Modeling in Physiology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Somatostatin in the Periventricular Nucleus of the Female Rat: Age Specific Effects of Estrogen and Onset of Reproductive Aging
4 Somatostatin in the Periventricular Nucleus of the Female Rat: Age Specific Effects of Estrogen and Onset of Reproductive Aging Eline M. Van der Beek, Harmke H. Van Vugt, Annelieke N. Schepens-Franke and Bert J.M. Van de Heijning Human and Animal Physiology Group, Dept. Animal Sciences, Wageningen University & Research Centre The Netherlands 1. Introduction The functioning of the growth hormone (GH) and reproductive axis is known to be closely related: both GH overexpression and GH-deficiency are associated with dramatic decreases in fertility (Bartke, 1999; Bartke et al, 1999; 2002; Naar et al, 1991). Also, aging results in significant changes in functionality of both axes within a similar time frame. In the rat, GH secretion patterns are clearly sexually dimorphic (Clark et al, 1987; Eden et al, 1979; Gatford et al, 1998). This has been suggested to result mainly from differences in somatostatin (SOM) release patterns from the median eminence (ME) (Gillies, 1997; Muller et al, 1999; Tannenbaum et al, 1990). SOM is synthesized in the periventricular nucleus of the hypothalamus (PeVN) and controls in concert with GH-releasing hormone (GHRH) the GH release from the pituitary (Gillies, 1987; Tannenbaum et al, 1990; Terry and Martin, 1981; Zeitler et al, 1991). An altered GH status is reflected in changes in the hypothalamic SOM system. For instance, the number of SOM cells (Sasaki et al, 1997) and pre-pro SOM mRNA levels (Hurley and Phelps, 1992) in the PeVN were elevated in animals overexpressing GH. Several observations suggest that SOM may also affect reproductive function directly at the level of the hypothalamus. -
Pulsatile Release of Bioactive Luteinizing Hormone in Prepubertal Girls: Discordance with Immunoreactive Luteinizing Hormone Pulses
003 I-399818712 104-0409$02.00/0 PEDIATRIC RESEARCH Vol. 21, No. 4, 1987 Copyright O 1987 International Pediatric Research Foundation, Inc I'rfnied in U.S. A. Pulsatile Release of Bioactive Luteinizing Hormone in Prepubertal Girls: Discordance with Immunoreactive Luteinizing Hormone Pulses EDWARD 0. REITER, DARLENE E. BIGGS, JOHANNES D. VELDHUIS, AND INESE Z. BEITINS Department of Pediatrics, Baystate Medical Center, SpringJield, Massachusetts 01 199 [E.O.R., D.E.B.]; Department of Medicine, University of Virginia Medical School, Charlottesville, Virginia 22908 [J.D.V.]; and Department qf Pediatrics of the University of Michigan Medical Center, Ann Arbor, Michigan 48109 [I.Z.B.] ABSTRACT. An assessment of pulsatile secretion of lu- the onset of puberty is an increase in the frequency, as well as teinizing hormone (LH), measured by both immunoassay amplitude, of GnRH pulses from the hypothalamus which is (I-LH) and rat interstitial cell testosterone production translated into gonadotropin secretory pulses from the pituitary. bioassay (B-LH), as well as of folicle-stimulating hormone Increased LH pulse frequency and amplitude, as measured by I- and glycoprotein hormone a-subunit was carried out in LH have been demonstrated in early pubertal children (1-4). In seven normal prepubertal and six normal premenarcheal addition, the mean I-LH levels have been shown to rise with pubertal girls. Samples were obtained at 20-min intervals advancement of puberty in both cross-sectional and longitudinal for a 6-h period. The hormone secretion profiles were studies (5, 6). analyzed by several computerized methods yielding pulse Pituitary gonadotropins are known to be heterogeneous. -
Signature Redacted May 14,2014 Certified By
System Identification of Cortisol Secretion: Characterizing Pulsatile Dynamics OF TECHNOLOGy by Rose Taj Faghih JUN 1 0 2014 B.S., Electrical Engineering (2008) University of Maryland, College Park LIBRARIES S.M., Electrical Engineering and Computer Science (2010), Massachusetts Institute of Technology Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2014 @ Massachusetts Institute of Technology 2014. All rights reserved. Signature redacted Author ........... ............................. Department of Electrical Engineering and Computer Science Signature redacted May 14,2014 Certified by........ .................................... Emery N. Brown Edward Hood Taplin Professor of Medical Engineering Professor of Computational Neuroscience Thesis Supervisor Certified by Si onRtIIm mdRctE~d Munther A. Dahleh Professor of Electrical Engineering and Computer Science Professor of Engineering Systems Division Thesis Supervisor b Signature redacted,; A cce;pte d Uy .... ....... 4, ..... ...... .. .... S/Prdsar Leslie A. Kolodziejski Chair, Department Committee on Graduate Students System Identification of Cortisol Secretion: Characterizing Pulsatile Dynamics by Rose Taj Faghih Submitted to the Department of Electrical Engineering and Computer Science on May 14, 2014, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Cortisol controls the body's metabolism and response to inflammation and stress. Cortisol is released in pulses from the adrenal glands in response to pulses of adreno- corticotropic hormone (ACTH) released from the anterior pituitary; in return, cortisol has a negative feedback effect on ACTH release. Modeling cortisol secretion and the interactions between ACTH and cortisol allows for quantifying normal and abnormal physiology and can potentially be used for diagnosis and optimal treatment of some cortisol disorders. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
An Optimization Formulation for Characterization of Pulsatile Cortisol Secretion
An optimization formulation for characterization of pulsatile cortisol secretion The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Faghih, Rose T. et al. "An optimization formulation for characterization of pulsatile cortisol secretion." Frontiers in Neuroscience 9 (August 2015): 228 © 2015 Faghih, Dahleh and Brown As Published http://dx.doi.org/10.3389/fnins.2015.00228 Publisher Frontiers Research Foundation Version Final published version Citable link http://hdl.handle.net/1721.1/112222 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ ORIGINAL RESEARCH published: 11 August 2015 doi: 10.3389/fnins.2015.00228 An optimization formulation for characterization of pulsatile cortisol secretion Rose T. Faghih 1, 2, 3, 4*, Munther A. Dahleh 1, 4, 5, 6 and Emery N. Brown 2, 3, 7, 8 1 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 2 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA, 3 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA, 4 Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA, 5 Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA, USA, 6 Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA, 7 Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 8 Department of Anesthesia, Harvard Medical School, Boston, MA, USA Edited by: Jason Ritt, Cortisol is released to relay information to cells to regulate metabolism and reaction Boston University, USA to stress and inflammation. -
Gonadotropin-Releasing Hormone Secretion Into Third
BIOLOGY OF REPRODUCTION 59, 676±683 (1998) Gonadotropin-Releasing Hormone Secretion into Third-Ventricle Cerebrospinal Fluid of Cattle: Correspondence with the Tonic and Surge Release of Luteinizing Hormone and Its Tonic Inhibition by Suckling and Neuropeptide Y1 O.S. Gazal,3 L.S. Leshin,4 R.L. Stanko,3 M.G. Thomas,5 D.H. Keisler,6 L.L. Anderson,7 and G.L. Williams2,3 Animal Reproduction Laboratory,3 Texas A&M University Agricultural Research Station, Beeville, Texas 78102 USDA/ARS Russell Agricultural Research Center,4 Athens, Georgia 30613 Department of Animal and Range Sciences,5 New Mexico State University, Las Cruces, New Mexico 88003 Department of Animal Science,6 University of Missouri, Columbia, Missouri 65211 Department of Animal Science,7 Iowa State University, Ames, Iowa 50011 ABSTRACT [1]. Although a transnasal, transsphenoidal approach has been described for collecting mixed hypophyseal portal and Objectives of the current studies were to characterize the cavernous sinus blood in ewes and young calves to monitor pattern of GnRH secretion in the cerebrospinal ¯uid of the bo- vine third ventricle, determine its correspondence with the tonic GnRH release [2, 3], the complex anatomical architecture and surge release of LH in ovariectomized cows, and examine of the cranium presents a signi®cant barrier to the practical the dynamics of GnRH pulse generator activity in response to application of this method in adult cattle. Additionally, known modulators of LH release (suckling; neuropeptide Y push-pull perfusion techniques have been used to obtain [NPY]). In ovariectomized cows, both tonic release patterns and median eminence perfusates in the rat [4], rabbit [5], and estradiol-induced surges of GnRH and LH were highly correlat- sheep [6]; but these methods, to our knowledge, have not ed (0.95; p , 0.01). -
Napierindia Gnrhr As a Molecular Target For
Gonadotropin-releasing Hormone Receptor As A Molecular Target for Contraception in Feral Cats by India Desiree Napier A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 12, 2015 Keywords: contraception, DNA vaccines, feline, gonadotropin-releasing hormone receptor, superparamagnetic iron oxide nanoparticles, ubiquitin Copyright 2015 by India Desiree Napier Approved by Tatiana I Samoylova, Chair, Research Professor of Scott-Ritchey Research Center Frank F Bartol, Professor of Anatomy, Physiology, and Pharmacology Timothy D Braden, Associate Professor of Anatomy, Physiology, and Pharmacology Douglas R Martin, Professor of Anatomy, Physiology, and Pharmacology Robyn R Wilborn, Associate Professor of Clinical Sciences Abstract The global overpopulation of feral cats generates concern regarding their welfare, negative impact on public health, and adverse effects on the environment. In the U.S. and other Westernized countries, the most common method for managing feral cat populations is impoundment in animal shelters, where they undergo surgical sterilization procedures as part of a shelter adoption or trap-neuter-release programs. However, such programs are labor-intensive, time-consuming, and costly. Further, several million, un-adopted cats are euthanized each year. Thus, there is a need for a permanent, nonsurgical, and low-cost method for controlling feral cat populations. Immunocontraception has the potential to provide the practical approach needed to manage stray cat populations. Gonadotropin-releasing hormone receptor (GnRHR) is an attractive target for immunocontraceptive vaccine development because it is highly expressed by anterior pituitary gonadotropic cells, important components of the hypothalamic-pituitary-gonadal axis that regulates normal mammalian reproduction. -
General and Comparative Endocrinology 273 (2019) 209–217
General and Comparative Endocrinology 273 (2019) 209–217 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Effects of GnRH and the dual regulatory actions of GnIH in the pituitary explants and brain slices of Astyanax altiparanae males T Giovana Souza Brancoa,b,1, Aline Gomes Melob,1, Juliana M.B. Riccib, Melanie Digmayerb, ⁎ Lázaro W.O. de Jesusc, Hamid R. Habibid, Rafael Henrique Nóbregab, a Aquaculture Center of São Paulo State University (CAUNESP), São Paulo State University (UNESP), Jaboticabal Campus, Jaboticabal, Brazil b Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu Campus, Botucatu, Brazil c Institute of Biological Sciences and Health, Federal University of Alagoas – A. C., Simões Campus, Maceió, Brazil d Department of Biological Sciences, University of Calgary, Calgary, Canada ARTICLE INFO ABSTRACT Keywords: The pituitary gonadotropins, Fsh (follicle-stimulating hormone) and Lh (luteinizing hormone), regulate testi- Gonadotropin-releasing hormone cular development and functions in all vertebrates. At the pituitary, different signaling systems regulate the Gonadotropin-inhibitory hormone synthesis and secretion of the gonadotropins, such as the hypothalamic neuropeptides GnRH (gonadotropin- Follicle-stimulating hormone releasing hormone) and GnIH (gonadotropin-inhibitory hormone). While GnRH exerts stimulatory roles, the Luteinizing hormone actions of GnIH remain controversial for many teleost species. Therefore, the aim of this study was to evaluate Lambari-do-rabo-amarelo the in vitro effects of chicken GnRH2 (cGnRH2) and zebrafish GnIH-3 (zGnIH-3) on the male gonadotropin and Astyanax altiparanae GnRH system expression using pituitary explants and brain slices from a neotropical species with economical and ecological relevance, Astyanax altiparanae. -
2. Endocrine Control of the Oestrous Cycle
2. ENDOCRINE CONTROL OF THE OESTROUS CYCLE Introduction 2.1 The cyclic changes that occur in the female reproductive tract are initiated and regulated by the hypothalamic-pituitary-ovarian (HPO) axis. Although folliculogenesis occurs independently of hormonal stimulation up until the formation of early tertiary follicles, the gonadotrophins luteinising hormone (LH) and follicle stimulating hormone (FSH) are essential for the completion of follicular maturation and development of mature preovulatory (Graafian) follicles. The sites of production and key functions of the major reproductive hormones in the female rat are summarised in Table 2.1. Pituitary gonadotrophin secretion drives follicular maturation and oestrogen secretion 2.2 Levels of LH and FSH begin to increase just after dioestrus. Both hormones are secreted by the same secretory cells (gonadotrophs) in the pars distalis of the anterior pituitary (adenohypophysis). FSH stimulates development of the zona granulosa and triggers expression of LH receptors by granulosa cells. LH initiates the synthesis and secretion of androstenedione and, to a lesser extent, testosterone by the theca interna; these androgens are utilised by granulosa cells as substrates in the synthesis of oestrogen. Pituitary release of gonadotrophins thus drives follicular maturation and secretion of oestrogen during prooestrus. 2.3 Gonadotrophin secretion by the anterior pituitary is regulated by luteinising hormone-releasing hormone (LHRH), produced by the hypothalamus. LHRH is transported along the axons of hypothalamic neurones to the median eminence where it is secreted into the hypothalamic-hypophyseal portal system and transported to the anterior pituitary. The hypothalamus secretes LHRH in rhythmic pulses; this pulsatility is essential for the normal activation of gonadotrophs and subsequent release of LH and FSH. -
BGD B Lecture Notes Docx
BGD B Lecture notes Lecture 1: GIT Development Mark Hill Trilaminar contributions • Overview: o A simple tube is converted into a complex muscular, glandular and duct network that is associated with many organs • Contributions: o Endoderm – epithelium of the tract, glands, organs such as the liver/pancreas/lungs o Mesoderm (splanchnic) – muscular wall, connective tissue o Ectoderm (neural crest – muscular wall neural plexus Gastrulation • Process of cell migration from the epiblast through the primitive streak o Primitive streak forms on the bilaminar disk o Primitive streak contains the primitive groove, the primitive pit and the primitive node o Primitive streak defines the body axis, the rostral caudal ends, and left and right sides Thus forms the trilaminar embryo – ectoderm, mesoderm, endoderm • Germ cell layers: o ectoderm – forms the nervous system and the epidermis epithelia 2 main parts • midline neural plate – columnar epithelium • lateral surface ectoderm – cuboidal, containing sensory placodes and skin/hair/glands/enamel/anterior pituitary epidermis o mesoderm – forms the muscle, skeleton, and connective tissue cells migrate second migrate laterally, caudally, rostrally until week 4 o endoderm – forms the gastrointestinal tract epithelia, the respiratory tract and the endocrine system cells migrate first and overtake the hypoblast layer line the primary yolk sac to form the secondary yolk sac • Membranes: o Rostrocaudal axis Ectoderm and endoderm form ends of the gut tube, no mesoderm At each end, form the buccopharyngeal -
Downloaded from Bioscientifica.Com at 09/29/2021 04:18:11AM Via Free Access
REPRODUCTIONRESEARCH PROOF ONLY Gonadotropin characterization, localization and expression in the European hake (Merluccius merluccius) Michela Candelma1, Romain Fontaine2, Sabrina Colella3, Alberto Santojanni3, Finn-Arne Weltzien2 and Oliana Carnevali1 1Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy, 2Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway, and 3CNR-National Research Council of Italy, ISMAR-Marine Sciences Institute, Ancona, Italy Correspondence should be addressed to O Carnevali; Email: [email protected] Abstract In vertebrates, the regulation of gametogenesis is under the control of gonadotropins (Gth), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh). In fish, the physiological role of Gths is not fully understood, especially in species with asynchronous ovarian development. To elucidate the role of Gths in species with asynchronous ovary, we studied European hake (Merluccius merluccius) during the reproductive season. For this aim, we first cloned and sequenced both hormones. Then, we characterized their amino acid sequence and performed phylogenetic analyses to verify the relationship to their orthologues in other species. In addition, the quantification of gene expression during their natural reproductive season was analyzed in wild-caught female hake. Our results revealed that fshb peaked during the vitellogenic phase, remaining high until spawning. This is in contrast to the situation in species with synchronous ovary. lhb, on the other hand, peaked during maturation as it is also common in species with synchronous ovarian development. Finally, combining double-labeling fluorescent in situ hybridization (FISH) for Gth mRNAs with immunofluorescence for Lh protein, we evidenced the specific expression of fshb and lhb in different cells within the proximal pars distalis (PPD) of the pituitary.