Show full text]
  • Combating Illicit Trafficking in Nuclear and Other Radioactive Material Radioactive Other Traffickingand Illicit Nuclear Combating in 6 No
    8.8 mm IAEA Nuclear Security Series No. 6 Technical Guidance Reference Manual IAEA Nuclear Security Series No. 6 in Combating Nuclear Illicit and Trafficking other Radioactive Material Combating Illicit Trafficking in Nuclear and other Radioactive Material This publication is intended for individuals and organizations that may be called upon to deal with the detection of and response to criminal or unauthorized acts involving nuclear or other radioactive material. It will also be useful for legislators, law enforcement agencies, government officials, technical experts, lawyers, diplomats and users of nuclear technology. In addition, the manual emphasizes the international initiatives for improving the security of nuclear and other radioactive material, and considers a variety of elements that are recognized as being essential for dealing with incidents of criminal or unauthorized acts involving such material. Jointly sponsored by the EUROPOL WCO INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–109807–8 ISSN 1816–9317 07-45231_P1309_CovI+IV.indd 1 2008-01-16 16:03:26 COMBATING ILLICIT TRAFFICKING IN NUCLEAR AND OTHER RADIOACTIVE MATERIAL REFERENCE MANUAL The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA NUCLEAR SECURITY SERIES No. 6 TECHNICAL GUIDANCE COMBATING ILLICIT TRAFFICKING IN NUCLEAR AND OTHER RADIOACTIVE MATERIAL REFERENCE MANUAL JOINTLY SPONSORED BY THE EUROPEAN POLICE OFFICE, INTERNATIONAL ATOMIC ENERGY AGENCY, INTERNATIONAL POLICE ORGANIZATION, AND WORLD CUSTOMS ORGANIZATION INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2007 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris).
    [Show full text]
  • Implementing Safeguards-By-Design at Natural Uranium Conversion Plants
    NIS Office of Nuclear Safeguards and Security Safeguards-By-Design Facility Guidance Series (NGSI-SBD-002) August 2012 Implementing Safeguards-by-design at Natural Uranium Conversion Plants U.S. DEPARTMENT OF ENERG National Nuclear Security AdministrationY IMPLEMENTING SAFEGUARDS-BY-DESIGN AT NATURAL URANIUM CONVERSION PLANTS Lisa Loden John Begovich Date Published: July 2012 iii CONTENTS Page CONTENTS ......................................................................................................................................... IV 1. INTRODUCTION AND PURPOSE ................................................................................................. 1 2. KEY DEFINITIONS ......................................................................................................................... 2 3. SAFEGUARDS AT NUCPS ............................................................................................................. 7 3.1 SAFEGUARDS OBJECTIVES ................................................................................................. 7 3.2 TRADITIONAL AND INTEGRATED SAFEGUARDS ......................................................... 7 3.3 SAFEGUARDS RESPONSIBILITIES ..................................................................................... 8 3.3.1 STATE REGULATORY AUTHORITY RESPONSIBILITIES ..................................... 8 3.3.2 IAEA RESPONSIBILITIES ............................................................................................ 9 4. ELEMENTS OF FACILITY DESIGN THAT ARE RELEVANT
    [Show full text]
  • A Fissile Material Cut-Off Treaty N I T E D Understanding the Critical Issues N A
    U N I D I R A F i s s i l e M a A mandate to negotiate a treaty banning the production of fissile material t e r i for nuclear weapons has been under discussion in the Conference of a l Disarmament (CD) in Geneva since 1994. On 29 May 2009 the Conference C u on Disarmament agreed a mandate to begin those negotiations. Shortly t - o afterwards, UNIDIR, with the support of the Government of Switzerland, f f T launched a project to support this process. r e a t This publication is a compilation of various products of the project, y : that hopefully will help to illuminate the critical issues that will need to U n be addressed in the negotiation of a treaty that stands to make a vital d e r contribution to the cause of nuclear disarmament and non-proliferation. s t a n d i n g t h e C r i t i c a l I s s u e s UNITED NATIONS INSTITUTE FOR DISARMAMENT RESEARCH U A Fissile Material Cut-off Treaty N I T E D Understanding the Critical Issues N A Designed and printed by the Publishing Service, United Nations, Geneva T I GE.10-00850 – April 2010 – 2,400 O N UNIDIR/2010/4 S UNIDIR/2010/4 A Fissile Material Cut-off Treaty Understanding the Critical Issues UNIDIR United Nations Institute for Disarmament Research Geneva, Switzerland New York and Geneva, 2010 Cover image courtesy of the Offi ce of Environmental Management, US Department of Energy.
    [Show full text]
  • NNSA Should Clarify Long-Term Uranium Enrichment Mission Needs and Improve Technology Cost Estimates
    United States Government Accountability Office Report to Congressional Committees February 2018 NUCLEAR WEAPONS NNSA Should Clarify Long-Term Uranium Enrichment Mission Needs and Improve Technology Cost Estimates GAO-18-126 February 2018 NUCLEAR WEAPONS NNSA Should Clarify Long-Term Uranium Enrichment Mission Needs and Improve Technology Cost Highlights of GAO-18-126, a report to Estimates congressional committees Why GAO Did This Study What GAO Found NNSA has several mission needs for The National Nuclear Security Administration (NNSA), a separately organized enriched uranium, including providing agency within the Department of Energy (DOE), is taking or plans to take four LEU to fuel a nuclear reactor that actions to extend inventories of low-enriched uranium (LEU) that is unobligated, produces tritium—a key isotope used or carries no promises or peaceful use to foreign trade partners until about 2038 in nuclear weapons. NNSA has a to 2041. Two of the actions involve preserving supplies of LEU, and the other pressing defense need for unobligated two involve diluting highly enriched uranium (HEU) with lower enriched forms of LEU to fuel this reactor, meaning the uranium to produce LEU. GAO reviewed these actions and found the actual uranium, technology and equipment costs and schedules for those taken to date generally align with estimates. used to produce the LEU, must be U.S. NNSA and GAO have identified risks associated with two of these actions. One in origin. Because the United States of these risks has been resolved; NNSA is taking steps to mitigate another, while lost its only source of unobligated LEU production in 2013, the supply is finite.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • A New Methodology for Determining Fissile Mass in Individual Accounting Items with the Use of Gamma-Ray Spectrometry*
    BNL-67176 A NEW METHODOLOGY FOR DETERMINING FISSILE MASS IN INDIVIDUAL ACCOUNTING ITEMS WITH THE USE OF GAMMA-RAY SPECTROMETRY* Walter R. Kane, Peter E. Vanier, Peter B. Zuhoski, and James R. Lemley Brookhaven National Laboratory Building 197C, P. O. Box 5000, Upton, NY 11973-5000 USA 631/344-3841 FAX 631/344-7533 Abstract In the safeguards, arms control, and nonproliferation regimes measurements are required which give the quantity of fissile material in an accounting item, e.g., a standard container of plutonium or uranium oxide. Because of the complexity of modeling the absorption of gamma rays in high-Z materials, gamma-ray spectrometry is not customarily used for this purpose. Gamma-ray measurements can be used to determine the fissile mass when two conditions are met: 1. The material is in a standard container, and 2. The material is finely divided, or a solid item with a reproducible shape. The methodology consists of: A. Measurement of the emitted gamma rays, and B. Measurement of the transmission through the item of the high-energy gamma rays of Co-60 and Th-228. We have demonstrated that items containing nuclear materials possess a characteristic "fingerprint" of gamma rays which depends not only on the nuclear properties, but also on the mass, density, shape, etc.. The material's spectrum confirms its integrity, homogeneity, and volume as well. While there is attenuation of radiation from the interior, the residual radiation confirms the homogeneity of the material throughout the volume. Transmission measurements, where the attenuation depends almost entirely on Compton scattering, determine the material mass.
    [Show full text]
  • Two Paths to a Nuclear Bomb Iran Has Historically Pursued Work on Both Uranium- and Plutonium-Weapons Programs, Western O Cials Say
    Two Paths to a Nuclear Bomb Iran has historically pursued work on both uranium- and plutonium-weapons programs, Western ocials say. The 2015 nuclear deal set temporary limits on a wide range of Iran's nuclear work and committed Tehran to never work on nuclear weapons. Here's how far down those paths Iran is. Creating weapons-grade nuclear fuel Uranium 1 Low-grade uranium ore is 2 Centrifuges are set up in 3 Enriching uranium to 5% is the 4 It takes roughly 200 kg to 250 kg of 20% mined and chemically treated cascades to enrich the uranium. most time-consuming part of enriched uranium to produce the 25 kg of to produce a concentrated The sophisticated process can producing weapons-grade material. 90% enriched uranium, the amount needed yellowcake. After a conversion take years to establish. Iran Iran on Monday exceeded its for a bomb. Iran has reached 20% purity in process, it is fed into produced around 20,000 basic permitted 300-kg stockpile of the past but has never enriched above that centrifuges. centrifuges but is doing research uranium enriched to 3.67%. level. The enriched uranium is converted to Weaponizing nuclear fuel on more advanced machines. uranium metal for weapon use. Deploying the nuclear fuel in a Centrifuges weapon presents technical challenges, many of which Iran isn’t believed to have mastered. Detonating the 5% enriched Uranium Yellowcake Uranium 20% weapon requires a fission ore hexaflouride uranium 90% reaction. The nuclear payload 25kg must be attached to a missile, and the payload must be able 200-250 kg to withstand reentry through through earth's atmosphere as Plutonium it descends to its target.
    [Show full text]
  • Federal Register/Vol. 86, No. 145/Monday, August 2, 2021/Notices
    41540 Federal Register / Vol. 86, No. 145 / Monday, August 2, 2021 / Notices DEPARTMENT OF COMMERCE III. Investigation Process Producers Will Face Increasing Import A. Initiation of Investigation Competition Bureau of Industry and Security B. Public Comments VIII. Conclusion C. Site Visits and Information Gathering A. Determination RIN 0694–XC078 Activities B. Economic Impacts of 25 Percent U.S.- D. Interagency Consultation Origin Requirement Publication of a Report on the Effect of E. Review of the Department of Commerce C. Public Policy Proposals Imports of Uranium on the National 1989 Section 232 Investigation on Security: An Investigation Conducted Uranium Imports Appendices Under Section 232 of the Trade IV. Product Scope of the Investigation Appendix A: Section 232 Investigation Expansion Act of 1962, as Amended V. Background on the U.S. Nuclear Industry Notification Letter to Secretary of Defense A. Summary of the U.S. Uranium Fuel James Mattis, July 18, 2018 AGENCY: Bureau of Industry and Cycle Appendix B: Federal Register Notices— Security, Commerce. B. Summary of U.S. Nuclear Power Notice of Requests for Public Comments on Generation Industry ACTION: Publication of a report. Section 232 National Security Investigation VI. Global Uranium Market Conditions of Imports of Uranium, July 25, 2018; SUMMARY: The Bureau of Industry and A. Summary of the Global Uranium Market Change in Comment Deadline for Section Security (BIS) in this notice is B. Uranium Transactions: Book Transfers 232 National Security Investigation of and Flag Swaps publishing a report that summarizes the Imports of Uranium, September 10, 2018 C. The Effect of the Fukushima Daiichi Appendix C: Summary of Public Comments findings of an investigation conducted Incident on U.S.
    [Show full text]
  • Nuclear Reactor Realities
    Page 1 of 26 Nuclear Reactor Realities NUCLEAR REACTOR REALITIES (An Australian viewpoint) PREFACE Now that steam ships are no longer common, people tend to forget that nuclear power is just a replacement of coal, oil or gas for heating water to form steam to drive turbines, or of water (hydro) to do so directly. As will be shown in this tract, it is by far the safest way of doing so to generate electricity economically in large quantities – as a marine engineer of my acquaintance is fond of saying. Recently Quantum Market Research released its latest Australian Scan (The Advertiser, Saturday April 17, 2012, p 17). It has been tracking social change by interviewing 2000 Australians annually since 1992. In the concerns in the environment category, “[a]t the top of the list is nuclear accidents and waste disposal” (44.4 per cent), while “global warming” was well down the list of priorities at No 15, with only 27.7 per cent of people surveyed rating the issue as “extremely serious.” Part of the cause of such information must be that people are slowly realising that they have been deluded by publicity about unverified computer models which indicate that man’s emissions of CO2 play a major part in global warming. They have not yet realised that the history of the dangers of civilian nuclear power generation shows the reverse of their images. The topic of nuclear waste disposal is also shrouded in reactor physics mysteries, leading to a mis-placed general fear of the unknown. In this article only nuclear reactors are considered.
    [Show full text]
  • Quantities of Fissile Materials in US and Soviet
    Quantities of Fissile Materials in --US and Soviet ~uclearWeapons Arsenals * Frank von Hippel David H. ~lbri~ht+ Barbara G. Levi PU/CEES Report No. 168 July 1986 * Also Woodrow Wilson School of Public and International Affairs, Princeton University . + Also Federation of American Scientists, 307 Massachusetts Ave. N.E., Washington, DC 20002. Center for Energy and Environmental Studies The Engineering Quadrangle Princeton University Princeton, NJ 08544 TABLE OF CONTENTS a I. INTRODUCTION 11. US STOCKPILE OF WEAPON-GRADE URANIUM 111. US STOCKPILE OF WEAPON-GRADE PLUTONIUM a IV. DISPOSITION OF THE US GOVERNMENT'S STOCKPILE OF NATURAL URANIUM V. SOVIET STOCKPILE OF PLUTONIUM I. INTRODUCTION --TABLE OF CONTENTS History of the Proposal to Cut Off the Production of Fissile Material for Nuclear Weapons a The Verifiability of a Fissile Cutoff The Importance of Knowing the Amounts of Fissile Materials Already in the Nuclear Arsenals 2 REFERENCES Table 1-1. The Amounts of Fissile Material in the US Weapons Stockpile and An Upper-Bound Estimate of the Amount of Separated Plutonium in the USSR I. INTRODUCTION History of the Proposal to Cut Off the Production -of Fissile Material for Nuclear Weapons Although the original nuclear weapons control proposals such as the 1946 Baruch Plan - focused on the control of nuclear weapons materials, recent arms control negotiations have focused principally on the control of long-range nuclear weapons delivery systems. This has been in part due to the shift in the focus of the nuclear arms race from the quantitative to the qualitative. In part also it resulted from the Soviet Union's reluctance to allow intrusive verification arrangements.
    [Show full text]